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Abstract

Syntactic learning curves in LMs are usually
reported as relatively stable and power law-
shaped. By analyzing the learning curves of
different LMs on various syntactic phenom-
ena using both small self-trained llama models
and larger pre-trained pythia models, we show
that while many phenomena do follow typical
power law curves, others exhibit S-shaped, U-
shaped, or erratic patterns. Certain syntactic
paradigms remain challenging even for large
models, resulting in persistent preference for
ungrammatical sentences. Most phenomena
show similar curves for their paradigms, but
the existence of diverging patterns and oscilla-
tions indicates that average curves mask impor-
tant developments, underscoring the need for
more detailed analyses of individual learning
trajectories.

1 Introduction

The training goal of modern neural language mod-
els is simple: optimizing the prediction of the next
(or a masked) token. During optimization over
enormous numbers of such tokens, complex linguis-
tic knowledge emerges as a “side effect”. But how
is this knowledge and its learning trajectory char-
acterized? Existing empirical evidence seems to
suggest that morphological, syntactic and basic se-
mantic knowledge in language models is acquired
quite early during pre-training, normally with a
power-law like increase over the first 5-15% of the
first training epoch (inter alia Chiang et al., 2020;
Liu et al., 2021; Saphra, 2021; Miiller-Eberstein
et al., 2023).

However, evaluation protocols that assess con-
crete learning trajectories of LMs are only begin-
ning to emerge. Current probing approaches of-
ten mask developmental difficulties by reporting
averaged scores over large and varied evaluation
data sets, although, as Ritter and Schooler (2001)
note, “[a]veraging can mask important aspects of
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learning”. The learning curves — plots of task per-
formance over the training period — are frequently
assessed in a purely qualitative way, with little com-
mon best practices as to which training phases and
how many epochs are to be described (Viering and
Loog, 2023).

In this paper, we take first steps towards a more
systematic analysis of the concrete learning curves
for a variety of linguistic phenomena. We train a
suite of small LMs, checkpointing them logarith-
mically during their first training epoch, test them
on the BLiMP probing suite (Warstadt et al., 2020)
and compare them to recent larger LMs that pro-
vide similarly-spaced checkpoints. We analyze the
resulting learning curves qualitatively (in more de-
tail than previous research), but also quantitatively
(by categorizing and clustering shapes). In doing
so, we are able to discern which phenomena are
easier to learn and how trajectories differ between
smaller and larger language models. Moreover, we
investigate whether similar phenomena also exhibit
similar trajectories or whether averaged learning
curves obstruct some of the underlying trade-offs
and instabilities of linguistic learning in LMs.

We find that when looking at the individual
BLiMP paradigms and their learning curves, a
more nuanced picture of how they are (not) learned
emerges. While most curves do follow the proto-
typical power law, completely stable curves and to
a lesser degree S- and U-shaped curves are also fre-
quent. However, many paradigms also feature ill-
behaved curves that never converge to stable perfor-
mance or decrease over training. Inside the broader
phenomenon sets, we find sheaves of curves for
those mastered earlier, whereas the curves for
hardly mastered phenomena exhibit strong differ-
ences. Moreover, larger models generally converge
towards more power-law curves. As such, our study
puts some previous results into question — certain
syntactic phenomena seem to be hardly learnable
even by large language models trained on massive
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amounts of data, and even good performance at
early training stages can deteriorate again after the
model is confronted with more linguistic data.

2 Related work

Learning curves in ML and humans Every
ML training run has a learning curve (target func-
tion or loss function over time), but these curves
have not received much scrutiny and are often as-
sumed to follow a power law, despite varying sig-
nificantly depending on the task (Shalev-Shwartz
and Ben-David, 2014; Viering and Loog, 2023).
Viering and Loog (2023) review the variety of learn-
ing curve shapes, identifying both well-behaved,
steadily increasing curves and ill-behaved curves
that show degrading performance or oscillation.
‘Well-behaved, monotonic curves are the common
targets of ML research (Viering et al., 2019), of-
ten categorized using power law or exponential
functions. In reality, not every learning curve
is monotonically increasing. Exceptions include
phase transitions with sudden performance boosts
(Viering and Loog, 2023), peaks (Nakkiran, 2019),
dips (Loog and Duin, 2012), and curves that oscil-
late through several maxima and plateaus (Sollich,
2001). Thus, the space of possible curve shapes
is empirically much wider than often theoretically
assumed.

Human learning can also be characterized by
learning curves, abstracted to measurable perfor-
mance on a task, with most empirical studies show-
ing that human learning typically follows power
laws (Ritter and Schooler, 2001). In language ac-
quisition, some phenomena deviate from typical
patterns. For example, past tense acquisition of-
ten follows a U-shaped curve: initially, children
correctly produce high-frequency irregular and reg-
ular past forms item-based (Tomasello, 2000). As
they abstract rules, they overregularize, applying
regular rules to irregular verbs previously produced
correctly (Saxton, 2017). Performance then gradu-
ally recovers to adult-like levels. Another common
shape is the S-shaped logistic curve, where slow
initial learning is followed by a rapid onset and
then slow final gains. Examples are, e.g., vocab-
ulary acquisition (Murre, 2014) or the production
frequency of non-finite sentences (Hulk and Miiller,
2000). However, evidence on the prevalence of and
the complex trade-offs between such curves is still
rather meagre. Due to a lack of empirical data,
combined with small sample sizes, limited cross-

linguistic studies, and the study of very narrowly
defined phenomena, some scholars argue that these
effects are much weaker than assumed (e.g. Marcus
et al., 1992).

Learning trajectories in LMs In their seminal
paper on neural networks learning the English past
tense, Rumelhart and McClelland (1986) report
U-shaped learning over one epoch of training (al-
though this development was mostly caused by
their specific re-ordering of training instances, cf.
Pinker and Prince, 1988). In a modern follow-up,
Kirov and Cotterell (2018) find a more oscillating
pattern in their LSTM-model for past-tense acqui-
sition, although they report scores across several
epochs, which hinders comparability.

Shifting the attention to the current standard in
NLP, language models, it becomes apparent that
investigations into learning curves are not (yet)
standard practice in evaluating language models,
(primarily due to the need for fine-grained check-
pointing, which only few LMs provide). The more
general practice of probing over time, however, is
somewhat established. Chiang et al. (2020) and Liu
etal. (2021) show that when comparing a variety of
probing benchmarks on masked language models,
syntactic information is generally acquired earlier
than semantic, pragmatic and commonsense knowl-
edge (cf. also Saphra, 2021; Teehan et al., 2022).
Besides, syntactic information is also commonly
located in earlier layers of LLMs (Tenney et al.,
2019). Miiller-Eberstein et al. (2023) analyze mul-
tiple checkpoints of the MultiBERT LMs (Sellam
et al., 2022). They also find that morphological
and syntactic structure is acquired very early by
the models (after ~10% of the first training epoch),
whereas semantic, pragmatic and general world
knowledge emerge later. Their logarithmically-
scaled curves still exhibit interesting, mostly S-
shaped curves with a rapid take-off after a period
of little learning. This is also in line with Chen et al.
(2024), who find a sudden drop in training loss in
masked LM training which aligns with the emer-
gence of syntactic attention structure in attention
heads.

Turning to the focus of our experiments, minimal
pair tests, several additional empirical studies can
be reported. Huebner et al. (2021) derive their own
“Zorro” benchmark from BLiMP by excluding phe-
nomena not found in child-directed speech. They
test an extremely small (SM parameters) masked
LM and show that, generally, scores improve across



\ Param. Train. tokens Hddn. layers  Attn. heads Embed. size BLiMP score
baby_llama 2.97T™M 10M 8 8 128 64%
teenie_llama 2.97T™M 100M 8 8 128 67%
weenie_llama 11.44M 10M 16 16 256 67%
tweenie_llama | 11.44M 100M 16 16 256 71%
pythia-14m 14M 300B 6 4 512 65%
pythia-70m 70M 300B 6 8 512 75%
pythia-160m 160M 300B 12 12 768 79%
pythia-410m 410M 300B 24 16 1024 82%
pythia-1b 1B 300B 16 8 2048 82%
pythia-1.4b 1.4B 300B 24 16 2048 82%

Table 1: Model hyperparameters of our self-trained llama models and the compared pythia models

training. They mostly show power law-like devel-
opment, with the greatest improvements occurring
in early stages of training. Yet, this does not apply
to all included phenomena — some are never learned
well (e.g. island effects or anaphor agreement).
These show diminishing accuracy after early per-
formance peaks — a fact not further discussed.

Liu et al. (2021) also examine BLiMP devel-
opment during the training of a masked LM and
find that their curves, which categorize phenom-
ena more coarsely, converge to stable performance
quickly, approximating power-law curves after
about 20% of pre-training. Morphological and
short-distance syntactic phenomena are mastered
fastest, while more complex syntactic aspects, like
island effects, take longer. This pattern holds for
other linguistic probes, but benchmarks testing
common sense or reasoning exhibit unstable be-
havior with oscillating curves and performance
dips. Choshen et al. (2022) take a similar ap-
proach with autoregressive LMs (GPT-2, Trans-
formerXL). They find that grammatical phenomena
are acquired in a stable order along classical lin-
guistic layers. However, not all curves show mono-
tonic improvement; some syntax and morphology
paradigms never reach stable performance and de-
teriorate over training. This behavior is consistent
across different initializations of both architectures
but does not apply to phenomena involving seman-
tic knowledge.

3 Methods

3.1 Investigated models

We analyze two different model architectures, four
self-trained llama models (Touvron et al., 2023a)
and six models from the pythia family (Biderman
et al., 2023).
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Data We train our models on the BabyLM data
set (Warstadt et al., 2023). It features written and
spoken source corpora that span a wide range of
registers — child-directed speech/text, adult conver-
sations, movie dialogue, and data from Wikipedia
and Project Gutenberg. Before training our models,
we clean the data from artefacts, adapting scripts by
Timiryasov and Tastet (2023). The pythia models
are trained on The Pile (Gao et al., 2020), a 300B
token corpus sourced from the internet, academic
literature, code from GitHub and, to a lesser degree,
spoken language, which makes it more comparable
to regular LLM training corpora.

Models and training hyperparameters We use
the transformers library (Wolf et al., 2020)
to train four different 1lama models' (Touvron
et al.,, 2023b). Our smallest model we call
baby_llama. The larger models are differenti-
ated by more tokens (100M instead of 10M for
teenie_llama), more weights (11.44M instead of
2.97M for weenie_llama) or both in the case of
tweenie_llama. As training hyperparameters, we
chose a batch size of 16, 200 warmup steps, and a
learning rate set to 3e-4 in accordance with Touvron
et al. (2023a). From the pythia suite of GPT-NeoX
models (Andonian et al., 2023), we take the six
smallest models, ranging from 14M to 1.4B param-
eters. They were all trained on the same data, but
with different model hyperparameters (cf. Table 1).
Our models were trained on a single NVIDIA RTX
A4000 GPU, contrasting with the pythia models
trained on clusters of 32—-64 GPUs.

3.2 BLiMP performance

We test ~BLiMP  performance with
Im-eval-harness (Gao et al.,, 2022). By
calculating perplexity for the sentences in each

"Available at https://huggingface.co/bbunzeck
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\ Shape Graphical ~ Description

U ~ Medium performance followed by a dip, then rapid improvement and stabilization
Well-behaved S L] Initially no learning, then rapid onset and finally stabilization

Pow |—| Rapid early learning, followed by stabilization and no further gains

Stable | No change in performance across training (standard deviation < 0.2)

InvU L Inverse U-shape, stabilization after a performance peak and subsequent decrease

RevU ~—— Dip in performance, stabilization on lower level than before dip
Ill-behaved RevS T~ Reversed S-curve, early performance is good, but then diminishes rapidly and never recovers

RevPow 7T Reverse power-relationship — performance degradation at end of training

Osc WAAA Performance never stabilizes and jumps between better and worse scores

Table 2: Overview of proposed curve shapes

pair, BLiMP can be used to discern whether a
grammatical sentence is preferred by an LM (less
perplex): an accuracy of 50% equals the random
baseline. BLiMP covers 12 different linguistic
phenomena from morphology, syntax and se-
mantics (or their interfaces), with 67 included
paradigms (individual data sets). We deliberately
chose BLiMP due to the its widespread use and the
wealth of previous results, although it suffers from
problems like semantically implausible sentences
(see (Vazquez Martinez et al., 2023) for more
criticism and alternative data sets).

3.3 Analyzing learning curves

In line with Viering and Loog (2023), our learning
curves are based on performance changes over pre-
cisely one training epoch. This choice allows us to
capture the learning potential from the data upon
initial exposure and observe trajectories as models
encounter new data continuously. Recognizing that
many linguistic phenomena are acquired early in
training, we look at logarithmically spaced evalu-
ation checkpoints: 10 checkpoints within the first
10% of training and 9 additional checkpoints until
the epoch’s completion.

Assessing the shapes of learning curves system-
atically is a complex task. We qualitatively assign
shapes, aided by fitting fifth-degree polynomials
to each curve. Our categorization includes well-
behaved curves, such as S-shaped, U-shaped, and
power law curves, as observed in the acquisition
literature. We also identify ill-behaved curves by
their inverted (mirrored on the x-axis) and reversed
(mirrored on the y-axis) variants. Additionally,
curves that remain stable from the earliest training
steps (standard deviation < 0.02) are considered
well-behaved, whereas curves that oscillate contin-
uously without stabilizing are deemed ill-behaved.
A summary of our systematization is provided in
Table 2.

To further examine similarities between mod-
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els and paradigms, we define a feature vector for
each model-paradigm combination by computing
the performance differences between all successive
pairs of training steps across all BLiMP paradigms.
This allows us to represent each model-paradigm
combination as a point in a high-dimensional vector
space.

4 Results

BLiMP After one training epoch, our
baby_llama achieves a general BLiMP ac-
curacy of 64%, improving to 67% with more
data (teenie_llama) or more parameters
(weenie_llama).  The combination of both
(tweenie_llama) reaches 71%. The smallest
pythia model (14M parameters), despite being
trained on much larger datasets, only achieves
65%, increasing to 75% for the 70M model and
79% for the 160M model. The largest pythias
(410M, 1B, 1.4B) all reach 82%, close to peak
BLiMP performance reported in the original
BLiMP paper (83% by GPT-2), the highest score
on the HELM evaluation database (84%, Liang
et al., 2023), and the best BabyLM model (86%,
Warstadt et al., 2023). Therefore, our results are
comparable to even larger models. As an ablation,
an untrained llama model performed similarly to
the random baseline, scoring 51%.

Variation in phenomenon-averaged curves In
the spirit of earlier analyses, we first consider the
averaged curve shapes (over the phenomenon sets
in BLiMP) from a qualitative viewpoint (see Figure
1, which contrasts the smallest and largest models
investigated). For the smallest llama model, the
learning curves exhibit a range of shapes, including
power-law curves, S-shaped curves and U-shaped
curves. Many curves do not show any improve-
ments over the training epoch. The first 10% of
training is marked by the highest degree of varia-
tion, but many performance gains also happen later
than that. Here it already becomes apparent that
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Figure 1: Learning curves over one epoch for the smallest llama and largest pythia model, averaged across BLiMP
phenomena (for both models, the first ten checkpoints correspond to the first 10% of training, the following nine to

remaining 90%)

more training on natural language data does not
linearly improve performance on linguistic probing
tasks. The largest pythia model, in contrast, dis-
plays learning curves that mostly resemble power
law curves. Improvements are concentrated within
the first 4-5% of training, after which the perfor-
mance remains relatively stable across all phenom-
ena (although minor performance tops and dips are
observable).

We present a more detailed visualization of in-
dividual curves, categorized by phenomenon and
model, in Figure 2.

Individual curves are frequently ill-behaved
The first striking observation is found in the many
ill-behaved curves. For the llama models, more
than a quarter of the learning curves are ill-behaved,
while for the pythia models, this is true for more
than one fifth (distributions found in Table 3).
While larger models generally do distinguish more
minimal pair paradigms effectively, those phenom-
ena that exhibit unstable and erratic curves in
smaller models frequently continue to do so in
larger models. Apart from that, smaller models
have a higher number of curves that remain well
below 50%, indicating that for some phenomena,
these models actively prefer the ungrammatical
variant. This issue occurs only sporadically in
larger models, for example with selected paradigms
concerning quantifiers or filler-gap phenomena.

Patterns inside phenomenon sets: sheaves and
divergence Another striking aspect visible in Fig-
ure 2 is that sheaves of curves — curve sets that are
close across training and show very similar shapes
— are found across all models for different phenom-
ena (e.g. argument structure and determiner-noun
agreement). They become more power-law-like as
the models increase in size. Apart from sheaves,
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we can also find diverging patterns, where some
curves inside one phenomenon show strong im-
provements and other curves exhibit deteriorating
performance over one training epoch, for example
with subject-verb agreement and filler-gap phenom-
ena. Such diverging patterns are more prevalent
in smaller models, where they often appear as al-
most perfectly mirrored curves. In larger models,
divergent patterns are less pronounced, but for phe-
nomena prone to divergence, some curves still tend
to worsen in the largest models.

The effects of model and data size The relation-
ship between model size and performance is not
straightforward. Our llama models scale in both pa-
rameters and dataset size, while the pythia models
only scale in parameters but are trained on signifi-
cantly more tokens. This increased amount of data
results in less granularity in our analysis. However,
the smallest pythia model, with few parameters
but a large amount of training data, exhibits many
S-shaped curves across several phenomena (bind-
ing, determiner-noun agreement, filler-gap, etc.).
Its curves show a pronounced sudden take-off in
BLiMP performance after being trained on many
more tokens compared to the llama models. Thus,
the amount of training data alone does not correlate
with good performance after relatively few training
steps.

| llama models  pythia models
[l-behaved 27.24% 22.39%
Power law 33.21% 45.77%
S-shaped 12.32% 13.18%
Stable 14.93% 14.67%
U-shaped 12.32% 3.98%

Table 3: Percentage of curve types for both model fami-
lies



anaphor_agreement argument_structure binding control_raising  det-noun_agreement ellipsis
0

filler_gap irregular_forms island_effects NPI_licensing quantifiers  subj-verb_agreement

1
©
5 o = Nny Ve >
05 —— < = L
2 S —F —
8 < ==
8 " -
00 R
210 _—
H e —— = \_/ _— N~
] —_— i B - =
205 f /H ~—— =
ing I 7 — ——
0.0 —
@10 ———
. = e EEE B
2 —_— ~ — 7
| = . y N
2os . P N e e
H — )%—/ —
g N —
00 -
©
g10 E=—— NP=—
s e Vi A = N S
U = =
L= —
g ~__ 7 —
2 P e T -
0.0 o
e 10 S~ e
s o~ = A AL o ;
fos = = = 2 K\ ~ T
=3 ~_ Y\ —
z \ = S=
- e
10 e —
5 = ] S~ //H\\vﬁ\ o~ i
g = g B — =0
fos e T e ==
S % <
2 —
0.0
£ 10 = S — = g e
@ T @ = = e [
%05 el =
£ -
2
0.0
£ 10 o e e
3 S 7T —
&o5 B —
£ g
3
2
0.0
10 —_— e
o — T —— e T ———
% — =
£os A=l L T
) —~—
0.0
10 e B ———
g —— a1l S ———
Tos —~ [
2z

°

5 10 15 5 10 15 5 10 15 5 10 15 10 15
checkpoint checkpoint checkpoint checkpoint checkpoint

10 15
checkpoint

5 10 15 5 10 15
t t

5 10 1 5 10 15 5 10 15 5 10 15
checkpoint checkpoin checkpoin checkpoint checkpoint checkpoint

Figure 2: Learning curves for all paradigms in BLiMP, separated for models (rows) and phenomenon sets (columns)

When quantitatively comparing the distributions
of curves among all investigated models, a clear
division emerges between llama and pythia models.
This is visualized in Figure 3. The division is par-
ticularly pronounced in larger pythia models with
160 million or more parameters. Llama models and
the two smaller pythia models have a higher pro-
portion of U-shaped and S-shaped curves, with the
pythia-14M showing up to 47.8% S-shaped curves.
These models also display more ill-shaped patterns,
ranging from 25% to 40%. Llama models trained
on larger datasets have over 40% power-law curves,
whereas the smallest pythia model shows no power-
law curves. Larger pythia models have over half
of their learning curves following a prototypical
power-law pattern, with a significant number of sta-
ble curves (20-25%), few U-shaped developments,
and no S-shaped developments. Additionally, they
exhibit fewer ill-behaved curves (15-20%) com-
pared to smaller models. The four largest pythia
models show very little variation, further highlight-
ing this distinction.
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Clustering training trajectories To assess fur-
ther commonalities between paradigms or models,
we visualize the developmental trajectory vectors,
reduced in dimensionality using t-SNE (van der
Maaten and Hinton, 2008), in a scatter plot (Fig-
ure 4) and visually examine whether they form
specific clusters. Initially, the plot presents a
messy picture with little visible structure. Clus-
tering effects for different models or model ar-
chitectures appear rather weak. However, clus-
tering effects are more pronounced for BLiMP
phenomena. We observe clusters for argument
structure, determiner-noun agreement, and subject-
verb agreement—phenomena that typically form
sheaves. Additionally, NPI licensing, binding, and
filler-gap phenomena also cluster, even though their
curve shapes are quite varied. Conversely, there are
no discernible patterns for phenomena like quanti-
fiers or irregular forms.

Turning points across training The diverging
mirrored curves described earlier in Section 4 also
indicate another pattern: the minima for many
paradigms coincide with the maxima for others.
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Figure 4: Dimensionality-reduced scatterplot of curve
development for each model-paradigm combination

The point plots in Appendix B show checkpoint-
wise deviations from mean performance, reveal-
ing particularly strong positive and negative de-
viations at certain checkpoints. The effects are
especially pronounced in Figure 10, where almost
all NPI paradigms show their maximum perfor-
mance in the last few checkpoints, except for
only_npi_licensor_present, which has deterio-
rated from earlier maxima in the first 10% of train-
ing

Key results From our qualitative and quantita-
tive analyses, the most striking observations can be
summarized as follows:

* Ill-behaved curves occur across all models,
though they are less frequent in larger models
with more internal parameters. When look-
ing at non-averaged curves, these ill-behaved
developments are much more pronounced-

* For many phenomenon-model combinations,
the curves for related paradigms emerge as
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similarly shaped sheaves of individual curves.
This is particularly true for, e.g., argument
structure or determiner-noun agreement.

In contrast to the aforementioned sheaves also
diverging patterns are observed within phe-
nomena. Some paradigms within the same
phenomenon have mirrored learning trajecto-
ries, where improvement in one paradigm is
directly correlated with diminishing perfor-
mance in another. This divergence is particu-
larly pronounced for filler-gap phenomena, as
well as in subject-verb agreement and binding.

Shape-wise similarities are more pronounced
for phenomena across different models,
whereas (especially for the smaller models)
there is high variation within models.

5 Discussion

Our results indicate that larger models perform
better, exhibiting higher BLiMP scores, fewer ill-
behaved curves, and more power-law curves, align-
ing with existing literature on scaling dynamics
(Warstadt et al., 2020, 2023). In our self-trained
llama models, improvements are seen both with
increased parameters and more data, with the com-
bination leading to even greater enhancement. In-
terestingly, the smallest pythia model, despite be-
ing trained on significantly more tokens compared
to the llama models, performs worse and has the
most S-shaped curves. This suggests that in the
very small pythia model, the real learning of lin-
guistic features only begins after a large number
of tokens are seen, whereas in our smaller llama
models, this learning occurs much earlier. A pos-
sible explanation for this discrepancy could be the
higher quality of the datasets used to train our llama
models (BabyLM 10M and 100M), which offer a
wider variety of genres and registers, compared
to the web-sourced “The Pile” dataset used for all
pythia models.

Our findings largely confirm, but also revise and
expand upon, earlier reports of rapid syntax learn-
ing in language models. Many phenomena are
acquired quickly (as in Liu et al., 2021, also Miiller-
Eberstein et al., 2023), yet some BLiMP paradigms
are never fully mastered as in Huebner et al., 2021
for Zorro or Choshen et al., 2022 for BLiMP). The
learning trajectories are non-linear; more tokens do
not necessarily improve performance. Phenomena
exhibit various curve shapes — some start strong,



dip, and stabilize, while others oscillate indefinitely.
Even in the largest models, certain phenomena re-
main unlearned, showing a persistent preference
for ungrammatical sentences. This aligns with lit-
erature identifying these phenomena as difficult to
learn, often displaying unusual learning curve pat-
terns. Easily learned phenomena have organized
sheaves of curves, while hard-to-learn phenomena
exhibit scattered individual curves, suggesting that
phenomena based on similar linguistic features are
not uniformly grounded in the same ML features.

Some peculiarities found in our analyses might
be caused by BLiMP itself. For example, the
principle_A_case_1 paradigm, which exhibits
almost only stable and perfect learning curves, al-
ways features a possessive pronoun (e.g. her) in the
grammatical sentence and a reflexive (e.g. herself)
in its ungrammatical counterpart. However, pos-
sessives are much more frequent in language than
reflexives (e.g. her: 1.517.948 tokens vs. herself
56.741 tokens in ukWaC, Baroni et al., 2009), so it
is reasonable to assume that a sentence containing
a reflexive always has a higher perplexity. For a
randomly shuffled training corpus that is represen-
tative and balanced (in the sense of Stefanowitsch,
2020, 28), these patterns should be learned very
quickly from little data and thus have such a sta-
ble learning curve, whereas other phenomena that
are less tied to frequence differences might not use
such easy surface heuristics. Similar criticisms,
e.g. about problems with the quality of example
sentences, have been put forward by, inter alia,
Vazquez Martinez et al. (2023).

An ML-based explanation for such peculiarities
is that models pick up orthogonal features — fea-
tures that improve performance on some paradigms
within a phenomenon but degrade performance on
others — during the learning process (Choshen et al.,
2022). It remains open whether ML features must
necessarily correspond to those considered impor-
tant in linguistic theory. The presence of mirrored
curves/turning points also supports the hypothesis
of orthogonal features.

Finally, BLiMP’s choice of target phenomena
is heavily influenced by generative, syntax-centric
linguistics. Other contemporary linguistic theories
(e.g. usage-based linguistics, construction gram-
mar) might not find these phenomena particularly
meaningful. In construction grammar, argument
structure is determined by constructional patterns,
allowing verbs to take new arguments and convey
new meanings (Goldberg, 2013). Therefore, per-
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fect performance on BLiIMP may not necessarily be
a desirable goal, as it might not reflect the flexible
and creative language use characteristic of humans.
Additionally, grammaticality is a contested notion,
difficult to measure, often gradient, and strongly
influenced by socio-cultural factors (Vogel, 2018,
2019). Consequently, stable curves might only be
desirable for phenomena that exhibit less gradience
in human evaluation, whereas worse scores and
eternal oscillations might entail better linguistic
generalizations for less clear-cut paradigms.

6 Conclusion

Our study set out to characterize linguistic learning
in language models through an analysis of learn-
ing curves. We conclude that while the rapid syn-
tax learning assumption from earlier studies gener-
ally holds, it also needs revision. When averaging
across many phenomena and paradigms, perfor-
mance gains appear to follow a prototypical power
law. However, this is not true when examining
individual phenomena, many of which exhibit ill-
behaved curves. Stability in BLiMP performance
is often an illusion; stable average curves are based
on oscillating and heavily changing minimal pair
paradigms within them. With larger models and
more data, there is a general shift towards greater
stability and more power law curves, but even in
very large models, not everything works perfectly.

On a meta-level, our study demonstrates that
analyzing learning curves is a powerful tool for
better characterizing learning processes. Many
benchmarks include systematically organized sub-
phenomena, and our methodology can illuminate
specific performance developments and complex
trade-offs during the learning process. This high-
lights the need for the community to develop best
practices for reporting learning curves, categoriz-
ing their shapes, and determining the appropri-
ate granularity for analysis across one or several
epochs. Researchers should be cautious with their
interpretations, as the complexity and variety of
learning curves suggest a more nuanced approach
is necessary.

Future work could expand on our findings by
exploring how controlling for distributions of lin-
guistic data, like Wei et al. (2021) describe, changes
the curves and learning success, which would fur-
ther enhance our understanding of language model
learning dynamics in a more restricted setting.
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A Learning curves for all paradigms

In consideration of legibility and brevity, detailed plots in the appendix are provided as downsized vector
graphics. Interested readers may zoom in for finer detail and further examination.
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B Point plots for distance to mean performance
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