
Multisource Approaches to Italian Sign Language (LIS) 
Recognition: Insights from the MultiMedaLIS Dataset 
 
Gaia Caligiore∗†1, Raffaele Mineo†2, Concetto Spampinato2, Egidio Ragonese2, 
Simone Palazzo 2, Sabina Fontana2 

1 University of Modena Reggio-Emilia, Italy. 
2 University of Catania, Italy. 

Abstract 
Given their status as unwritten visual-gestural languages, research on the automatic recognition of 
sign languages has increasingly implemented multisource capturing tools for data collection and 
processing. This paper explores advancements in Italian Sign Language (LIS) recognition using a 
multimodal dataset in the medical domain: the MultiMedaLIS Dataset. We investigate the integration 
of RGB frames, depth data, optical flow, and skeletal information to develop and evaluate two 
computational models: Skeleton-Based Graph Convolutional Network (SL-GCN) and Spatiotemporal 
Separable Convolutional Network (SSTCN). RADAR data was collected but not included in the testing 
phase. Our experiments validate the effectiveness of these models in enhancing the accuracy and 
robustness of isolated LIS signs recognition. Our findings highlight the potential of multisource 
approaches in computational linguistics to improve linguistic accessibility and inclusivity for 
members of the signing community. 
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1. Introduction 
Italian Sign Language (LIS- Lingua dei Segni Italiana) is 
the primary means of communication within the Italian 
signing community. Due to their visual-gestural 
modality, sign languages (SLs) were initially not 
considered fully-fledged linguistic systems. However, 
since the 1960s, beginning with Stokoe’s pioneering 
works [1], the contemporary study of SLs has evolved 
into a robust field of research. Over the past half-
century, significant societal and scientific advancements 
have transformed the perception and status of SLs, now 
recognized as natural and complete languages, having 
received legal recognition in many countries. 

In the Italian context, the study of signed 
communication began in the early 1980s, involving both 
hearing and deaf researchers. At that time, what we now 
call LIS was still mostly unnamed and was often referred 
to as ‘mime’ or ‘gesture’ by both signers and non-signers 
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alike [2]. The first significant publications on LIS [3] [4], 
along with the collaborative efforts of deaf and hearing 
researchers, initiated a transformative period in SL 
research in the Italian context [5]. This shift in 
perspective was influenced by factors beyond the 
language itself, such as increased meta-linguistic 
awareness and greater visibility of the community and 
its language to the wider public. In fact, from a societal 
perspective, the visibility of SL in Italy, especially in 
media, has significantly changed with technological 
advancements, mirroring global trends.  

In the late 1980s, Italy introduced subtitles in movies 
on television, marking a step toward content 
accessibility. The importance of media accessibility, 
through subtitles or LIS interpreting, was accentuated 
during the COVID-19 pandemic. The need for equitable 
access to critical information for deaf individuals 
became evident, with efforts born within the community 
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stressing the central role of LIS in ensuring that the deaf 
signers received accessible information during 
challenging times [6], highlighting the significant 
communication barriers that deaf individuals face, 
especially when in-person interactions were restricted. 
This increased visibility, along with persistent advocacy 
by the signing community, played a crucial role in the 
official recognition of LIS and Tactile LIS (LISt) in May 
2021. 

Within this evolving societal and linguistic 
framework, the increased media visibility of LIS and the 
introduction of video capturing tools in daily lives, 
language collection emerges as a central issue. For SLs, 
the need for comprehensive collections is particularly 
significant. Unlike oral languages, which in some cases 
have developed standardized written systems, SLs must 
rely on video collections to capture signed 
communication accurately. These videos, whether raw 
or annotated, are essential for analyzing SLs with both 
qualitative and quantitative evidence. 

2. Automatic Sign Language 
Recognition 

The development and use of preferably annotated SL 
datasets or corpora are crucial for training and 
validating automatic recognition models, and access to 
high-quality data from diverse SLs and cultural contexts 
enhances the generalizability of these solutions. 
Comprehensive data collections of this kind ensures that 
models can effectively understand and process the wide 
range of linguistic and cultural nuances present in 
different SLs. 

In the domain of automatic sign language 
recognition (SLR) of LIS, the integration of visual and 
spatial information presents a complex challenge. As 
mentioned, LIS operates through the visual-gestural 
channel. More precisely, it is characterized as 
multimodal2 (signed discourse is comprised of manual 
and body components) and multilinear (manual and 
body components are performed simultaneously) [2]. 
Recent advancements in SLR have been significantly 
driven by annotated datasets, which serve as the basis 
for training and validating models [7, 8, 9, 10, 11]. 

Machine learning technologies, particularly deep 
learning neural networks, have facilitated the 
development of more precise and robust models for SL 
interpretation. These models are able to refine their 
performance through training on diverse and complex 

 

2 Given our group’s interdisciplinarity, we found “multimodal” can 
mean different things depending on one’s background: in linguistics, 
it refers to the employment of manual and body components while 
signing, while in computer vision, it means using multiple capturing 
tools. To differentiate, we use “multisource” for capturing tools. 
Thus, “multimodal” in this text follows SL linguistics terminology. 

datasets. Additionally, computer vision plays a central 
role in this field by enabling real-time analysis and 
interpretation of body and manual components [2] that 
is hand movements, facial expressions, and body posture 
[12, 13, 14, 15]. 

A significant challenge in applying deep learning 
and computer vision methods to SLR lies in ensuring the 
quality and adequacy of training data, which is essential 
for achieving optimal model performance. 

Therefore, in this study, we focus on evaluating the 
efficacy of the MultiMedaLIS Dataset (Multimodal 
Medical LIS Dataset) and assessing various deep 
learning models for SLR which employ advanced deep 
learning techniques to interpret isolated signs by 
integrating diverse data types such as RGB video, depth 
information, optical flow, and skeletal data. 

We benchmark our Dataset with two models: the 
Skeleton-Based Graph Convolutional Network (SL-
GCN) and the Spatiotemporal Separable Convolutional 
Network (SSTCN). These models are trained on the 
MultiMedaLIS Dataset, showcasing how the 
incorporation of multisource data can enhance the 
accuracy of sign recognition. This approach aims at 
testing the potential of integrating different data 
modalities to improve the robustness and performance 
of SLR systems. 

3. State of the Art 
In this section, we discuss the state of the art from two 
perspectives considered during our work on the Dataset: 
LIS data collection and SLR tools 

3.1. LIS Data Collections 
SL researchers in Italy have been actively engaged in the 
creation of LIS corpora and datasets. This effort involves 
a complex process of video data collection and 
annotation, as SL datasets can vary significantly 
depending on their intended use. Within this context, SL 
data collections can be categorized into two main types. 
The first type includes datasets that feature videos 
depicting continuous signing, capturing the flow and 
context of natural SL usage. The second type comprises 
datasets that focus on isolated signs, which are 
individual signs presented separately from continuous 
discourse. 

The scarcity of available LIS data collections has 
prompted researchers to develop their own resources. 
Several smaller-scale LIS corpora have been 



independently established, each serving distinct 
purposes based on the type of data collected.  

The methodologies employed for collecting LIS data 
encompass a diverse array of approaches, ranging from 
naming tasks to semi-structured and spontaneous 
interviews with deaf signers, to video recording sessions 
involving hearing individuals learning LIS as a second 
language (L2) or second modality (M2) [16]. These 
documentations serve equally diverse purposes, ranging 
from documenting the language itself to creating tools 
for automatic translation highlighting the ongoing 
commitment of researchers to expand and enrich the 
available resources for studying LIS [17, 18, 19, 20, 21, 22, 
23, 24]. 

Despite the predominant private nature of corpora 
collections, an exception to the accessibility challenge is 
found in the online dictionary SpreadTheSign, a project 
originating in 2004. Initially conceived as a dictionary 
for SLs, SpreadTheSign has evolved into a versatile 
resource for language documentation [25]. Another 
significant resource is the Corpus LIS, recognized as the 
largest collection of spontaneous, semi-structured, and 
structured videos in LIS by deaf signers. The primary 
objectives of this corpus were twofold: to collect a 
substantial quantity of data suitable for quantitative 
analysis and to establish a comprehensive 
representation of LIS usage in Italy [26, 27, 28]. 

3.2. SLR Tools 
Like SL data collections, SLR approaches can be broadly 
classified into two main categories: those that rely on 
specialized hardware and those that use visual 
information. The former employ specialized hardware, 
such as gloves able to capture precise hand movements. 
While these systems can provide detailed data, they are 
often considered intrusive and can compromise the 
natural flow of communication. Additionally, they are 
unable to capture the full spectrum of SLs, which 
includes manual and body components. In contrast, 
vision-based approaches use visual information 
captured by cameras, including RGB, depth, infrared, or 
a combination of these. These methods are less intrusive 
for users, as they do not require the use of special 
equipment.  

In SLR, a challenge lies in effectively capturing both 
body movements and specific motions of hands, arms, 
and face. For instance, [29] introduces a multi-scale, 
multi-modal framework that focuses on spatial details 
across different scales. This approach involves each 
visual modality capturing spatial information uniquely, 
supported by a system operating at three temporal 
scales. The training methodology emphasizes precise 
initialization of individual modalities and progressive 
fusion via ModDrop, which enhances overall robustness 
and performance. 

Another study proposes an iterative optimization 
alignment network tailored for weakly supervised 
continuous SLR [30]. The framework employs a 3D 
residual convolutional network for feature extraction, 
complemented by an encoder-decoder architecture 
featuring LSTM decoders and Connectionist Temporal 
Classification (CTC).  

[31] introduces a 3D convolutional neural network 
enhanced with an attention module, designed to extract 
spatiotemporal features directly from raw video data. In 
contrast, [32] combines bidirectional recurrence and 
temporal convolutions, emphasizing temporal 
information’s effectiveness in sign tasks, although not 
covering the full spectrum of movements. Moreover, 
[33] employs CNNs, a Feature Pooling Module, and 
LSTM networks to generate distinctive visual 
representations but falls short in capturing 
comprehensive movements and signing. 

However, as previously noted, RGB-based SLR 
systems can raise privacy concerns, particularly when 
processing visual data in cloud environments or for 
machine learning training [34]. Addressing these issues, 
radio frequency (RF) sensors have emerged as a 
promising alternative, ensuring privacy preservation 
while enabling innovative data representations for SLR. 
In the literature, deep learning techniques have been 
applied to various RF modalities such as ultra-wideband 
(UWB) [35], Doppler [36], continuous wave (CW) [37], 
micro-Doppler [38], frequency modulated continuous 
wave (FMCW) [14], multi-antenna systems [39], and 
millimeter waves [40]. 

As part of the Dataset discussed in this work, we 
have also collected RADAR data and are actively 
analyzing it. However, preliminary results are not 
available at this time, so they are not included in this 
report. Currently, RADAR-based solutions have 
demonstrated robust performance across diverse 
environmental conditions, highlighting the productivity 
of incorporating this sensor technology in data 
collection efforts. Nevertheless, many existing RADAR 
solutions are tailored to recognizing a limited set of 
signs, highlighting the ongoing challenge of expanding 
vocabulary recognition capabilities in datasets like the 
one discussed in the following section. 

4. The MultiMedaLIS Dataset 
The MultiMedaLIS [41] Dataset was created thanks to 
the interdisciplinary collaboration established between 
the Department of Humanities (DISUM) and the 
Department of Electrical, Electronic and Computer 
Engineering (DIEEI) of the University of Catania (Unict). 
It aims to offer a multimodal collection of LIS signs 
specifically focused on medical contexts.  

For the data recording protocol, the DIEEI group 
developed a customized recording software to collect the 



LIS data, supplemented with a desktop computer and a 
modified keyboard transformed into a pedal board. This 
pedal board, equipped with two pedals, allowed hands-
free navigation of the software, enabling users to move 
forward (by pushing on the right pedal) or backward (by 
pushing on the left pedal) while maintaining a neutral 
recording position3. During sessions, one of 126 Italian 
labels or alphabet letters was displayed on a screen, with 
adjustable display time for preparation and transition 
from one sign to the other. Each recording started from 
a neutral position, and the right pedal marked the 
completion of a sign. If errors occurred, the left pedal 
allowed re-recording. The software’s interface features 
a color-coded background: yellow for preparation and 
green for recording. Additionally, it supports flexible 
data expansion, accepting word lists from text files for 
easy customization in future collections. 
 

 
Figure 1: User interface display presented during the 
recording phase (green) and preparation phase (yellow).  
 

After the recording process, Dataset included 
synchronized data capturing facial expressions, hand 
and body movements and comprises a total of 25,830 
sign instances. This includes 205 repetitions of 100 
different signs and the 26 signs of the LIS alphabet [41]. 
Beyond these 26 signs, the signs included in the 
MultiMedaLIS Dataset can be broadly categorized into 
two groups [42]: semantically marked signs related to 
health and health issues, and non-semantically marked 
signs. It is important to note that while the first group of 
signs is categorized as semantically marked, this 
classification does not imply that these signs belong 
exclusively to a specialized jargon lexicon. The decision 
to categorize signs as semantically marked was driven 
by their significance in contexts related to health and 
medical interactions in the post-pandemic world (hence, 
when the Dataset was first theorized). However, it was 
also important to include additional signs that could 
contribute to constructing meaningful utterances in 
patient-doctor interactions. During the creation of the 
MultiMedaLIS Dataset, careful consideration was given 
to selecting signs that could be combined to form 
coherent and meaningful utterances. 

Regarding the specific form of signs, the 
MultiMedaLIS Dataset includes a lexicon of standard, 
isolated signs that are not combined within utterances. 

 

3 The neutral recording position referenced is a seated position in 
which the user has their arms extended along the sides of the torso, 
elbows bent at 90°, and palms facing downward [41].  

These signs reflect forms commonly found in online 
dictionaries and educational materials. To ensure the 
accuracy of the data, sign variants performed by a 
professional LIS interpreter during the collection of a 
test dataset were compared with the same variants 
found in the online dictionary SpreadTheSign. This 
comparison aimed to select documented versions of each 
sign for inclusion in the Dataset. By incorporating these 
documented variants, we aimed to enhance its precision, 
reliability, and real-world applicability. This approach 
contributed to ensuring that the Dataset aligns with 
established standards and supports effective research 
and application in the field of LIS. 

When discussing recording tools for state-of-the-art 
multimodal corpora in the Italian context, such as the 
Corpus LIS [27] and the CORMIP [43] the emphasis is 
placed on the portability and non-invasiveness of these 
tools. This approach ensures minimal interference with 
the signer's natural environment and activities. 

Portable and non-invasive recording tools are 
chosen specifically for their ability to capture data in 
familiar, and sometimes domestic, settings without 
disrupting the signer’s surroundings, aiming to maintain 
the authenticity of the signed interactions and minimize 
any discomfort or distraction for the participants. 

To capture LIS for recognition with minimal 
invasiveness we integrated a combination of recording 
tools. A 60GHz RADAR sensor, employed to capture 
detailed manual motion data, provided Time- and 
Frequency-Domain data and Range Doppler Maps for 
distinguishing moving objects at 13 fps. For more 
structured depth and facial recognition data, the 
Realsense D455 depth camera and Kinect v1 were 
incorporated. The Realsense D455, equipped with dual 
infrared cameras and RGB mode, captured depth data at 
848x480 pixels and RGB data at 1280x720 pixels, both at 
30 fps, enabling the tracking of facial expressions 
through 68 facial points. The Zed v1 and Zed v2 cameras 
provided high-resolution stereoscopic data, recording at 
1920x1080 pixels and 25 fps, with capabilities for 
generating depth maps and 3D point clouds. 
Additionally, the Zed v2 offered tracking for 18 body 
points in both 2D and 3D [41].  

 

 



Figure 2: Combination of synchronized infrared and 
depth data from the MultiMedaLIS Dataset.  
 

By prioritizing portability and non-invasiveness, 
high-quality data can be still collected, while respecting 
the privacy and comfort of the individuals recorded. 
Anonymization is achieved through the use of the 
RADAR sensor, which we introduced specifically to 
address privacy concerns inherent in face-to-face signed 
communication. 

5. Testing the Dataset 
The MultiMedaLIS Dataset was designed with the aim of 
supporting the development of SLR models by enabling 
the collection and integration of information through 
various data modalities: 

• RGB frames: images extracted from videos. 
• Depth data: three-dimensional information for 

each RGB frame 
• Optical flow: to emphasize movement 
• Skeletal data: face landmarks and body joints 

 
One of the main components of the Dataset are RGB 

frames, which are images extracted from videos. These 
frames provide a two-dimensional visual representation 
of the signs performed by the signer, capturing details 
such as hand positions and facial expressions. The 
Dataset includes depth data, providing a three-
dimensional aspect to the images. allowing for more 
detailed information on the distance and relative 
position of elements in the scene. This type of data is 
particularly useful for understanding the spatial 
dynamics of signs. 

 
Alongside RGB and depth data, the MultiMedaLIS 

Dataset also contains optical flow information, which 
describes the movement between consecutive frames. 
Optical flow is essential for capturing the direction and 
speed of movements, providing a more detailed 
understanding of the transitions between various signs. 
Finally, the Dataset includes skeletal data, representing 
face landmarks and body joints, allowing for precise 
tracking of joint and body segment positions, facilitating 
the analysis of signs in terms of joint movements. 

 
Managing this multimodal data is an emerging topic 

in computational linguistics. By combining different 
sources of information, it is possible to significantly 
improve the performance of SLR models. For example, 
integrating depth data with RGB frames can provide a 
more complete representation of signs, while adding 
optical flow and skeletal data can further enrich the 
analysis of movement’s temporal structure. In our view, 
the MultiMedaLIS Dataset provides a solid foundation 

for exploring these combinations, allowing researchers 
to develop more effective and accurate solutions for SLR. 

6. Models and Architectures 
In the context of automatic SLR, various approaches and 
model architectures have been tested to leverage the 
characteristics of multimodal data in the MultiMedaLIS 
Dataset. 

The SL-GCN (Skeleton-Based Graph Convolutional 
Network) represents a significant innovation in this 
field. This model generates skeletal data from videos and 
creates temporal graphs that capture the spatiotemporal 
relationships between joint movements. Through fine-
tuning and the combination of different data streams, 
SL-GCN has demonstrated high accuracy in sign 
recognition [44] [45]. 

Another prominent architecture is the SSTCN 
(Spatiotemporal Separable Convolutional Network) [46], 
which excels in feature extraction from videos using 
HRNet [47]. This approach has shown an accuracy of 
96.33%, highlighting its effectiveness in capturing spatial 
and temporal dynamics of LIS signs. 

RGB frames are crucial for the visual representation 
of signs. The process of splitting videos into frames, 
cropping, and normalization optimally prepares the data 
for analysis by deep learning models. The use of dense 
optical flow presents significant challenges in sign 
recognition. Optical flow extraction using the Farneback 
algorithm [48] led to 56% accuracy, highlighting 
difficulties in capturing precise details of movements, 
alongside computational limitations. Depth data 
encoded with Height, Horizontal disparity, Angle 
(HHA) represent another crucial resource in the 
MultiMedaLIS Dataset. Applying HHA encoding to 
depth frames achieved 88% accuracy using the 
ResNet(2+1)D architecture [49], substantiating 
importance of three-dimensional information in 
enhancing understanding and interpretation of signs, 
offering a more detailed perspective compared to two-
dimensional data. 

7. Training and Evaluation 
Procedure 

For the training of the models, we employed a multi-
stream approach that integrates skeletal, RGB, and depth 
data to improve sign recognition accuracy. The models 
were trained on a NVIDIA Tesla T4 16GB GPU using the 
Adam optimizer with an initial learning rate of 0.001 and 
a batch size of 8. We applied cross-validation to ensure 
the robustness of the results, splitting the Dataset into 
training (70%) and validation (15%) subsets and data 
augmentation techniques, such as color jittering, 
changing the brightness, contrast, saturation and hue, to 



increase the diversity of the training data and improve 
generalization. 

The loss function adopted for training was 
categorical cross-entropy, appropriate for multi-class 
classification tasks. The models were trained for a 
maximum of 100 epochs, with an early stopping 
criterion set to terminate training if no improvement in 
validation loss was observed for 10 consecutive epochs. 
For evaluation, we used a test set comprising 15% of the 
Dataset, ensuring that the models were tested on unseen 
data. 

8. Results 
The results demonstrate the model’s efficiency in 

leveraging multi-modal data for improved outcomes. As 
can be seen in Table 1, the SL-GCN multi-stream model 
achieved the best accuracy, with a Top-1 accuracy of 
97.98% and a Top-5 accuracy of 99.94%, surpassing the 
performance of models using single data streams such as 
skeletal joints, bones, or motion alone. This 
demonstrates the advantage of combining multiple 
streams of information to capture both spatial and 
temporal dynamics of signs.  

Table 1 
Performance of SL-GCN multi-stream on the test set 

      In Table 2, datasets trained on the SL-GCN model are 
compared. Our Dataset produced the highest accuracy 
(97.98%) among the datasets evaluated, outperforming 
larger datasets like AUTSL (95.45%).  

Table 2 
Comparison of different datasets on SL-GCN model 

Table 3 presents a comparison of different methods 
across the entire Dataset. The SL-GCN trained on RGB 
frames achieved the highest accuracy (97.98%), followed 
by the SSTCN model with 96.33%. The ResNet(2+1)D 
architecture showed strong performance when applied 
to RGB frames (97.29%), but struggled when using 

optical flow data alone, reaching just 56.31% accuracy, 
suggesting that while the optical flow provides valuable 
information on motion, it lacks the richness of spatial 
features found in RGB and depth data. The HHA-
encoded depth data, when processed with the 
ResNet(2+1)D model, achieved an accuracy of 88.04%, 
confirming that depth information is complementary, 
but not as effective as RGB data in isolation. 

Table 3 
Performance of various methods on the MultiMedaLIS 
Dataset 

The results highlight importance of combining 
multiple data modalities, especially RGB and skeletal 
data, for improving the accuracy and robustness of SLR 
systems. The performance of the SL-GCN model with 
multi-stream data shows the model’s ability to 
effectively capture signs, as well as the Dataset’s value. 

9. Discussion and Conclusion 
In this study, our goal was to demonstrate our first steps 
into testing the efficacy of the MultiMedaLIS Dataset in 
contributing to the advancement of the field of SLR 
through multisource approaches. The integration of 
RGB frames, depth data, optical flow, and skeletal data 
has provided a comprehensive basis for developing and 
evaluating SLR models. Our experiments with the SL-
GCN and SSTCN architectures have highlighted 
advancements in recognizing isolated LIS signs in 
medical semantic contexts, given the domain of our 
Dataset. 

The SL-GCN model, trained on skeletal data to 
construct temporal graphs, achieved accuracy in 
capturing spatiotemporal relationships critical to sign 
recognition. This approach not only enhances the 
precision of rendering LIS signs but is also reinforced by 
a Dataset able to support robust graph-based 
convolutional networks in multimodal SLR tasks. At the 
same time, our Dataset proved robust, precise and 
variable enough for SSTCN model testing, focusing on 
spatiotemporal separable convolutions, revealing robust 
performance in extracting spatial dynamics from RGB 
frames. 

Having validated the visual modalities on the 
mentioned models, we have promising preliminary 
results on adapting these models to accept RADAR data. 
We plan to extract the pre-trained RADAR data 

Data Accuracy 
Top-1 (%) 

Accuracy 
Top-5(%) 

Joints 96.24 99.84 
Bones 95.82 99.84 

Joint Motion 90.37 99.15 
Bone Motion 92.69 99.52 
Multi-stream 97.98 99.94 

Dataset Number of signs Accuracy (%) 
MultiMedaLIS 126 97.98 

AUTSL 226 95.45 
ASLLVD 20 61.04 
Alphabet 26 85.19 

Methods Dataset Accuracy(%) 
SS-CGN  RGB 97.98 
SSTCN RGB 96.33 

ResNet(2+1)D  Optical Flow RGB 56.31 
ResNet(2+1)D Frame RGB 97.29 

ResNet(2+1)D Encoding HHA Depth 88.04 



processing module and use it independently during 
inference. This approach will eliminate the need for RGB 
visual data. Furthermore, we plan to expand the Dataset 
by applying the same protocol with 10 deaf signers. This 
will effectively increase the current Dataset, enhancing 
the generalizability across different signers. Our goal is 
to develop an autonomous, resource-constrained system 
(thanks to the exclusion of RGB data) that operates on-
edge or even offline. This cost-effective solution can be 
used in any emergency contexts where direct access to 
interpreting is not available. 
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