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Abstract

We propose a dialogue system that enables heart failure patients to inquire about salt content in foods and help them
monitor and reduce salt intake. Addressing the lack of specific datasets for food-based salt content inquiries, we
develop a template-based conversational dataset. The dataset is structured to ask clarification questions to identify
food items and their salt content. Our findings indicate that while fine-tuning transformer-based models on the dataset
yields limited performance, the integration of Neuro-Symbolic Rules significantly enhances the system’s performance.
Our experiments show that by integrating neuro-symbolic rules, our system achieves an improvement in joint goal
accuracy of over 20% across different data sizes compared to naively fine-tuning transformer-based models.
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1. Introduction

The excessive consumption of salt poses signifi-
cant public health risks, contributing to diseases
such as high blood pressure and heart failure (He
et al., 2020). Reducing salt intake has been shown
to mitigate these health issues. In 2017, excessive
sodium intake was associated with around three
million deaths and a significant loss of healthy life
years (Roth et al., 2018). Research, including clini-
cal trials and population studies, supports the re-
duction of salt intake as a means to manage and
prevent these conditions. Despite the clear bene-
fits of sodium reduction, public understanding and
action are lacking; only 58% of individuals can ac-
curately read sodium content on nutrition labels,
and merely 44% can classify food products as high
or low in sodium based on standard labeling (Dick-
son and Riegel, 2009). This gap in knowledge
and practice underscores the challenge of address-
ing dietary sodium intake, with only a handful of
countries implementing effective public health in-
terventions.

Therefore, we aim to develop a dialogue sys-
tem that enables patients to inquire about the salt
content in various foods. This system especially
aims to support heart failure patients, who must
meticulously monitor and reduce their salt intake.
More specifically, African American individuals who
are more prone to heart failure (Nayak et al., 2020),
have a higher sensitivity to salt and face challenges
like food deserts and higher consumption of junk
foods. This necessitates a specialized dietary man-
agement approach to help them monitor and re-
duce their salt intake effectively. Furthermore, in
(Gupta et al., 2020), the authors show that African
American patients with heart failure often focus on
discussions related to salt and food during heart
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|is it safe for me to eat pork chop? {Inform: Food, Request: value, \

Type}
. /Itis about 100 gms {Inform: Foodweight, metric} ‘| @
. ks
i Lo =
Can you tell me more about pork chops? {Request: Type}
| [ -
'

r Y System
: Patient | am having center loin bone-in pork chops {Inform: Type, Inform: Part}|

[Wnal kind of pork did you decide on having? {Request:

[ Do you know how you are cooking your pork chops? {Request: Cook}

fitis broiled {Inform: Cook}

[ That pork chop contains a modest 55 mg of salt. {Inform: Value, saltmetric}

.........................................................

Figure 1: Sample Template Conversation which
begins with the user asking about the salt content
in food. The system asks clarification questions to
determine the precise food item and its salt value.

failure educational sessions, indicating a significant
interest and need for information in this area. By
providing a tool that facilitates easy access to infor-
mation about salt content in foods, we aim to em-
power patients to make healthier dietary choices,
thereby addressing a critical aspect of managing
heart failure. Having said that, the dialog system
can be used by anyone who wants to inquire about
the salt content in food.

Creating a dialog agent specialized in food-
related conversations and nutrient information is
challenging. This is primarily due to the lack of
a conversational dataset specifically designed for
this domain. Moreover, annotating the dataset is
very costly and resource-intensive. To address
this issue, we create a template-based conversa-
tional dataset (an example is shown in Figure 1)
to identify various food items and their salt con-
tent. Our approach involves utilizing the USFDC
(U.S. Food Data Central) (USFDC, 2022) dataset,
which provides detailed food descriptions along
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with their nutrient values. To enhance the system’s
ability to recognize the different components de-
tailed in the food descriptions, we developed a food
ontology. This ontology is constructed using the
FoodOn (Dooley et al., 2018) framework and GloVe
(Pennington et al., 2014) embeddings, facilitating
the identification of various attributes related to the
food’s cooking and preparation methods. Leverag-
ing this ontology, we create a structured food con-
versational dataset (Figure 1). As it is a template-
based dataset, annotating it is easy and effective.
We model the dataset after the state-of-the-art task-
oriented dialog dataset MultiWOZ (Budzianowski
et al., 2018).

To train the dialog system, we use the end-to-
end dialog system PPTOD (Plug-and-Play Task-
Oriented Dialogue System) Model (Su et al., 2022).
PPTOD extends the T5 framework, especially de-
signed for task-oriented dialogue (TOD) applica-
tions. To accurately provide salt content informa-
tion, our dialog system will address vague user
queries, (such as "What is the salt content in pork
chops?"), by asking clarification questions. This
approach ensures the model understands the spe-
cific preparation and consumption context of the
food item, allowing us to determine the precise salt
content based on how the food is prepared (For ex
- beef can be consumed raw, cooked, or as part of
a dish like a burger). The dataset along with the
trained model is publicly available.’

Despite the remarkable proficiency of large pre-
trained language models (PLMs) like GPT-3 and
T5 (Brown et al., 2020; Raffel et al., 2020) in com-
plex arithmetic reasoning tasks, they occasionally
make calculation errors, especially as the mathe-
matical operations in equations become more com-
plex (Wei et al., 2022). Our observations align with
these findings, notably that even after fine-tuning,
the PPTOD model struggled to compute the salt val-
ues for various food items. Moreover, the USFDC
provides salt content for standard food measure-
ments, and users may not frame their queries in
these standard terms. To rectify this, we propose
NS-PPTOD, where we integrate PPTOD model with
neuro-symbolic rules. These rules are designed to
harness the strengths of PLMs while compensating
for their weaknesses, enabling the system to re-
trieve and accurately calculate the salt content from
the database. This ensures the system’s adaptabil-
ity in responding to queries about salt content in
both standard and non-standard food quantities,
thereby offering accurate salt content information
and enhancing the system’s overall accessibility
and effectiveness.

Our experiments show that just fine-tuning a
transformer model to predict salt content isn't

"https://github.com/anujatayal/
NS—-Monitoring—Salt—-Content—-in-Food
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enough. The integration of neuro-symbolic rules
significantly enhances the system’s performance,
evidenced by a 20% improvement in joint goal ac-
curacy across different dataset sizes. This proves
that combining pre-trained language models with
neuro-symbolic rules is essential for better accu-
racy.
In summary, our contributions are

» We propose to develop a food conversation
dataset that includes clarifying questions to
infer the correct food item and its salt content.

We finetuned PPTOD on our food conversation
dataset using a few-shot approach.

We propose NS-PPTOD which integrates PP-
TOD with Neuro-Symbolic rules to infer correct
salt values across different food weights.

We show a 20% increase in joint accuracy
compared to the finetuned PPTOD.

2. Related Work

HealthCare Dialog Systems Task-oriented di-
alogue systems have seen a significant rise in
the healthcare sector, where they play a vital
role in enhancing various aspects of health-
care. These systems are developed for a
wide array of diseases including heart fail-
ure (Moulik, 2019; Gupta et al., 2020), cancer
(Belfin et al., 2019), mental disorders (Ali et al.,
2020), public anxiety (Wang et al., 2020) etc.
Their applications extend to several areas, in-
cluding disease diagnosis (Wei et al., 2018),
patient education (Cai et al., 2023; Gupta et al.,
2020), and health coaching (Zhou et al., 2022)
among others. A comprehensive survey of
NLP literature conducted in (Valizadeh and
Parde, 2022) provides an in-depth analysis
of these diverse healthcare-oriented dialogue
systems, examining them from a computa-
tional perspective and highlighting their varied
end-users.

(Gupta et al., 2020; Salunke et al., 2023) dis-
cuss the development of a dialog agent for self-
care needs of heart failure patients, drawing
upon insights from educational sessions. The
work in (Kearns et al., 2020) explores the Wiz-
ard of Oz (WOZ) technique to craft a persona-
based health counseling dialog dataset. Addi-
tionally, recent advancements have seen the
application of Large Language Models (LLMs)
in responding to patient inquiries (Chowdhury
et al., 2023), though the importance of safety
is emphasized. Addressing the limitations in
the medical knowledge of LLMs, the study
in (Li et al., 2023) undertakes the task of en-
hancing and fine-tuning the LLaMa model with
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a dataset of approximately 100,000 patient-
doctor dialogues.

Pretrained Language Models (PLMs) With
the advancement in pre-trained language mod-
els (PLMs), different systems based on PLMs
have been proposed including dialog systems
(Leietal.,2018; Pengetal.,2021). PLMs excel
in various tasks, approaching human-like per-
formance. Yet, they struggle in mathematical
reasoning, as noted in (Wei et al., 2022). (Qian
et al., 2023) shows the limitations of LLMs with
complex or lengthy numerical operations. For
instance, GPT-3 (Brown et al., 2020) performs
well in simple two-digit additions but falters with
longer numbers. Similarly, even a fine-tuned
T5 model struggles with the accurate addition
or subtraction of lengthy numbers (Nogueira
et al., 2021), and the challenge escalates with
numbers not covered in their training data.

NeuroSymbolic Al Integrating neuro-
symbolic approaches offers a solution by
combining the inference capabilities of
symbolic systems with the robustness of
neural networks, creating a composite Al
framework adept at reasoning, learning,
and cognitive modeling (Garcez and Lamb,
2023). This blend addresses the inherent
weaknesses of each system, promising
enhanced performance and robustness.

To address the generalization issues in neural
networks, particularly in task-oriented dialogue
systems, various neuro-symbolic methodolo-
gies have been investigated. (Mehri and Eske-
nazi, 2021) proposes schema graphs to gen-
eralize across various unseen domains and
tasks. In (Romero et al., 2021), the authors
fine-tuned GPT-2 to generate the text and sym-
bolic representations. DILOG (Zhou et al.,
2020) employed inductive reasoning to formu-
late logical rules, enabling dialog policy train-
ing with minimal data to facilitate zero-shot do-
main transfer. (Arabshahi et al., 2021) used a
neuro-symbolic approach to extract multi-hop
reasoning and integrate commonsense in a di-
alog system. These strategies underscore the
potential of neuro-symbolic integration to sig-
nificantly improve the adaptability and efficacy
of language models in complex and dynamic
tasks.

Representing Food in Dialog Systems Ad-
dressing the intricacies of food representation,
FoodKG (Haussmann et al., 2019; Chen et al.,
2021) explored knowledge graphs to represent
food. FoodKG (Haussmann et al., 2019) inte-
grates information from diverse recipe collec-
tions and the US Food Data Central (USFDC,
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2022), primarily focusing on template-based
queries related to ingredients and recipes.
However, this framework has limitations, no-
tably in identifying only the primary item in
food descriptions and missing key details like
the type of food, cooking methods, or quan-
tity, which are included in our methodology.
(Fu et al.,, 2022) explored the role of rec-
ommending food to improve mental health.
RecipeQA (Yagcioglu et al., 2018) explored
multimodal question answering within the con-
text of recipes, while CookDial (Jiang et al.,
2022) provides a platform for users to navigate
and query cooking recipes more effectively.

3. Dataset Creation

Given the absence of a specialized dataset for
conversational inquiries about salt content and the
challenges in dataset collection and annotation, in
this section, we show in detail how we created the
dataset. Dataset creation involves developing a
template-based conversational framework to ac-
curately identify food items and their salt content.
First, we used the USFDC dataset (USFDC, 2022),
and created an ontology using FoodOn (Dooley
et al., 2018) and Glove (Pennington et al., 2014)
to describe the different components in the food
description. By doing so, we were able to distin-
guish between different slot values. Using the ontol-
ogy, we created a template-based conversational
dataset that mimics human conversation, alternat-
ing between the user and the system turns. We de-
fine an average of 7 slots while creating the dataset
namely- food, cook, type, animal, part, foodweight,
metric.

Data Source To construct the dataset, we lever-
age the extensive food descriptions and nutritional
data from the USFDC database (USFDC, 2022). It
is renowned for its broad representation of diverse
food items and is publicly available. The dataset
was created with careful consideration of cultural
differences, sourcing its data from the U.S. Depart-
ment of Agriculture (USDA).

Each food description in the USFDC database
consist of unstructured, comma-separated text de-
tailing ingredients, cooking methods, and cutting
styles. This format lacks clarity on the significance
of each component as demonstrated in Table 6
of Appendix B. To address this, we concatenated
these segments using underscores, transforming
each into a distinct entity to enhance data clarity
and interpretation.

Furthermore, we faced the difficulty of distinguish-
ing whether a food item is a primary ingredient or as
part of a larger dish. ltems like lettuce and cheese,
for example, can be both independent food items



key Questions
What is the {nutrient} content in {food} ?
How much {nutrient} in {food}?

food What is the {nutrient} content in {cook} {food}?
How much {nutrient} in {foodWeight} {metric} of {food}?
Can my partner with heart issues eat {food}?
Is {food} okay for heart patients?

Table 1: Sample Template Questions that user asks

to begin the conversation

and components in recipes like pizzas or burgers.
To overcome this challenge, we developed a food
ontology. This ontology aids in categorizing each
food item more accurately, thus improving the over-
all understanding of the dataset.

Ontology Construction To develop the food on-
tology, an initial framework is established using
FoodON (Dooley et al., 2018), focusing on key re-
lations of food, cook, animal and part. These rela-
tions were chosen based on their significant impact
on altering the salt content in various foods. Moving
forward, these specific relations will be utilized to
aid in creating and annotating the conversational
dataset and pose clarifying questions to users to
infer the salt amount in food. To address the limita-
tions in the comprehensiveness of this initial ontol-
ogy, pre-trained GloVe vectors (Pennington et al.,
2014) are utilized to identify words similar to those
in the ontology, thus expanding its scope. However,
this method inadvertently introduces some items
unrelated to food, necessitating manual preprocess-
ing to eliminate irrelevant elements and maintain a
focus on food context.

Further refinement of the ontology was needed
to incorporate the items that do not associate with
existing relations. A new relation, type, was created
to integrate these components (For example type of
cuisine, meat, other food ingredients etc). Drawing
inspiration from FoodKG (Haussmann et al., 2019),
the first item in each food description is categorized
under the food relation. This enhanced ontology
becomes a valuable tool for mapping each com-
ponent of the comma-separated food descriptions
to the relevant keys. In instances where multiple
segments pertain to the type relation, their values
are concatenated to ensure consistency and clarity.

3.1. Conversational Dataset Creation

Using the ontology and the food descriptions, we
aim to develop a template-based conversational
dataset that mimics human conversation. The con-
versation initiates with a user query about the salt
content in a specific food item and alternates be-
tween the user and the system. The system poses
clarification questions, drawing from ontology re-
lations such as the type of food, cooking method,
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and portion size, which are crucial determinants of
salt content.

Leveraging the task-oriented dialogue framework,
each turn t is annotated with a belief state B;, en-
compassing a list of slot-value pairs and action
states inform and request. Figure 1 illustrates a
sample conversation highlighting the belief state
and action state for each turn t. The figure demon-
strates that within a single turn, it is possible to fill
multiple slot values (the 3rd turn of the user). The
dataset’s format and annotations draw inspiration
from the advanced task-oriented dialog dataset,
MultiWwOZ (Budzianowski et al., 2018). Employ-
ing MultiwWOZ as a benchmark not only validates
the dataset but also enhances its replicability for
crafting conversational datasets for other nutrients.
Using template-based approach streamlines the
annotation process, ensuring uniformity and effi-
ciency, and reducing the cost and time needed for
external annotators.

Dialogue Statistics
# Dialogues 87,425
# Total turns 525,392
Avg turns per dialogue 6
Avg slots 7

Table 2: Dialogue Statistics of the template based
conversation data

We consider 3 types of turns in a conversation.
We have tried to encapsulate the range of dynamics
that can occur in dialogues, ensuring the system
is robust enough to handle the fluidity of human
conversation.

+ Matching Answers- This type involves turns
where the user’s reply is directly pertinent to
the system’s question regarding a particular
slot value. An example is when the system
queries about the cooking method, and the
user responds specifically about the food’s
cooking method (the 4th turn of the user in
Figure 1).

Random Answers- Occasionally, a user’s re-
ply may not correspond to the query posed by
the system. For instance, if the system asks
about the food type and the user responds
with information about the weight of the item,
as demonstrated in the user’s second turn in
Figure 1, the system needs to adapt. In such
situations, the system should recognize and
not repeat a question about the weight, since
that information has already been provided. In-
stead, it should proceed to ask another ques-
tion, possibly continuing to seek details about
the food type. In .45% of conversations, a turn
consists of a random answer.



» Changing Answers- People are very indeci-
sive and often tend to change their responses.
This category captures the scenarios where
users might revise their previous responses.
For example, if a user initially mentions that
the cooking method is "pan-fried" but later
changes it to "boiled," the system needs to
update its understanding to reflect this new
information, shifting its belief state from “pan-
fried” to “boiled.” In .45% of conversations, one
user turn involves changing the answer.

The dataset is created by generating random
conversations, in which, at each turn, the system’s
questions and the user’s responses are randomly
selected from the templates. The conversation
starts with the user asking about the salt content
in food. This initial question is informed by a user
study of HFChat (Salunke et al., 2023), where par-
ticipants frequently asked 3 categories of questions:
1) how much salt in {food} 2) Can | eat {food}? and
3) what kind of {food} can | eat?. These question
types, along with similar ones, constitute the initial
question, as exemplified in Table 1. The system’s
objective is to engage in the dialogue by asking
clarification questions to ascertain the values of
different slots (cook, type, weight etc). To keep the
dialogue dynamic and realistic, questions related to
these slots are presented randomly. The number of
questions is limited; for instance, if the food in ques-
tion is eaten raw, queries about cooking methods
are omitted. Users might not be aware of all system-
initiated questions, in which case default values for
each slot are assumed. This led to the creation of
approximately 87k template-based conversations,
each comprising 3-4 exchanges between the user
and the system. The statistics of this extensive
dataset are detailed in Table 2. As the dataset size
is very large, around 87k conversations, a few-shot
method is used to train the model.

4. Methodology

Once the conversational dataset was created, we
built the NS-PPTOD model by fine-tuning PPTOD
on the dataset using few-shot and integrating neuro-
symbolic rules.

4.1. Plug and Play Task Oriented Dialog

System (PPTOD)

Leveraging the T5’s model success, we adopted
the PPTOD model for developing the task-oriented
dialogue system. PPTOD extends the T5 frame-
work, especially designed for task-oriented dia-
logue (TOD) applications, and pre-trained on a di-
verse range of dialog datasets spanning eleven
different domains. PPTOD has integrated different
TOD modules — Dialogue State Tracking (DST),
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[ "Translate dialog to belief state:
[usr] is it safe for me to eat pork chop?
[sys] What kind of pork did you decide on having?
[usr] It is about 100 gms.
[sys] Can you tell me more about pork chops
[usr] I am having center loin bone-in pork chops
[sys] Do you know how you are cooking your pork chops?
[usr] it is broiled
. [sys] That pork chop contains a modest 12 mg of salt? "

|

[ PPTOD ]

|

[food] {food:pork chop, nutrient: salt, foodweight:100,
metric: gms, part: center loin, type: bone-in, cook:
broiled, value: 12, saltmetric: mg}

iNe uro Symbolic Rules

| {value: 55, saltmetric: mg} |

Figure 2: NS-PPTOD Model with Example: This
example illustrates that PPTOD alone is not able
to identify correct salt value for the food item

Natural Language Understanding (NLU), Dialogue
Policy (POL) and Natural Language Generation
(NLG) —into a single end-to-end architecture using
a pipeline approach.

The PPTOD model is adept at in-context learn-
ing, employing customized prompts for each dia-
logue component, thus enhancing the relevance of
model inputs to specific dialogue scenarios. Each
training sample in PPTOD is represented as (x,
y, z), where t € NLU, DST, POL, NLG specifies
the type of Task-Oriented Dialogue (TOD) task to
which the sample belongs. The term z; refers to
the task-specific prompt, formatted as translate di-
alogue to A:, where A represents different aspects
such as user intent, belief state, dialogue act, and
system response corresponding to the NLU, DST,
POL, and NLG tasks respectively. The input di-
alogue context, a concatenation of all preceding
dialogue utterances, encompassing both the sys-
tem’s and the user’s contributions is represented by
y whereas z indicates the target output text. This
is exemplified in Figure 2. PPTOD is trained with
a maximum likelihood objective and the loss func-
tion as shown in Equation 1 where 6 is the model
parameters.

|2l

Ly =— Zlog Py(zilz<is e, y)

=1

(1)

PPTOD also has an associated tokenizer, which
supports a few-shot learning framework, enabling
the system to identify new food-related terms not
seen in training. We have fine-tuned it on only
1000 food-related dialogs using the same learning
objective as PPTOD.



Train Epochs Inform Success BLEU

Size
PPTOD 100 8 71.43 0 24.99
NS-PPTOD 100 - 88.90 77.80 22.50
PPTOD 300 7 75.00 5.00 34.30
NS-PPTOD 300 - 81.50 63.00 26.90
PPTOD 500 9 82.86 2.86 29.81
NS-PPTOD 500 - 74.50 58.10 28.90
PPTOD 1000 7 93.50 2.70 29.00
NS-PPTOD 1000 - 85.90 71.70 30.00

Table 3: Increase in performance when using NS-
PPTOD compared to PPTOD.

We chose PPTOD model for its adaptability, and
its ability to support modular decomposition which
in turn facilitates the incorporation of specific rules.
To further enhance the model, we incorporated
neuro-symbolic techniques into the DST framework,
aiming to boost the system’s interpretative capabil-
ities and its adaptability to intricate dialogue con-
texts. This integration seeks to fortify the dialogue
system, ensuring it remains robust and flexible in
managing diverse conversations.

In summary, we chose PPTOD because:

» PPTOD is a state-of-the-art (SOTA) model de-
signed specifically for task-oriented dialogue
and is based on the T5 model.

+ PPTOD consists of a tokenizer making it pos-
sible to use few-shot approach to fine-tune it.

* PPTOD can be modularised to implement
neuro-symbolic Al.

4.2. NS-PPTOD

NS-PPTOD is an integration of PPTOD with neuro-
symbolic rules. The conversational dataset we cre-
ated as described in section 3.1 is used to finetune
PPTOD. Given the extensive size of the dataset
of 87k template-based conversations, a few-shot
learning approach is used. Instead of utilizing the
entire dataset, limited subsets of samples are se-
lected randomly to finetune PPTOD. As we use a
few-shot approach, T5-small is used as the base
model to train PPTOD. PPTOD model is finetuned
for 10 epochs, employing a batch size of 16 and
varying the total dataset size across 100, 300, 500,
and 1000 samples. Within the dataset, 10% of
the data was allocated as a development set, and
another 10% served as the test set.

During the experiments - to be discussed in Sec-
tion 5, we observed that the model correctly iden-
tified slot values but struggled to determine the
correct salt values. Additionally, the dataset primar-
ily comprised salt values for standard food weights,
like 100 grams, 3 ounces, 1 packet, etc., and lacked
data for non-standard food weights that users might
inquire about. PPTOD model is fine-tuned so that
it accurately learns other slot values, even if it also
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Train Size Epochs Joint Accuracy
PPTOD | NS-PPTOD

100 6 55.56 | 73.08

300 4 51.92 72.8

500 6 58.75 | 83.2

1000 6 58.53 | 85.2

Table 4: Increase in Joint Accuracy when using
NS-PPTOD compared to PPTOD across different
training sizes

learns some incorrect salt values. Subsequently,
we employ a neuro-symbolic approach that involves
two key methodologies to correct the salt values:

* Retrieval of the accurate salt value from the
database: This step is crucial for standard
food weights where exact values are available
and can be directly obtained. (as shown in
Figure 2)

Mathematical calculation of the correct salt
value for varying food weights: This method
is particularly beneficial for non-standard food
weights, enabling the model to compute salt
values based on weight. (In Figure 2, if the
user requests the salt value for a different food
weight, instead of the standard 100 grams of
pork chops.)

Specifically, upon determining the slot values,
the system queries the database for the salt con-
tent. If the database contains the salt value, it is
then retrieved. In cases where the salt value is
not available in the database, it is calculated math-
ematically, based on the weight of the food. We
demonstrate this in Figure 2. When the dialog con-
text and prompt, labeled Translate dialog to belief
state, are processed through PPTOD’s DST model
to determine belief states, the model successfully
infers all slot values except for the salt value (12).
The correct salt value (81) is then retrieved from
the database by applying Neuro-Symbolic rules.

5. Evaluation

The evaluation of NS-PPTOD encompasses two
task-oriented tasks. The first task involves end-to-
end dialog modeling, assessed using metrics such
as inform rate, success rate, and BLEU score (Pa-
pineni et al., 2002). The second task, the Dialog
State Tracking (DST) module of PPTOD is evalu-
ated through joint-accuracy. This evaluation was
conducted over sample sizes of 100, 300, 500, and
1000.

End-to-End Dialog Modeling After seven
epochs of training, the PPTOD model demon-
strated a high inform accuracy rate of 93.5% across



1000 samples, as detailed in Table 3. Inform
rate reflects the model's adeptness in identifying
slot values and the target goal slot. However, its
success rate in accurately determining correct salt
values was notably low, standing at just 2.7%, a
point further highlighted in Table 3. This pattern
of low success rate was consistent across other
training sizes of 100, 300, and 500 samples. The
limited 2% success rate is attributed to the PPTOD
model’s tendency to predict values at random.

Implementing the NS-PPTOD model resulted in
a substantial enhancement, achieving success rate
of 71.7%. This improvement was not just limited
to the training size of 1000 samples but was also
observed consistently across the smaller training
sizes. The integration of neuro-symbolic rules with
PPTOD evidently plays a crucial role in enhanc-
ing the model’s capability to accurately predict and
determine the correct salt values.

DST Module The evaluation also included the
Dialog State Tracking (DST) module of PPTOD,
trained for recognizing different belief states such
as food, cook, type, weight, and value. Joint ac-
curacy of 58.53% was achieved when PPTOD
was used. This performance notably increased to
85.2% for 1000 samples with the addition of neuro-
symbolic rules. Similar improvements in joint accu-
racy were observed for other training sizes. Table
4 displays the enhanced joint-accuracy achieved
by using NS-PPTOD compared to PPTOD.

Analysis The improvement in both success rate
and joint accuracy can be attributed to a key dif-
ference in approach. PPTOD, on its own, tends
to memorize values instead of effectively retriev-
ing them from the database, a critical process for
accurately determining salt content. However, the
application of neuro-symbolic rules in conjunction
with PPTOD enhances its capability, enabling it to
effectively retrieve values from the database.

5.1. Comparison with ChatGPT

With the advent of ChatGPT, questions have arisen
about the necessity of systems such as our NS-
PPTOD. To address this,we conducted a compara-
tive analysis between NS-PPTOD and ChatGPT, to
highlight the distinct capabilities and applications
of NS-PPTOD that are not achievable by ChatGPT.

In this comparison, we specifically focused on
their responses to queries about the salt content in
foods. Appendix A illustrates ChatGPT’s response
to the prompt What is the salt amount in a pork
chop?. ChatGPT’s responses are generally com-
prehensive, explaining variations in salt quantity
due to different cooking methods and weights, and
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often include an average value. NS-PPTOD, con-
versely, poses targeted clarification questions to
precisely identify both the food item and its salt
content.

There is also a marked difference in the readabil-
ity of responses from these two systems. Read-
ability assessments, SMOG (Mc Laughlin, 1969),
Flesch-Kincaid Grade Level (FKGL) (Kincaid et al.,
1975) , and Flesch-Kincaid Reading Ease (FKRE)
(Kincaid et al., 1975), which evaluates text com-
prehensibility in educational and informational con-
texts, were used for this comparison. The SMOG
and FKGL estimates the education level needed to
understand a text, while the FKRE measures the
ease of comprehension.

As indicated in Table 5, understanding Chat-
GPT’s content requires an 11th-grade reading level,
whereas NS-PPTOD’s content is accessible to
those at a 2nd-grade reading level. NS-PPTOD'’s
responses align with recommendations for content
to be understandable at a 5th-grade reading level
or lower (Badarudeen and Sabharwal, 2010). This
approach is particularly suitable for the intended
audience of our system, the patients served by the
hospital at our institution who are mostly of lower
socio-economic status (and mostly minorities); this
ensures the information is accessible and under-
standable to a wider audience.

SMOG | FKGL | FKRE
ChatGPT 11.8 11.1 51.28
NS-PPTOD 0 2.5 95.17

Table 5: Readability Comparison of NS-PPTOD
with ChatGPT: A higher FKRE score denotes bet-
ter readability. Lower scores in SMOG and FKGL
indicate better text readability.

6. Conclusion and Future Work

This work introduces NS-PPTOD, a conversational
dialogue system specifically designed to help pa-
tients, particularly African-American individuals suf-
fering from heart failure, in accurately identifying the
salt content in various foods. Managing salt intake
is crucial for these patients, and NS-PPTOD offers
a specialized solution to aid in their dietary man-
agement. The study reveals that simply applying
fine-tuning techniques to a transformer model for
predicting salt content is inadequate for achieving
high accuracy. However, the integration of neuro-
symbolic rules into the system resulted in a signif-
icant performance boost, enhancing accuracy by
20% across different dataset sizes. This enhance-
ment underscores the necessity of combining pre-
trained language models with neuro-symbolic rules
to achieve superior accuracy.



Looking ahead, there are plans to conduct an
in-depth study comparing the performance of NS-
PPTOD with a system based on ChatGPT. This
study will involve African American patients with
heart failure interacting with both systems in a
within-subject setting.  Utilizing pre and post-
interaction surveys, the aim is to conduct both qual-
itative and quantitative analyses. These analyses
will evaluate and contrast the effectiveness of each
system offering insights into their respective impact
in real-world scenarios.
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A. Appendix: Sample ChatGPT
Response

ChatGPT response to the prompt How much salt
in pork chops?

The salt content in pork can vary significantly
based on how it is prepared. Fresh, unprocessed
pork naturally contains a small amount of sodium,
roughly 60 to 70 milligrams of sodium per 3-ounce
serving. However, processed pork products like
bacon, ham, sausages, and deli meats can have
a much higher sodium content due to added salt
during processing for flavor and preservation. For
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instance, a slice of bacon can have between 150
to 450 milligrams of sodium, and a serving of ham
can contain over 1,000 milligrams.

For specific sodium content, it's best to check
the nutrition labels on packaged pork products.
For fresh pork, nutrition databases or guidelines
from health organizations can provide general esti-
mates. Remember, if you're watching your sodium
intake, opting for fresh, unprocessed pork and limit-
ing processed pork products can help manage your
sodium consumption.

B. Appendix: Sample Food
Descriptions

Food Descriptions Salt
Value
Pork, fresh, loin, top loin (chops), boneless, separa- | 48
ble lean and fat, raw
Pork, fresh, loin, center loin (chops), bone-in, sepa- | 55
rable lean and fat, cooked, broiled
Pork, fresh, blade, (chops), boneless, separable lean 58
and fat, cooked, broiled
Pork, fresh, loin, sirloin (chops or roasts), boneless, 63
separable lean only, raw
Pork, fresh, loin, blade (chops), bone-in, separable | 76
lean only, cooked, broiled

Table 6: Unstructured Food Descriptions along with
their salt value for 100gms of food
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