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Large Language Models (LLMs) have been criticized for failing to connect linguistic meaning to
the world—for failing to solve the “symbol grounding problem.” Multimodal Large Language
Models (MLLMs) offer a potential solution to this challenge by combining linguistic representa-
tions and processing with other modalities. However, much is still unknown about exactly how
and to what degree MLLMs integrate their distinct modalities—and whether the way they do
so mirrors the mechanisms believed to underpin grounding in humans. In humans, it has been
hypothesized that linguistic meaning is grounded through “embodied simulation,” the activation
of sensorimotor and affective representations reflecting described experiences. Across four pre-
registered studies, we adapt experimental techniques originally developed to investigate embod-
ied simulation in human comprehenders to ask whether MLLMs are sensitive to sensorimotor
features that are implied but not explicit in descriptions of an event. In Experiment 1, we find
sensitivity to some features (color and shape) but not others (size, orientation, and volume).
In Experiment 2, we identify likely bottlenecks to explain an MLLM’s lack of sensitivity. In
Experiment 3, we find that despite sensitivity to implicit sensorimotor features, MLLMs cannot
fully account for human behavior on the same task. Finally, in Experiment 4, we compare the
psychometric predictive power of different MLLM architectures and find that ViLT, a single-
stream architecture, is more predictive of human responses to one sensorimotor feature (shape)
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than CLIP, a dual-encoder architecture—despite being trained on orders of magnitude less data.
These results reveal strengths and limitations in the ability of current MLLMs to integrate
language with other modalities, and also shed light on the likely mechanisms underlying human
language comprehension.

1. Introduction

Advances in Large Language Models (LLMs) have led to impressive performance on a
range of linguistic tasks (Hu et al. 2022; Trott et al. 2023; Dillion et al. 2023; Chang and
Bergen 2024). Yet despite these improvements, a common criticism of contemporary
LLMs is that they are trained on linguistic input alone (Bender and Koller 2020; Bisk
et al. 2020). Lacking bodies or sensorimotor experience, they have no way to “ground”
the symbols they are trained on, which some (Harnad 1990) have argued is necessary
for true language understanding. A natural solution to this problem could be found in
Multimodal Large Language Models (MLLMs) (Driess et al. 2023; Girdhar et al. 2023;
Huang et al. 2023; Radford et al. 2021), which learn to associate linguistic representations
with information from other modalities, such as vision or sound. However, there is
still considerable disagreement over whether MLLMs exhibit the necessary interaction
between linguistic and sensorimotor inputs that appears to underpin grounding in
humans (Mollo and Millière 2023; Tong et al. 2024; Shanahan 2023; Bisk et al. 2020).
How tightly do MLLMs integrate representations of information from distinct inputs
(e.g., vision and language), and how humanlike is the manner in which they do this?

We address this gap directly by turning to the evidentiary basis for grounding in
humans (Bergen 2015). A range of experimental evidence suggests that humans ground
language—in part—through embodied simulation of the sensorimotor experiences that
language describes. By applying techniques originally developed to probe the repre-
sentations and mechanisms underlying grounding in human language comprehension,
we can ask to what extent MLLMs use analogous representations and mechanisms.
Our approach builds on past work investigating whether and to what extent equipping
neural networks with grounded (e.g., visual) information produces more humanlike
representations (Bruni, Tran, and Baroni 2014; Chrupała, Kádár, and Alishahi 2015;
Kiros, Chan, and Hinton 2018; Kádár, Chrupała, and Alishahi 2017; Peng and Harwath
2022; Harwath and Glass 2015); indeed, there is evidence that representations from
grounded models are more useful for predicting explicit human judgments, for ex-
ample, similarity ratings about concrete words (Kiros, Chan, and Hinton 2018). This
approach offers a unique opportunity for cross-disciplinary symbiosis: MLLMs (and
LLMs) with different architectures can act as implementations of existing theories of
language comprehension, and can thus help refine and resolve outstanding debates
about the functional role of grounding in human comprehenders.

1.1 Evidence for Embodied Simulation in Humans

The theory of embodied simulation claims that human comprehenders ground lan-
guage by simulating the sensorimotor experiences that it describes (Barsalou 1999;
Harnad 1990). For example, understanding a sentence like “She tossed the ball” would
involve activating the same (or a subset of the) neural tissue that is involved in either
perceiving or participating in that event (Bergen 2012).

This theory enjoys empirical support in the form of both behavioral (Zwaan,
Stanfield, and Yaxley 2002; Pecher et al. 2009; Winter and Bergen 2012; Stanfield
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and Zwaan 2001) and neuroimaging (Hauk, Johnsrude, and Pulvermüller 2004;
Pulvermüller 2013) evidence. One particularly prominent experimental paradigm is
the sentence-picture verification task (Stanfield and Zwaan 2001; Winter and Bergen 2012;
Zwaan, Stanfield, and Yaxley 2002; Pecher et al. 2009). In this task, participants read a
sentence (e.g., “He hammered the nail into the wall”), then see a picture of an object
(e.g., a nail) and must indicate whether that object was mentioned in the preceding
sentence. On critical trials, the depiction of the object is manipulated to either match
implicit features (e.g., color, shape, orientation) from the sentence or mismatch them.
For example, the sentence “He hammered the nail into the wall” implies that the nail
is horizontal, while “He hammered the nail into the floor” implies that the nail is
vertical. Crucially, these features are not mentioned explicitly in the sentence. Thus, if
human participants respond faster or more accurately to pictures that match implied
perceivable features of the event described in the sentence, this suggests that they have
spontaneously inferred this sensory information.

The sentence-picture verification task has been used to demonstrate evidence for
embodied simulation across multiple visual features, including orientation (Stanfield
and Zwaan 2001), shape (Pecher et al. 2009), distance (Winter and Bergen 2012), and
color (Connell 2007; Zwaan and Pecher 2012). It has also been adapted for other modal-
ities, such as sound (e.g., implied volume) (Winter and Bergen 2012). In each case, a
facilitatory effect of the experimental manipulation is generally interpreted as reflect-
ing the activation of implicit sensorimotor features from linguistic input; participants’
responses to real sensorimotor stimuli are influenced by whether the stimulus matches
simulated features.

1.2 Debates Over the Interpretation of Evidence

Despite widespread evidence for some degree of sensorimotor activation, there remains
considerable debate over which mechanisms are most likely to give rise to this effect.

One question revolves around the functional role played by sensorimotor activa-
tion. Much of the current evidence cannot adjudicate whether simulation plays an
epiphenomenal or necessary role in the process of understanding language (Mahon and
Caramazza 2008; Ostarek and Bottini 2021). On functional accounts (Barsalou 1999), em-
bodied simulation is causally important for inferring implicit features. Comprehenders
use sensorimotor representations and the simulation process itself to infer that the nail
is likely to be horizontal if it is being hammered into a wall. As Mahon and Caramazza
(2008) point out, however, sensorimotor simulation could also occur as a byproduct
of spreading activation during language comprehension. On this account, processing
of the sentence might generate amodal or linguistic representations of the implied
features—for example, “horizontal nail.” These amodal representations, in turn, could
activate relevant sensorimotor representations without the sensorimotor representa-
tions playing any causal role in comprehension. Under this account, the match effect
observed on the target picture trial would not require direct activation of visual features
but could be explained by the activation of correlated linguistic features.

Another question is architectural in nature: If semantic representations are mul-
timodal, when and how is information from different modalities integrated? Here,
the possibilities range from “full integration” (i.e., semantic representations are fully
multimodal) to “grounding by interaction” (i.e., semantic representations are partially
“symbolic,” but can be grounded on the fly) (Mahon and Caramazza 2008; Meteyard
et al. 2012).
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In each case, answering these questions has proven extremely challenging for the
field. It is difficult to specify verbal theories in sufficient detail that they make divergent
predictions that could be used to test them. One path forward is to identify suitable
computational operationalizations of these verbal theories and the effects they predict—
such as LLMs and MLLMs.

1.3 Adapting Psycholinguistic Techniques for (M)LLMs

LLMs are neural networks with billions of parameters trained on billions or even
trillions of words to predict missing tokens from a sequence. LLMs are trained on
linguistic input alone—which is often cited as a limitation with respect to sensorimotor
grounding. MLLMs provide a potential solution to this problem by linking linguistic
input to another modality, typically (though not always) vision (Driess et al. 2023;
Girdhar et al. 2023; Huang et al. 2023). For example, CLIP (Contrastive Language-Image
Pretraining) models are trained on image-caption pairs (Radford et al. 2021), and thus
learn to map flexibly between linguistic and visual representations.

Much remains unknown about exactly how MLLMs’ representations differ from
those of unimodal LLMs. Additionally, there is considerable variance within MLLMs in
terms of their architecture, for example, whether linguistic and visual representations
are integrated during encoding (“fusion architectures”) or encoded separately, then
integrated later on (“dual-encoder architectures”). It is unclear how this variation affects
the nature of cross-modal representations formed.

Careful application of methodologies developed for humans, such as the sentence-
picture verification task (Stanfield and Zwaan 2001; Zwaan, Stanfield, and Yaxley 2002),
can address both of these questions. In doing so, it also informs debates around embod-
ied simulation in humans (see Section 1.2).

Here we attempt to address both sets of questions by administering adapted ver-
sions of sentence-picture verification tasks to LLMs and MLLMs. First, we test whether
MLLMs show a stronger association between matching sentence-picture pairs vs. non-
matching pairs. This allows us to ask: To what extent do MLLM representations encode
implicit sensorimotor features, and for which features (e.g., orientation vs. shape) or modalities
(e.g., vision vs. sound) are these activations strongest?

Second, we probe both MLLMs and LLMs to ask when the relevant information
(e.g., a nail’s implied orientation) becomes accessible. This is important for identifying
the mechanisms by which implicit features are activated and diagnosing the reasons
for insensitivity where models fail. Specifically, we ask: Can MLLMs’ text-encoders ex-
tract implied sensorimotor features from text-only descriptions and can MLLMs map explicit
descriptions of a feature to matching images or sounds?

Third, as a further test of mechanism, we use representations elicited from both
MLLMs and LLMs to predict human behavior on this task. That is: Does either model
provide a plausible explanatory account of the human match/mismatch effect?

Finally, we compare a suite of MLLMs, ranging from dual-encoder models to
single-stream fusion models, and ask: Are architectures with more integration between mo-
dalities more sensitive to implicit sensorimotor features and better at explaining human data?

2. Experiment 1

In Experiment 1, we test whether ImageBind (Girdhar et al. 2023), a state-of-the-art
MLLM, is sensitive to whether or not sensorimotor features implied by sentences are
explicitly present in images and sounds.
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2.1 Methods

2.1.1 Materials. We draw experimental stimuli from existing sentence-picture or
sentence-sound verification experiments designed to test for effects of sensorimotor
simulation in humans. Items for each task are organized as quadruplets, consisting of a
pair of sentences and a pair of media stimuli (images or sounds). Sentence pairs differ
by implying that an object has a given sensorimotor property (e.g., color or volume).
Each of the media stimuli in a pair match one of the sentences by explicitly displaying
the implied feature (and therefore mismatch the other sentence; see Figure 1).

We draw stimuli from five different experiments, each of which manipulates a
different sensorimotor feature:

1. SHAPE: Pecher et al. (2009) collected a set of 60 quadruplets that varied
the implied shape of the object (see Figure 1, top left). A sentence such as
“There was an eagle in the [nest/sky].” implies that the eagle’s wings are
either folded or out-stretched. A pair of black-and-white images of eagles
each match one of these sentences by displaying the relevant property.

Pecher (2009)
SHAPE ORIENTATION COLOR

Stanfield & Zwaan (2001) Connell (2007)

The ranger saw 
the eagle in the 

nest

The ranger 
saw the eagle 

in the sky

Derek held his 
bat high as the 

ball approached

Derek swung his 
bat as the ball 
approached

Joanne always 
took milk in 
her coffee

Joanne never 
took milk in 
her coffee

SIZE
Winter & Bergen (2012)

You are looking at the 
beer bottle on the end 

of the counter

You are looking at the 
beer bottle in your 

fridge

M
AT

CH

MIS
MATCH

VOLUME
Winter & Bergen (2012)

In the day-care center 
down the hall, there’s 

a baby crying

In the crib next to you, 
there’s a baby crying

Figure 1
The dataset consisted of pairs of sentences and images or sounds, forming quadruplets. Each
sentence in a pair implied that an object had a certain visual or auditory property (e.g., brown
color). Each implied sensorimotor property was matched by one of the pair of media (images or
sounds). The implied visual properties included SHAPE (Top Left, Pecher et al. 2009), COLOR
(Top Center, Connell 2007), ORIENTATION (Top Right, Stanfield and Zwaan 2001), SIZE (Bottom
Left, Winter and Bergen 2012), and VOLUME (Bottom Right, Winter and Bergen 2012).
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2. ORIENTATION: Stanfield and Zwaan (2001) collected 24 quadruplets of
sentences implying different orientations of an item, and line-drawings
that were rotated to match the implied orientation (Figure 1, top center).
For instance, “Derek swung his bat as the ball approached” suggests a
horizontal bat, while “Derek held his bat high as the ball approached”
suggests a vertical bat.

3. COLOR: 12 quadruplets from Connell (2007) vary the implied color of an
object. “Joanne [never/always] took milk in her coffee” implies
black/brown coffee. The only difference between matching images was
their color (Figure 1, top right).

4. SIZE: Winter and Bergen (2012) Experiment 1 manipulates the implied
apparent size of objects from the viewer’s perspective by varying the
viewer’s distance from the object, e.g., “You are looking at the beer bottle
[in your fridge / on the end of the counter]”. Corresponding images
display the same object at different scales (Figure 1, bottom left).

5. VOLUME: Winter and Bergen (2012) Experiment 2 manipulates the
implied volume of sounds by varying the viewer’s distance from the
sound, e.g., “In the [crib next to you / day-care center down the hall],
there’s a baby crying”. Matching audio stimuli vary the volume of the
sound described in the sentence (Figure 1, bottom right).

2.2 Models

For our preregistered analyses, we selected ImageBind (Girdhar et al. 2023) as our
primary model to evaluate due to its strong performance on a variety of tasks and
its ability to process inputs from multiple modalities (allowing us to test the vision
and audio tasks with the same model). ImageBind is an MLLM that learns a joint
embedding across six modalities, including images, text, audio, depth, thermal, and
inertial measurement unit data.

Internally, ImageBind uses a Transformer architecture for each modality (Vaswani
et al. 2017). For the image encoder, ImageBind uses a Vision Transformer (ViT) archi-
tecture that adapts the transformer to handle visual data (Dosovitskiy et al. 2021). The
ViT divides an image into fixed-size non-overlapping patches that are then linearly em-
bedded into input vectors. A classification head is attached to the output to produce the
final prediction. Despite their simplicity and lack of inductive biases (e.g., convolutional
layers), ViTs have achieved competitive performance on various visual tasks, especially
when pre-trained on large datasets (Dosovitskiy et al. 2021; Schuhmann et al. 2022).
The text encoder, following Radford et al. (2021), is based on the GPT-2 architecture
(Radford et al. 2019). Text inputs are appended with a special [EOS] token, and the
activations of the highest layer of the transformer at the [EOS] token are treated as the
feature representation of the text. Following Gong, Chung, and Glass (2021), ImageBind
encodes audio into a 2D spectrogram and uses a ViT to process spectrograms as images.

More specifically, ImageBind uses a frozen CLIP ViT-H/14 (Ilharco et al. 2021) for
its vision (630M parameters) and text (302M parameters) encoders. ViT-H/14 is a dual
encoder vision language model trained using CLIP. CLIP uses contrastive learning to
associate images with text descriptions (Radford et al. 2021). The model jointly trains a
ViT image encoder and a text encoder to predict the correct pairings of (image, text)
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pairs. This allows CLIP to learn a shared semantic space between images and text.
ImageBind is additionally trained using the contrastive loss objective between images
and each of the other modalities, to learn to project features from each modality to a
shared embedding space.

In addition to ImageBind, to contextualize the model’s performance and to test the
generalizability of our results, we evaluated 3 additional CLIP models on the vision
datasets, and a single CLAP model on the audio dataset:

ViT-B/32: The base model from Radford et al. (2021). ViT-B/32 uses a patch size of
32px and has 120M parameters. It was trained on 400 million 224×224 pixel image-text
pairs over 32 epochs.

ViT-L/14: The best-performing model from Radford et al. (2021), described in the
paper as ViT-L/14@336px. ViT-L/14 uses a patch size of 14px and has 430M parameters.
It was pre-trained in the same manner as ViT-B/32 and then fine-tuned at 336px for one
additional epoch.

ViT-H/14: A larger model based on the CLIP architecture (Ilharco et al. 2021).
ViT-H/14 has 1B parameters and was trained on the LAION 2B dataset for 16 epochs
(Schuhmann et al. 2022).

CLAP: CLAP (Contrastive Language-Audio Pretraining) uses a CNN14 model with
81M parameters as the audio encoder, and a BERT base model with 110M parameters
as the text encoder. The audio and text embeddings are projected into a shared 1024-
dimensional multimodal space. CLAP was trained on 128,010 audio-text pairs from 4
datasets: FSD50K (36,796 pairs), ClothoV2 (29,646 pairs), AudioCaps (44,292 pairs), and
MACS (17,276 pairs).

We access CLIP models using the OpenCLIP Python package (version 2.23.0; ML
Foundations 2023), and CLAP through the Python transformers package (version 4.35.2;
The HuggingFace Team and Contributors 2023).

2.3 Model Evaluation

To evaluate MLLMs, we implemented a computational analogue of the sentence-picture
verification task. Our primary question was whether a model’s representation of a given
linguistic input (e.g., “He hammered the nail into the wall”) was more similar to its
representation of an image or sound that matched an implied sensorimotor feature (e.g.,
horizontal orientation) compared to an image or sound that did not (e.g., a vertical nail).
For each sentence-media pair, we found the cosine distance between the ImageBind
embedding of the sentence and the media stimulus. This value quantifies the similarity
between the linguistic and modal representations within the model

similarityij = cosine(Si, Ij)

where Si is the embedding for sentence i, Ij is the embedding for image j. To statisti-
cally evaluate the model’s performance, we constructed a linear mixed-effects model
predicting similarityij on the basis of Match condition, with random intercepts by
quadruplet id. We were interested in two different kinds of question, for which we per-
formed separate analyses. First we asked whether there was an effect of match overall,
across all datasets. A significant result, where the matching probabilities are greater
than mismatching ones, would indicate that the MLLM’s representations are sensitive
to the sensorimotor properties implied by the linguistic input. In this model we included
an additional random intercept by dataset. Second, we asked whether ImageBind
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Figure 2
Comparison of mean cosine distances for each model between representations of media that
either matched (blue bars) or did not match (red bars) implied sensorimotor features of a
sentence. Error bars denote 95% bootstrapped confidence intervals. ImageBind showed
significantly higher similarity for SHAPE and COLOR, but not for any other modality. All other
vision models showed the SHAPE effect, but only ViT-H/14 showed the COLOR effect. CLAP
showed no significant effect on the VOLUME dataset.

showed effects of match within each dataset individually. All stimuli, hypotheses, and
analysis were pre-registered on the Open Science Foundation (https://osf.io/37pqv).

2.4 Results

We used linear mixed-effects models to analyze the effects of feature match on the
cosine distance between ImageBind’s representations of text-media pairs. These models
account for the hierarchical structure of the data by including random effects for factors
such as dataset and item. The t-statistics and p-values reported indicate the significance
of the fixed effects (e.g., match condition) in predicting the dependent variable (cosine
distance).

Overall, there was a significant positive effect of match on the cosine distance be-
tween ImageBind representation of text-media pairs [t(469.1) = 3.06), p = 0.002], mean-
ing that the model’s representations of matching text-media pairs were more similar
than those of mismatching pairs. However, this effect was only detected in two of the
individual datasets: SHAPE [t(179) = 3.72), p < 0.001] and COLOR [t(35) = 2.164), p =
0.037; all other ps > 0.4]; see Figure 2. The effect of SHAPE appeared to be robust,
occurring in all of the other 3 CLIP models (all p < 0.05). The color effect, by contrast,
occurred only in ViT-H/14 [t(35) = 2.160), p = 0.038]. None of the other models showed
any sensitivity to any of the other modalities (all p > 0.13).

2.5 Discussion

The results suggest that ImageBind is sensitive to whether the images match an object’s
implied shape or color, but not other sensorimotor modalities including orientation,
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size, and volume. The effect of SHAPE was observed in all of the MLLMs we tested,
suggesting that this result generalizes to even very small CLIP-based models. Only
the largest CLIP model (ViT-H/14, the visual encoder on which ImageBind is based)
showed the color effect, suggesting that this result may not be as generalizable.

The effect of shape and color match is analogous in some ways to effects observed
in humans; as a result, these effects suggest that exposure to language-image pairs is
sufficient to generate sensitivity to implicit relationships between language and the
world. In humans, this effect is interpreted as reflecting embodied simulation during
language comprehension. Thus, the effect of shape and color match in MLLMs could
be interpreted as deflationary, suggesting that simulation is not required to produce the
sensitivity that underlies these effects. Alternatively, MLLMs could be interpreted as a
mechanistic model of sensorimotor simulation in humans. In this sense, the integration
of text and sensorimotor information that occurs in MLLMs would be viewed as a
mechanistic explanation of how sensorimotor grounding of language works in human
language comprehenders. In either case, the results suggest that learning to project
modality-specific representations to a shared representational space through contrastive
learning is a viable mechanism for generating sensitivity to the shape and color of
objects implied by sentences.

Many of the effects in this study are numerically small (∼0.01). This suggests that,
even though the effect is systematic and significant, it has a very small influence on
models’ representations. In some psychological research, large effect sizes are crucial to
assessing the importance of effects (Funder and Ozer 2019). However, in other settings,
including the embodied cognition debate, the validity of hypotheses can be sensitive
to small effects. Reaction time effects in the original studies are also numerically small,
but evidence that these responses systematically vary at all significantly in response
to particular, pre-specified aspects of a stimulus are used to adjudicate among theories
of the mechanisms that produce behavior (Zwaan, Stanfield, and Yaxley 2002; Connell
2007).

In contrast to SHAPE and COLOR, there was no effect of implied feature match
in the ORIENTATION, SIZE, and VOLUME datasets, for ImageBind or any of the other
models evaluated. This suggests that these models’ mechanisms are not capable of
generating sensitivity to implicit sensorimotor features in general, undermining claims
that MLLMs ground language in sensorimotor representations.

Why do we see sensitivity for some feature types and not others? There are a variety
of possible reasons, including differences between the stimulus sets, inherent differ-
ences in how features are represented, and differences in the distribution of features
across training sets. Shape and color are both relatively predictable on an observer-
independent basis. By contrast, orientation, distance, and amplitude can vary greatly
depending on the perceiver’s perspective. Models may have learned to ignore these
features in their representations (indeed, rotation invariance is sometimes seen as a
desirable feature of computer vision models [Kalra et al. 2021]). Experiment 2 addresses
the question of why and where models succeed or fail more directly.

3. Experiment 2

MLLMs might fail to activate implicit sensorimotor features for at least two reasons.
First, they might fail to infer the feature from the linguistic description of the sentence,
for example, a model’s representation of the text “He hammered the nail into the floor”
might not contain information about the orientation of the nail. Alternatively, the model
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might successfully infer relevant features from text (e.g., orientation) but fail to exhibit
sensitivity to this feature in images.

In order to tease apart these possibilities, we break the task used in Experiment 1
into two distinct sub-tasks. We first construct a set of “explicit” sentences that describe
the relevant feature directly (e.g., “the nail is horizontal.”). We then test whether models
show a higher degree of association between these explicit feature labels and each of the
types of stimuli used in Experiment 1.

The first sub-task, [Implicit Text → Explicit Text], tests whether sentences that
imply a sensorimotor feature are more closely associated with explicit descriptions of
the feature. This allows us to ask whether the implied feature is being encoded in the
model’s representation of the sentence

In the second sub-task, [Media→ Explicit Text], we test whether these explicit text
feature labels are more closely associated with the images and sounds depicting the
features. This provides a more direct test of whether the model’s representations of the
media encode sensorimotor features such as orientation and size.

In addition, to investigate the role of learning from multimodal data in generating
sensitivity to sensorimotor features in text, we evaluate the representations of a text-
only transformer language model (GPT-2 large) for sensitivity on the [Implicit Text→
Explicit Text] task.1 GPT-2 large (Radford et al. 2019) is based on a similar architecture
to the ImageBind text-encoder and has a similar number of parameters (762M) to the
vision and text encoder used by ImageBind (934M). If GPT-2’s representations are sen-
sitive to the match between implicit and explicit descriptions of sensorimotor features,
it would suggest that exposure to language alone is sufficient to develop this sensitivity.
To the extent that contrastive learning from multimodal data increases sensitivity, it
would suggest that the training signal from multimodal inputs is important to learning
how to transform linguistic representations in a way that emphasizes relevant sensori-
motor features.

3.1 Methods
3.1.1 Materials. The implicit sentences and media (images and sounds) were identical
to those used in Experiment 1. We generated explicit descriptions of the manipulated
sensorimotor feature for each item. These were designed to be concise, neutral, and to
reflect the relevant feature as it was contrasted in both the sentence and media pairs.

1. SHAPE: We created short sentences describing an attribute of the object
(e.g., “The eagle’s wings were [folded/outstretched]”).

2. ORIENTATION: All sentences were of the form “the [object] was
[orientation]” (e.g., “The nail was [horizontal/vertical]”).

3. COLOR: All sentences were of the form “the [object] was [color]”
(e.g., “The steak was [red/brown]”).

4. SIZE: In order to ensure that the feature made sense with respect to the
implicit sentences (that varied distance from the object), we described the
object’s apparent size from the viewer’s perspective. All sentences were
of the form “the [object] looks relatively [size] from your perspective”

1 We originally pre-registered this analysis using the ViT-H/14 text-encoder due to a misunderstanding
about when the model was frozen during pretraining. We amended our pre-registration before
conducting the analysis with GPT-2 large.
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(e.g., “The fire hydrant looks relatively [large/small] from your
perspective”).

5. VOLUME: As with size, these sentences described the sound’s apparent
volume from the viewer’s perspective. All sentences were of the form
“the sound of the [object] is relatively [volume] from your perspective”
(e.g., “The sound of the handgun is relatively [loud/quiet] from your
perspective”).

3.1.2 Model Evaluation. The procedure was similar to the one used in Experiment 1,
except that rather than comparing the models’ representations of images and implicit
sentences, we compared representations of (i) explicit sentences to implicit sentences,
then (ii) explicit sentences to images/sounds. In each case, we found the cosine simi-
larity between representations of the relevant stimulus, and tested whether similarities
show an effect of feature match. As in Experiment 1, we pre-registered our analyses
for ImageBind, but report results for the same additional models to provide context
and test generalizability. We also presented the explicit-implicit text pairs to GPT-2 to
test whether language exposure alone is sufficient to develop sensitivity to implied
sensorimotor orientation. We operationalize GPT-2 representations as the mean of the
activations in the last layer of the model.

3.2 Results

Cosine distances between GPT-2 representations of the [Implicit Text → Explicit
Text] sentences were not sensitive to the match vs mismatch effect overall [t(455) =
0.045), p = 0.964] or for any of the individual datasets (all p > 0.819; see Figure 3). The
text-based similarity analysis using ImageBind representations showed a match effect
overall [t(106) = 2.56), p = 0.010], and in the SHAPE [t(417) = 2.99), p = 0.003] but no
other datasets (all p > 0.37). There was no significant interaction between match and
model (GPT-2 vs ImageBind) on cosine similarity [t(106) = 1.28), p = 0.203]. Among
the other models evaluated, the SHAPE dataset also produced a significant match effect
in B/32 [t(179) = 2.09), p = 0.038] and H/14 [t(179) = 3.03), p = 0.003] representations,
and CLAP showed a very marginally significant effect on the VOLUME dataset [t(71) =
2.00), p = 0.049]. Several of the effects for the COLOR dataset also approached signifi-
cance. Given that the dataset here was relatively small and that significance thresholds
are necessarily arbitrary (Gelman and Stern 2006), these may well represent real effects
that this study was underpowered to detect.

In the [Media → Explicit Text] task, ImageBind showed an overall match effect
[t(455) = 6.41), p < 0.001]. More granular analysis showed effects for three features:
SHAPE [t(179) = 5.11), p < 0.001], ORIENTATION [t(71) = 5.95), p < 0.001], and COLOR
[t(35) = 8.79), p < 0.001]. The model did not show a significant match effect for either
SIZE [t(95) = 0.682), p = 0.497] or VOLUME [t(71) = 0.17), p = 0.863]. The results of other
models patterned similarly, with significant match effects on SHAPE and COLOR for all
three CLIP models, and effects on ORIENTATION for B/32 and H/14 (all p < 0.02). No
other effects approached significance (p > 0.2).

3.3 Discussion

This diagnostic analysis allows us to identify, for each feature, the mechanism by which
the model achieves sensitivity to sensorimotor features, or where this mechanism fails.
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Figure 3
Match effects (cosine similarity for matching – mismatching pairs) for two diagnostic tasks:
comparing media and sentences to explicit text feature labels. In the [Implicit Text→ Explicit
Text] task, ImageBind showed a significant effect for SHAPE. B/32 and H/14 also show a SHAPE
effect, and CLAP showed an effect on the VOLUME dataset. GPT-2 showed no effect of match on
any of the datasets, and no other effects reached significance. In the [Media→ Explicit Text] task
(pink), ImageBind showed a match effect for three features (SHAPE, COLOR, and ORIENTATION).
All MLLMs showed the SHAPE and COLOR effects, but only B/32 and H/14 show the
ORIENTATION EFFECT. None of the models showed effects of SIZE and VOLUME.

In the simplest case, SHAPE, the results of Experiment 1 suggest that ImageBind is
sensitive to matches between sensorimotor features implicit in sentences and explicit in
media. The present analysis shows that the model can also match features of explicit
text descriptions to implicit text descriptions and to images.

In the case of ORIENTATION, the results suggest that ImageBind is capable of dis-
criminating orientation in images, but does not associate sentences that imply a given
orientation with explicit descriptions of that orientation. This implies that extracting the
feature from the implicit description is a bottleneck for the multimodal model overall,
and may account for the model’s insensitivity to orientation in Experiment 1 (Kamath,
Hessel, and Chang 2023).

For SIZE and VOLUME, the model shows no sensitivity in either matching explicit
to implicit text descriptions, or matching explicit features to media. This suggests that
the model is not sensitive to these features at all. It could be that models never learn
to be sensitive to these features because they are not normally relevant for image-text
matching tasks that the model is trained on.

The case of COLOR is harder to interpret. ImageBind showed a match effect for
color between implicit sentences and images in Experiment 1, and between explicit
descriptions and images in Experiment 2, but not between explicit and implicit text
descriptions. This could suggest that the model’s representations of text descriptions of
color can be used to identify images that match the color, but not sentences that imply
the object’s color. One possible explanation for this is that the explicit color descriptions
(e.g., “The steak is [brown/red].”) are poorly designed. However, the model is able
to use these descriptions to identify images matching these colors. It is possible that
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other features of the implicit sentences contribute to the model’s representations in ways
that align with visual representations but not explicit textual descriptions. Importantly,
however, the match effect on the text version of the color task was reasonably large
(0.13). Given the small number of items in this dataset, and the fact that we see
effects that approach significance across several models, it seems likely that MLLM
text encoders show a real effect of this manipulation, but one that this study was
underpowered to detect.

Finally, GPT-2 showed no sensitivity to the match/mismatch distinction on any of
the datasets. This is consistent with the hypothesis that multimodal feedback (produced
through contrasting learning on text-image pairs) is crucial to developing sensitivity to
implicit descriptions of sensorimotor features. However, although GPT-2 has a similar
architecture and number of parameters to ViT H/14 (on which the ImageBind text
and image encoders are based), it is trained on a next-word prediction objective which
might not provide incentives for generating representations that encode relevant fea-
tures. To test this possibility we conducted a follow-up study with BERT (Devlin et al.
2019). Part of BERT’s pretraining involves classifying sentences using the activations
on a special [CLS] token, similar to the [EOS] token used in CLIP-based text encoders.
We performed the same analysis using activations in the final layer of BERT-large on
the [CLS] token, and found a similar pattern of results. The largest difference in cosine
similarity was observed for the SHAPE dataset [t(179) = 1.05), p = 0.29] (all other ps >
0.73). These results are consistent with the proposal that feedback from multimodal
stimuli helps to shape the representations of MLLM text encoders so that they are more
sensitive to implicit sensorimotor features. In turn this provides support for embodied
theories of human cognition, which suggest that sensorimotor experience plays a crucial
role in grounding our understanding of language (Barsalou 1999; Bisk et al. 2020).

4. Experiment 3

An important test of a model’s cognitive plausibility is its ability to predict human
behavior on relevant psycholinguistic tasks (Kuribayashi, Oseki, and Baldwin 2023).
Thus, in Experiment 3, we asked whether and to what extent the match/mismatch
effects exhibited by MLLMs (and LLMs) tested in Experiments 1–2 successfully predict
variance in human reaction time on the same task.

This analysis is helpful for establishing the cognitive plausibility of a particular
model. Further, if a given model explains away the main effect of match/mismatch in
human data, it provides a viable mechanism for what human comprehenders might be
doing on that same task.

4.1 Methods

4.1.1 Materials. We used model predictions from Experiments 1–3 and human data from
pre-existing studies:2

1. SHAPE: 8,410 trials from 348 participants from Zwaan and Pecher (2012)
Experiment 1.

2 We were not able to extract item-level condition information for each trial for the COLOR dataset in
Experiment 3 of Zwaan and Pecher (2012) and so this dataset was excluded from the human baseline
analysis.
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2. ORIENTATION: 7,480 trials from 336 participants from Zwaan and Pecher
(2012) Experiment 2.

3. SIZE: 349 trials from 22 participants from Winter and Bergen (2012)
Experiment 1.

4. VOLUME: 749 trials from 32 participants from Winter and Bergen (2012)
Experiment 2.

We implemented participant-level exclusions using the same criteria as the original
studies. We performed trial-level filtering in a consistent way across all studies. We
removed trials where reaction times were < 300ms (indicating guessing) or > 3000ms
(indicating inattention).

4.1.2 Analysis. In order to test whether (M)LLM representations could account for the
effects of implicit feature match observed in human experiments, we reanalyzed hu-
man experimental data using model responses as a control predictor.

We constructed linear mixed effects models predicting human reaction times to
each item, with random intercepts by participant id and quadruplet id. We constructed
three distinct models for comparison. The first, with just match condition as a predictor,
functions as a reproduction of the original experiment, to test whether the match effect
is detectable using our statistical analysis. The second model predicts reaction time on
the basis of the cosine similarity between the MLLM representations of the relevant
stimuli. The model measures the extent to which MLLMs are predictive of human be-
havior. Finally, we constructed a model with both match condition and cosine similarity
as predictors. We used hierarchical model comparison to test whether match condition
has a residual effect on reaction time, over and above the variance predicted by the
model.

4.2 Results

We first established that the main effect of match/mismatch observed in human data
could be reproduced when data were analyzed using a linear mixed effects model. A
full model including a fixed effect of Match (and random intercepts for participant and
quadruplet id) explained significantly more variance than a model omitting only that
variable [χ2 = 63.93, p < .001]; as expected, reaction time was slower in the mismatch
condition [β = 47.06, SE = 5.88, p < .001]. The chi-square values (χ2) and associated
p-values indicate the significance of the improvement in model fit when adding the
Match variable to the base model. The beta coefficients (β) represent the estimated effect
of each predictor on the dependent variable. For example, the positive beta coefficient
for Match (β = 47.06) indicates that reaction times are estimated to be 47.06ms slower
in the mismatch condition compared to the match condition, holding other predictors
constant.

We then added a fixed effect of text-based similarity: the cosine similarity scores
between GPT-2 representations on the [Implicit Text → Explicit Text] task. GPT-2
similarity and human reaction times were not significantly correlated [β = −43.7, SE =
137.9, p = 0.751]. Critically, Match continued to explain variance above and beyond the
base model using GPT-2 similarity as a predictor [χ2 = 63.98, p < .001], indicating that
distributional information could not explain away the human effect (see Figure 4).
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Figure 4
Match effects (reaction time for mismatch - match conditions) for human participants in raw RT
data (black), and after controlling for linear model predictions on the basis of GPT-2 cosine
similarity (green) and the ImageBind model’s cosine similarities (pink). Match effects on human
RTs were significant when controlling for both models on each of the four datasets, indicating
that MLLMs cannot account for the effect of implicit feature match on human comprehenders.

We carried out an identical analysis, but using MLLM similarity (i.e., the Image-
Bind cosine similarities extracted in Experiment 1) instead of text-based similarity. The
coefficient for MLLM similarity was significantly negative [β = −823, SE = 92.2, p <
.001]. The negative beta coefficient for MLLM similarity (β = −823) suggests that a
difference between a cosine similarity of 0 and 1 in MLLM similarity is associated
with an estimated decrease of 823ms in reaction time, controlling for other predictors.
However, as with the GPT-2 predictor, Match continued to explain variance above and
beyond the base model including only MLLM similarity as a predictor [χ2 = 38.41,
p < .001].

We carried out each analysis within each dataset (SHAPE, SIZE, etc.). ImageBind co-
sine distance was predictive of reaction time in the SHAPE dataset [β = −1309, p < .001],
but no other dataset (all p > 0.13). In each case, there was a significant effect of match
after controlling for cosine similarity (all p < 0.02). The results of the additional models
patterned very similarly to ImageBind. All three of the CLIP models were predictive
of SHAPE reaction time (all p < 0.001). ViT-B/32 and ViT-L/14 were also predictive of
ORIENTATION RT, but the effects were marginal (p = 0.032, and p = 0.049, respectively).
There were significant effects of match on RT after controlling for each of the other
models (all p < 0.025).

4.3 Discussion

MLLM representations appear to be correlated with human representations to some
extent, as indicated by the fact that measures of similarity derived from the models
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were significantly predictive of human reaction time. Crucially, however, these rep-
resentations were insufficient to account for the main effect of the experimental ma-
nipulation (i.e., match/mismatch)—even in cases where the models showed a robust
effect of match/mismatch as well (e.g., as in SHAPE). These results suggest that implicit
sensorimotor features play a stronger role in human semantic processing than they do
in the MLLMs tested here: either because these features are automatically activated or
because they are strategically engaged in a task-dependent manner.

A candidate explanation for the difference between humans and the models has
to do with architecture: ImageBind (like the other CLIP models) maintains distinct
representational spaces for distinct modalities (i.e., language, vision, and sound), which
are projected into a shared embedding space through a contrastive learning process
(Girdhar et al. 2023). This means that the benefits of multimodality can only be observed
after this projection: For the most part, representations of language or vision are still
unimodal. If human semantic representations are more tightly integrated, as in some
proposals (Meteyard et al. 2012; Binder and Desai 2011), then this could account for
the stronger effect of match/mismatch in human data. In Experiment 4, we ask
whether different MLLM architectures exhibit different psychometric predictive power
(Kuribayashi, Oseki, and Baldwin 2023).

5. Experiment 4

There is more than one way to be “multimodal” (Bugliarello et al. 2021). Dual-encoder
models like CLIP (Radford et al. 2021) maintain distinct representations of each modality
for the majority of the network, and only integrate these representations via a thin
projection to a shared embedding space. In contrast, fusion models process text and
modal inputs in concert, allowing the representation of one to influence the other. In
dual-stream fusion models, like BridgeTower (Xu et al. 2023), modalities are encoded
separately but influence one another through mechanisms such as cross-attention. In
single-stream fusion models, such as ViLT (Kim, Son, and Kim 2021), modalities are
encoded jointly and interact via conventional self-attention mechanisms (Wu et al.
2023).

It remains unclear exactly how MLLM architecture affects the degree of “cross-talk”
between modalities and the multimodal representations each MLLM forms. It is also
unknown which architecture most closely mirrors the mechanism by which humans
ground language: Indeed, there is considerable debate about whether human seman-
tic representations are fully multimodal (i.e., “single-stream”), or whether grounding
occurs primarily through selective “interaction” between distinct, unimodal represen-
tations (Mahon and Caramazza 2008; Meteyard et al. 2012).

We address both questions by asking whether different architectures vary in the
match/mismatch effect; we then quantify the psychometric predictive power (PPP) of
each architecture (Kuribayashi, Oseki, and Baldwin 2023). Because the MLLMs tested
vary in more than just their architecture (e.g., amount of training data), this analysis is
an imperfect test of the hypothesis that variance in architecture contributes to variance
in PPP. However, it is a relatively strong test of the more specific hypothesis that
single-stream models will exhibit higher PPP than dual-stream models: This is because
the dual-stream model tested (CLIP) was trained on orders of magnitude more data
(∼ 400M image/caption pairs; Radford et al. 2021) than ViLT, the single-stream model
(∼ 4M image/caption pairs; Kim, Son, and Kim 2021).
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5.1 Methods

5.1.1 Multimodal Models. We compared three models:

CLIP ViT-B/32 (Radford et al. 2021). A dual-encoder model composed of a 63M-
parameter 12-layer 512-wide text-encoder with 8 attention heads, and a Vision Trans-
former (Dosovitskiy et al. 2021) with a 32px patch size trained on 224×224px images.
The model is trained by contrastive learning on a dataset of 400M image-text pairs.

BridgeTower (Xu et al. 2023). A dual-stream fusion model composed of a 12-layer
RoBERTa-based text-encoder and a 12-layer CLIP-ViT-B/16 vision transformer with 6
cross-modal layers that perform co-attention between text and image representations.
The model is trained on 4M image-text pairs on both Masked Language Modeling
(MLM) and Image-Text Matching (ITM) objectives.

ViLT (Kim, Son, and Kim 2021). A single-stream fusion model composed of a sin-
gle BERT-based 12-layer transformer that implements self-attention over concatenated
word and image embeddings. The model uses a 32px patch size for processing images
and is trained on 4 million image-text pairs using MLM and ITM.

We run ViLT and BridgeTower through the Python transformers package (version
4.35.2; The HuggingFace Team and Contributors 2023). Because more integrated models
do not produce independent representations of each modality, we cannot use cosine
similarity to compare model representations as we did in Experiments 1–3. Instead,
we use the logits that each model produces for each sentence-image pair, representing
the association strength between the sentence and the image. To quantify the similarity
between linguistic and visual representations within the model, we apply a softmax
function to these logits, converting them into probabilities. This process effectively
normalizes the logits across all sentence-image pairs, allowing us to interpret them as
the model’s confidence in associating a specific image with a given sentence:

pij =
exp(logitij)∑2

k=1 exp(logitik)
(1)

where logitij is the logit score assigned by the model for the pairing of sentence i with
image j, and pij is the softmax probability of this pairing.

5.1.2 Procedure. We conducted two analyses. First, in a series of pairwise compari-
sons, we asked whether MLLMs differed in the size of their match/mismatch effect:
specifically, for each pair of models, we constructed a linear regression with an in-
teraction between Model Type (e.g., ViLT vs. CLIP) and Match/Mismatch, predicting
Similarity.

Second, for each MLLM under consideration, we constructed a linear mixed effects
model predicting human reaction time, with MLLM similarity as a fixed effect, and
random intercepts for subjects and items. We operationalized the PPP of each model as
Akaike Information Criterion (AIC). The AIC is a metric used for comparing statistical
models, where a lower AIC indicates a better balance between model fit and simplicity,
suggesting the model is a more parsimonious explanation of the data.
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Figure 5
Main effects of match on the softmax probability assigned to text labels for each image from
CLIP B/32, BridgeTower, and ViLT models. On the SHAPE dataset, there was a main effect on
BridgeTower [t(510) = 3.50, p < 0.001] and ViLT [t(510) = 2.94, p = 0.004] probabilities. There
was also an effect for CLIP ViT-B/32 that approached significance [t(510) = 1.80, p = 0.072].
No other dataset-level effects showed significant effects.

5.2 Results

There was a main effect of match overall in each of the three models: CLIP ViT-B/32
[t(510) = 2.28, p = 0.023], BridgeTower [t(510) = 3.88, p < 0.001], and ViLT [t(510) =
3.22, p = 0.001]. However, when examining each dataset individually, there was only
a main effect of condition on similarity in the SHAPE dataset for BridgeTower [t(510) =
3.50, p < 0.001] and ViLT [t(510) = 2.94, p = 0.004]. There was also an effect for CLIP
ViT-B/32 that approached significance [t(510) = 1.80, p = 0.072]. No other dataset-level
effects were significant (all p > 0.09, see Figure 5). There was no difference in the size
of the match/mismatch effect across MLLMs, as confirmed by the lack of a significant
interaction between Model Type and Match (all p > .1).

For the SHAPE dataset, the models varied considerably in how successfully they
predicted human reaction time, as operationalized by AIC (see Table 1). ViLT exhibited
the lowest (best) AIC, followed by CLIP B/32 and then BridgeTower. These differences
were substantial (> 30 between each pair of models).3 That is, variation in model
architecture was related to variation in PPP. Variation in the ORIENTATION and SIZE
datasets was much smaller, perhaps reflecting the fact that none of the models tested
were sensitive to those implicit features (see Experiment 1).

3 Differences in AIC are generally not interpreted using traditional significance testing. However,
differences larger than 4 are generally interpreted as reflective meaningful differences in model fit
(Burnham and Anderson 2004).
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Table 1
Fit of linear models predicting human reaction times on the basis of measures from different
MLLMs. Estimate shows the expected change in RT for a softmax probability of 1 vs 0. p-values
are for the effect of modal probability on RT. ∆AIC is the difference in AIC from each model to
the best-performing model in each dataset. Bold p-values indicate significant effects while
underlined ∆AIC values are the best for each dataset. On the SHAPE dataset, ViLT produces a
much better fit than ViT B/32 (∆AIC = 74)—a dual encoder model)—and Bridgetower
(∆AIC = 143): a dual-stream fusion model. There are no meaningful AIC differences (all < 3) for
the other two datasets.

Dataset Model Estimate p-value ∆AIC

Orientation BT −5.82 0.750 2.12
Orientation B/32 −25.91 0.121 0.00
Orientation ViLT −15.80 0.308 1.51

Shape BT −80.01 < 0.001 143.07
Shape B/32 −129.85 < 0.001 74.20
Shape ViLT −169.34 < 0.001 0.00

Size BT −38.94 0.514 1.70
Size B/32 76.94 0.139 0.00
Size ViLT −16.81 0.646 2.89

5.3 Discussion

These results were partially consistent with the hypothesis that MLLMs with more
integration between their modalities would exhibit higher PPP: Specifically, ViLT, a
single-stream model, was more predictive of human behavior than CLIP, a dual-stream
model. Notably, this is despite the fact that CLIP was trained on orders of magnitude
more training data than ViLT.

One interpretation of this result could be that ViLT’s architecture is more reflective
of human semantic representations, and thus it needs fewer training exemplars to
predict human behavior (i.e., it exhibits better data efficiency). On the other hand, this
is a single empirical result; this explanation also does not account for why BridgeTower
performed worse than CLIP. The question of model architecture and how it relates to
PPP and data efficiency is explored in more detail in the General Discussion.

6. General Discussion

We evaluated MLLMs on five embodied simulation experiments in order to ask whether
MLLMs exhibit the same kind of integration between modalities that is thought to
constitute grounding in humans. Our results present mixed evidence on this question.
In Experiment 1, ImageBind representations were sensitive to whether the implied
shape or color of an object in a sentence was matched in an image. Importantly, these
visual features were not explicitly mentioned in the sentences. The model’s sensitivity
to implied SHAPE and COLOR suggests that it is activating representations of an object
that are specific to (and implicit in) the event described in the sentence (e.g., the im-
plication that an eagle in the sky would have its wings outstretched, while an eagle
in its nest would have its wings folded). In humans, an analogous effect is taken as
evidence of embodied simulation (Stanfield and Zwaan 2001; Bergen 2015). The findings
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here suggest that such an effect can be produced via exposure to large-scale statistical
associations between patterns in images and patterns in text.

In contrast, we found no match effect for ORIENTATION, SIZE, or VOLUME. Our
diagnostic analysis in Experiment 2 suggests different reasons for these failures. Im-
ageBind was sensitive to whether explicit labels for object orientations matched images,
suggesting that the model is capable of accurately representing this feature. However,
there was no match effect between these explicit orientation labels and sentences that
indirectly imply orientation. This suggests that the text-encoder is the bottleneck for
MLLM sensitivity to orientation overall. Kamath, Hessel, and Chang (2023) find a more
general version of this effect by testing whether input captions are encoded with enough
specificity to be recovered using a text-only probe. They find that a small proportion
of inputs are recoverable, especially for more compositional captions, suggesting that
MLLMs would be incapable of discriminating matching images even if their image
representations were sufficiently granular. They find that some text-encoders perform
significantly better than others. Future work could investigate whether this is also true
for the sentence-picture verification experiments used here.

For the SIZE and VOLUME stimuli, we found that ImageBind was not able to dis-
criminate matches between either explicit and implicit text labels, or explicit labels
and media (images and sounds). This suggests that the model may not be capable of
representing these features in general. One possible reason for this insensitivity could be
the MLLMs’ training data and objectives: MLLMs may not have had sufficient exposure
to scenarios where these features are crucial for understanding the context or the content
of the image-text pairs (Lin et al. 2014). This lack of emphasis in the training data could
lead to underdeveloped representation of these features in the model’s architecture.
Alternatively, the nature of the features themselves could present an obstacle: The
perception of size and volume is inherently relational and can vary greatly depending
on the context. Capturing and encoding such context-dependent features might require
a more sophisticated approach to multimodal integration than what current MLLMs
employ (Liu, Emerson, and Collier 2023). Future research could focus on enhancing the
training paradigms and exploring architectures that can better handle compositional
and context-dependent features.

Even in the case of SHAPE and COLOR, ImageBind was not sufficiently sensitive
to implicit feature match to explain its effects on human comprehenders (see Experi-
ment 3). While the model’s behavior was correlated with human behavior, it did not
eliminate the main effect of the experimental manipulation. This mirrors other recent
work (Jones et al. 2022; Trott and Bergen 2023; Trott et al. 2023) suggesting that even
LLMs that are sensitive to certain semantic features do not display equivalent sensitivity
as human comprehenders. One possible explanation for this discrepancy is that senso-
rimotor information plays a more prominent role in human semantic representations,
that is, human representations of meaning exhibit more multimodal integration than
dual-stream models like ImageBind or CLIP. More generally, humans have much richer
sources of interaction with the world beyond labeled image/caption pairs, and this may
be reflected in their representations of meaning.

This explanation is also consistent with the results of Experiment 4, which reveal
the effects of MLLM architecture on psychometric predictive power. Specifically, ViLT’s
single-stream approach was best at predicting human behavior. Given that ViLT was
also trained on many fewer exemplars than dual-stream models like CLIP, this suggests
that the benefits of architectural integration—at least when it comes to predicting hu-
man behavior—might compensate for a relative dearth of training data. It is still worth
noting, however, that even ViLT failed to fully account for the effect of match/mismatch
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in humans. Future work could investigate whether more training data would close this
gap in ViLT; if it does not, it would suggest that the rich, interactional nature of grounded
human experience may play an important role in their semantic representations.

6.1 Are MLLM Representations of Color and Shape Grounded?

The notion of “grounding” is highly polysemous (Bisk et al. 2020; Mollo and Millière
2023). One interpretation of grounding is sensorimotor grounding, which Mollo and
Millière (2023) is defined as a link (or integration) between a conceptual representation
and sensorimotor representations. This is the interpretation primarily explored in this
article, and the one often used in past work on multimodal grounding of language
models (Bruni, Tran, and Baroni 2014; Chrupała, Kádár, and Alishahi 2015; Kiros, Chan,
and Hinton 2018; De Sa and Ballard 1998; Kádár, Chrupała, and Alishahi 2017; Peng and
Harwath 2022; Harwath and Glass 2015). Do MLLMs exhibit sensorimotor grounding?
In one sense, the answer is clearly yes: MLLMs have the opportunity to ground concepts
using the specific modalities they are trained on (e.g., vision). In another sense, however,
“grounding” could be taken to mean actually deriving and deploying specific semantic
features that could in principle be gleaned from those sensorimotor modalities, such
as the implied shape of an object. Under this narrower interpretation of grounding,
the MLLMs tested were grounded with respect to shape and color, but not to size,
orientation, or volume.

Further, as Mollo and Millière (2023) note, “grounding” could be interpreted in
other ways as well. It might refer to a system’s ability to relate a given concept to other
concepts, as in a semantic network, namely, relational grounding; or it might involve a
system’s ability to “anchor a representation” in the world itself (Mollo and Millière
2023), that is, referential grounding. Mollo and Millière (2023) argue that referential
grounding may be a particularly important source of linguistic meaning, and that this
depends on understanding the causal history of how specific labels or expressions are
used to refer to specific meanings—that is, how language is anchored to the world.

While the current work cannot address the more general question of what consti-
tutes “grounding,” it does offer empirical evidence that can inform theories of whether
MLLMs are, in fact, grounded. Namely, by probing MLLMs with experiments designed
to test grounding in humans, we can identify whether and how specifically sensorimo-
tor representations are activated (or fail to be activated) when MLLMs are exposed to
linguistic descriptions of events.

6.2 MLLMs as Explicit Computational Models of Grounding in Humans

As well as evaluating grounding in MLLMs per se, we were interested in investigating
MLLMs as explicit computational models of grounding mechanisms in humans. Ex-
plicit computational models provide a helpful tool for adjudicating between theories
of grounding in humans. Theories must be specified in great detail in order to be
implemented in code. Once implemented, these models allow us to test whether specific
mechanisms are capable of producing the behavior that they have been proposed to
explain.

MLLMs in general represent models of a certain class of grounding theories. They
learn passively from exposure to mixed-modality inputs to associate distributional pat-
terns from one modality with another. Importantly, they lack the ability to interact with
the world in order to seek out information or test theories about how modalities relate—
a capacity that has been implicated in grounding for humans (Varela, Thompson, and
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Rosch 2017). In this sense, they have been described as “learning language from the
television,” hardly better, perhaps, than from the radio (Bisk et al. 2020). Nevertheless,
we find some evidence that MLLMs develop sensitivity to implicit sensorimotor fea-
tures (SHAPE and COLOR). These results provide some limited support to the theory that
MLLMs’ associative mechanisms are capable of generating schematic representations
of textual descriptions with sufficient granularity that implicit sensorimotor features of
described events can be related to real modal inputs.

In contrast, however, ImageBind did not show sensitivity to three other features
(ORIENTATION, SIZE, and VOLUME). We therefore fail to find evidence that the mecha-
nism tested here is capable of generating sensitivity to implicit sensorimotor features
in general. In addition, even in the cases of SHAPE and COLOR, the model explained a
very small proportion of the effect of Match on human reaction times (see Figure 4).
This result is consistent with theories that human comprehenders make use of other
resources or mechanisms that go beyond contrastive learning from independent encod-
ings of images and text.

At a more granular level, specific MLLM architectures provide loose analogies
for proposed mechanistic models of embodied simulation in humans (Meteyard et al.
2012; Binder and Desai 2011). Dual Encoder models can be roughly aligned with
Secondary Embodiment theories (Mahon and Caramazza 2008; Patterson, Nestor, and
Rogers 2007), where modality-specific inputs are processed independently and used to
inform a higher-level non-modality-specific representation. Dual-Stream fusion models
loosely operationalize weak embodiment theories (Barsalou 1999), where processing
input from one modality is partly dependent on one’s representations of another. Single-
stream fusion models have the potential to implement the strongest kind of multimodal
interaction (Strong embodiment; Gallese and Lakoff 2005), where linguistic inputs are
processed using exactly the same neural resources as sensorimotor inputs. However, it
is an empirical question whether models actually learn to do this.

We tested the plausibility of MLLMs as operationalizations of the mechanism of
embodied simulation in humans by asking what proportion of the variance in human
behavioral data they can account for. The fact that the single-stream fusion model
(ViLT) provided significantly better predictions of human behavior than CLIP provides
tentative support for stronger embodiment theories that hypothesize close integration
between conceptual and perceptual representations. However, there were a variety of
differences between models in our analysis which limit the strength of the inferences
that can be drawn. Ideally, future work will hold training data and parameter counts
constant while varying architectural features systematically. Such careful work, with
close reference to the theoretical embodiment literature, could help to shed light on
what kinds of mechanisms are necessary to realize embodied grounding in humans.

7. Conclusion

MLLMs have been proposed as solutions to the so-called symbol grounding problem
(Harnad 1990). However, it is unclear whether MLLM representations are grounded
in similar ways and to similar degrees as many believe human representations are
(Bergen 2015). A large body of experimental evidence has emerged suggesting that
humans understand language in part by activating relevant sensorimotor features, for
example, the implied shape or orientation of an object (Zwaan, Stanfield, and Yaxley
2002; Pecher et al. 2009). By adapting techniques originally designed to probe grounding
in humans, we found that MLLMs are sensitive to some implicit features and not
others—and that MLLMs fail to fully account for the effect of grounding in humans.
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This work has implications for debates about whether MLLMs are grounded (Mollo
and Millière 2023); it also suggests a potentially fruitful direction for cross-pollination
between psycholinguistics and computational linguistics.

Ethics Statement
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demands of our research, including energy usage and potential environmental impacts,
were negligible.
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