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Jérôme Michaud
Stockholm University, Sweden
Mälardalen University
Centre for Cultural Evolution
Department of Psychology
Västerås, Sweden
jerome.michaud@mdu.se

This study explores the cognitive mechanisms underlying human language acquisition through
grammar induction by a minimal cognitive architecture, with a short and flexible sequence
memory as its most central feature. We use reinforcement learning for the task of identifying
sentences in a stream of words from artificial languages. Results demonstrate the model’s ability
to identify frequent and informative multi-word chunks, reproducing characteristics of natural
language acquisition. The model successfully navigates varying degrees of linguistic complex-
ity, exposing efficient adaptation to combinatorial challenges through the reuse of sequential
patterns. The emergence of parsimonious tree structures suggests an optimization for the sen-
tence identification task, balancing economy and information. The cognitive architecture reflects
aspects of human memory systems and decision-making processes, enhancing its cognitive plau-
sibility. While the model exhibits limitations in generalization and semantic representation, its
minimalist nature offers insights into some fundamental mechanisms of language learning. Our
study demonstrates the power of this simple architecture and stresses the importance of sequence
memory in language learning. Since other animals do not seem to have faithful sequence memory,
this may be a key to understanding why only humans have developed complex languages.

Action Editors: Marianna Apidianaki, Abdellah Fourtassi, and Sebastian Padó. Submission received:
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1. Introduction

Human language capacity stands out among species for its flexibility and expressive
power. A fundamental unsolved question is what cognitive mechanisms enable humans
to learn language. On the one side, there are theories on inborn language organization
(Chomsky 1957; Pinker and Jackendoff 2005; Fodor 1983) or language specific learning
processes (Nowak, Komarova, and Niyogi 2002; Reali and Griffiths 2009; Griffiths et al.
2010; Tenenbaum et al. 2011). On the other side, we find theories emphasizing usage-
based, general learning principles (Bybee 1985; Tomasello 2003; Heyes 2018), combined
with ideas on culturally emergent structure (Kirby, Cornish, and Smith 2008; Goldberg
2007; Langacker 1987; Croft 2001). Explanations relying on strong functional modularity
often fail to explain variability across languages and disregard that human mental
skills require social learning. Moreover, recent advancements in large language models
(LLMs) challenge the notion that predetermined linguistic predispositions are necessary
for language learning (Piantadosi 2023). In contrast, domain-general learning theories
often lack explicit suggestions on the machinery that would enable such learning and
leave the question of why other animals cannot acquire human-like language unan-
swered. In this article, our point of departure is the novel sequence hypothesis, postu-
lating that faithful sequence representation is uniquely human and a central prerequisite
for the emergence of language and complex culture (Ghirlanda, Lind, and Enquist 2017;
Lind, Ghirlanda, and Enquist 2022; Enquist, Ghirlanda, and Lind 2023; Lind et al. 2023;
Jon-And et al. 2023). Based on this, we propose a minimal cognitive architecture with
a short and flexible sequence memory as its most central component and examine how
far this design can reach in learning grammar from data.

Our proposed cognitive architecture follows a simple and traceable error-correction
temporal difference learning algorithm (Sutton and Barto 2018). In order to make the
model fully interpretable, we use an equation-based model rather than a neural net-
work. Our minimal architecture allows us, on the one hand, to discuss what cognitive
properties are necessary for language learning and, on the other hand, to follow the pro-
cess of extracting grammatical information that supports the language learning process.
Our approach is inspired by cognitive architecture research in artificial intelligence, that
aims at building a unified theory of cognition where few general mechanisms should
be able to explain diverse phenomena and characteristics of human cognition (Newell
1994). In line with recent domain-general artificial intelligence modeling (Wiggins 2020;
van der Velde et al. 2017), we aim at accounting for human information processing
while making as few assumptions as possible. Our initial hypothesis, drawing upon
a pilot study for the present work (Jon-And and Michaud 2020), is that sequence mem-
ory, paired with chunking, are key domain-general cognitive mechanisms underlying
the human ability to learn grammar from data. Our approach implements principles
of usage-based language learning, namely, that language acquisition occurs through
language use and through continuous updating of linguistic knowledge encoded as
chunks or constructions (Bybee 2006; Tomasello 2003).

We explore reinforcement learning as a foundational framework for our learning
model, seeking a cognitively plausible architecture and learning process, that can gen-
erate language structure. Reinforcement learning is grounded in robust empirical sup-
port for organisms learning through trial-and-error interactions with their environment
(Pavlov 1949; Skinner 1965; Mackintosh 1983; Rescorla and Wagner 1972; Sutton and
Barto 2018). Our objective is also to use simple, localized learning principles to model
the acquisition of a complex system like grammar. The use of reinforcement learning
aligns well with this aim, as reinforcement learning is suggested to be a sufficient
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mechanism to acquire many sophisticated and multifaceted behaviors that are found
in humans, animals, and machines (Silver et al. 2021).

The task of our learning model is to identify sentences in a linguistic stream where
cues to sentence borders like punctuation or capitalization are removed. In our model,
the learner follows a chunk-and-pass learning principle (Christiansen and Chater 2016b)
in which it decides whether to place a boundary or to chunk a newly encountered
word to other words kept in the working memory. This is comparable to the shift-
and-reduce procedure applied by Yogatama et al. (2016), where tree structures emerge
and are optimized to improve performance on more advanced linguistic tasks like
sentiment analysis and semantic judgments. In Yogatama et al. (2016), this is done by
using word embeddings that emerge in a neural network, making both the tasks and
the model considerably more complex than ours. In contrast, segmentation is a task
that is present in early language learning, when structure is likely established (Peters
2013). Our chunking mechanism creates hierarchies with binary tree structures with the
words as leaves. Since chunks retain the order in which words are encountered, they
encode both the ability for sequence representation and chunking. Boundary placement
triggers reinforcement, where correct sentence identification is rewarded and incorrect
sentence identification is penalized. When referring to reward or penalization during
language learning, we do not assume explicit feedback, that is often absent in language
learning. Our assumption, rather, is that ultimately, successful communication triggers
internal or external reinforcement, being the main goal of language use. Language
understanding is a central part of successful communication, and the segmentation of a
linguistic stream into meaningful units is in its turn necessary for understanding. While
studies on segmentation in language learning have focused on the word level (Saffran,
Aslin, and Newport 1996; Saffran 2001), higher levels of segmentation are also necessary
for language understanding. Segmentation tasks are arguably more central for language
learning than, for example, word or sound prediction tasks.

We choose the task of segmenting a stream of words into sentences because we are
interested in grammar induction. We hypothesize that in a minimalist learning model
that makes no assumptions on specific genetic guidance for language learning, and
imposes cognitively plausible constraints on working memory and processing capac-
ities, grammar emerges as a solution to the combinatorial challenge posed by language
learning. The expectation is that hierarchical organization of words will emerge as
a support for the task of sentence identification. There are, naturally, other tasks in
language processing and production that are supported by grammar and may trigger
its emergence. In this study, we have chosen one easily encoded and evaluated task,
and test if this task is a sufficient driving force for grammar induction. This task may
in future studies be combined with or compared to other tasks. We focus on syntax
even though syntax and morphology are closely intertwined, for reasons of simplicity
and for facilitating future testing of the model on written natural language corpora.
Furthermore, while sentence boundaries are nowhere near as clear and consequent
in spoken spontaneous language as in written texts, the identification of multi-word
meaningful units is always a relevant task in language understanding. Here, for reasons
of simplicity, we model sentences as a meaningful unit to be identified, to enable
evaluation of the fundamental principles of our model.

Our model does not formally encode meaning, even though meaning is central
to the concept of a linguistic construction, that is essentially a pairing of form and
meaning (Langacker 1987; Goldberg 2007; Croft and Cruse 2004; Tomasello 2005). The
notion of meaning is not, however, entirely absent from our model, as an underlying as-
sumption is that identification of meaningful units is a prerequisite for a form-meaning
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mapping to occur. But the support for segmentation provided by meaning in natural
language learning, as well as prosodic cues like stress or pauses (Kuhl 2004; Sanders,
Neville, and Woldorff 2002) are absent in our model. These simplifications may impose
difficulties for our learner to succeed in its task when linguistic complexity increases,
but they also enable investigating how far the system can reach without this additional
support.

Our work bears similarities to unsupervised grammar induction, which involves
inferring a grammar from strings or sentences within a language. However, differently
from our architecture, most unsupervised grammar induction models assume the ex-
istence of given formal syntactic relations even if there is no explicit training on how
these should be encoded (Muralidaran, Spasić, and Knight 2021). While exceptions to
this top–down perspective exist (Bod 2006; Solan et al. 2003; Shain et al. 2016), our
goals also depart from those of unsupervised grammar induction in the sense that
we are not searching for the model that best predict data. Instead, we are aiming at
modeling the acquisition of grammar in a minimalist and cognitively plausible manner
that is consistent with usage-based learning, and at testing whether sequence memory
is sufficient to achieve this. In syntactic parsing the explicit task is to identify trees,
dependencies, and/or constituents in sentences, while the task of our learner is to
identify sentence boundaries, a goal more directly related to language understanding,
and trees emerge as a support for this task.

The evaluation of the model is based on the one hand on its ability to fully learn to
identify sentences in artificial languages with varying degrees of complexity, and on the
other hand on its ability to identify and reuse chunks that are extracted from exposure to
these languages. The second more qualitative measure is more central than the model’s
quantitative performance, as our goal at this stage is primarily to study whether and
how our design allows for extraction of functional structure. In order to understand how
structure emerges during learning in our model, and to discuss whether this process
in any aspects resembles natural language learning, we study the learning process
and not only the final result. The evaluation is performed on relatively small artificial
languages reflecting common natural language structures. To scale to larger input, the
model needs a system that allows for abstraction, and currently it only contains a
first step towards generalization, as the reuse of frequent chunks, partially reduces
the combinatorial explosion of language learning. This partial solution can serve as a
basis for generalization that may give rise to grammatical abstractions at higher levels.
Such generalization could be implemented in, for example, a neural network, but if
the transparency of the model is to be maintained, generalizations can be implemented
within the error-correction temporal difference learning algorithm applied here. One
way of doing this is using a category-based formalism that makes no pre-assumptions
on categories, but only generalizes over the properties of the useful chunks the learner
identifies. A pilot implementation of such a generalization system has been conducted
by Jon-And and Michaud (2024).

As the system presented here does not include large-scale generalization, we do not
evaluate the model’s performance on natural languages. In artificial languages, we find
that the model is able to efficiently identify informative chunks and reuse them when
they occur in new structures, thus in a simplified manner accounting for the emergence
of grammar during learning. We also find that the model over time learns to ignore
less informative chunks and gives priority to those that contribute more frequently
to the correct identification of sentences. In this way, we see how a simple goal like
identification of sentence borders gives rise to self-organization and consolidation in an
emergent grammatical system.
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This article is organized as follows: Section 2 provides some background for this
study. Section 3 presents the computational framework used, that is, the framework of
Markov Decision Processes (Sutton and Barto 2018). In particular, we discuss the learn-
ing task as well as the learning algorithms studied in this article. Section 4 presents the
results of our study and discusses the performance of our model on a number of small
human-like toy languages. We show that our model successfully learns these languages
and provide some interesting insights into how learning is performed. Finally, Section 5
provides a discussion of the implication of our results and outlines how this work could
be continued.

2. Background

2.1 Foundation of the Human Linguistic Capacity: Associative Learning, Sequence
Memory, and Chunking

Associative learning is a fundamental mechanism that holds strong explanatory power
for general learning in both humans and other animals (Pavlov 1949; Skinner 1965;
Mackintosh 1983; Rescorla and Wagner 1972; Heyes 2018; Wasserman, Kain, and
O’Donoghue 2023; Lind 2018; Heyes 2012b, 2012a; Enquist, Lind, and Ghirlanda 2016;
Bouton 2016; Haselgrove 2016; Enquist, Ghirlanda, and Lind 2023). However, the in-
ability of non-human animals to match the language capacities of humans calls for
identifying unique properties that are present in humans, and not in other animals.
Sequence learning has been pointed out as particularly important for human linguistic
capacities (Heyes 2018; Christiansen and MacDonald 2009; Bybee 2002a; Christiansen
and Kirby 2003; Christiansen and Arnon 2017; Frank, Bod, and Christiansen 2012;
Cornish et al. 2017; Udden et al. 2012; Kolodny, Edelman, and Lotem 2015; Kolodny
and Edelman 2018). At the same time, there is strong empirical support for non-human
animals’ limited capacity to represent the exact order of stimuli (Roberts and Grant
1976; MacDonald 1993; Ghirlanda, Lind, and Enquist 2017; Read, Manrique, and Walker
2022; Lind et al. 2023). This suggests faithful sequence representation to be a basic
defining feature of human cognition and linguistic abilities (Enquist, Ghirlanda, and
Lind 2023; Jon-And et al. 2023). These findings call for testing the capacity for language
learning of a minimalist associative learning model with a precise but limited sequence
memory.

To enable processing of language or of any kind of sequential information, sequence
memory likely needs to be combined with a capacity for chunking, that is, considering
a recurrent sequence of stimuli of flexible length as a unit. Without chunking, it is
impossible to faithfully represent a sequence. Chunking is known to be central for hu-
man language learning (Tomasello 2003; Bybee 2002a; Servan-Schreiber and Anderson
1990; McCauley and Christiansen 2019). Humans have strong memory constraints in
online language processing and are, for example, typically only able to store somewhere
between three and ten meaningful items in their working memory (Cowan 2001; Miller
1956). The chunk-and-pass principle has been identified as essential for overcoming
such memory constraints (Christiansen and Chater 2016b), and is also theorized to un-
derpin the multilevel representational structure of language (Christiansen and Chater
2016a).

Principles similar to associative learning, of local decision-making and memory up-
dating, rooted in the utilization of limited recent information and associations derived
from past experiences, have been implemented in models like the naming game, where
categorizations self-organize driven by communicative success and alignment (Steels
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and Loetzsch 2012), or the utterance selection model, that accounts well for several
aspects of the change and diffusion of linguistic forms (Baxter et al. 2006; Michaud
2019). In these models, only knowledge pertaining to the features present in each
specific learning occasion is updated, thus avoiding costly computations. These models
focus on single linguistic elements and not sequences, and cannot, therefore, infer any
system that encodes relationships between elements, like grammar. We hypothesize that
by applying similar principles to sequential linguistic input, a global system of rules
may emerge during learning and use without the learner having to possess explicit
knowledge or hypothesize about the entire system. Instead, agents will rely upon simple
emergent dynamic rules to inform each decision locally.

2.2 Connectionist Language Learning Models

In connectionist models, associative learning is operationalized through the adjustment
of connection weights between artificial neurons. Such models, implemented in artificial
neural networks, mimic the interconnected structure of neurons in the brain and tend to
exhibit high performance in generalization of patterns from data. While connectionist
models have successfully accounted for certain aspects of language acquisition (Elman
1990, 1996; Christiansen and Chater 2001; McClelland et al. 2010), their interpretability
remains a challenge, and they struggle to capture symbolic representations.

Modern LLMs are connectionist models that stand out for their remarkable and
often human-like linguistic performance. It is possible to gain some insight into what
kind of information LLMs are able to store at the semantic, syntactic, and morphological
levels by studying their attentional mechanisms (Manning et al. 2020; Vaswani et al.
2017; Piantadosi 2023; Piantasodi and Hill 2022), but the neural networks upon which
LLMs rely contain billions to trillions of parameters (Piantadosi 2023; Brown et al. 2020;
Amaratunga 2023) and it is not possible to extract precise information on whether or
how any morpho-syntactic abstractions emerge in these models and, if so, what is their
nature. In terms of cognitive plausiblity, there are also some divergences between the
learning processes of LLMs and humans. LLMs typically leverage datasets approxi-
mately 1,000 times larger than the linguistic input available to a child (Warstadt and
Bowman 2022). Moreover, humans learn and use language in parallel (Bybee 2006; Ellis,
O’Donnell, and Römer 2015; Tomasello 2003), while LLMs are generally pre-trained
and no longer learn when they are put in use. Both during training and use, LLMs
can base their output on very long input sequences, sometimes containing thousands
of tokens (Beltagy, Peters, and Cohan 2020; Liang et al. 2023; Brown et al. 2020), while
human working memory is constrained to storing the aforementioned three to ten items
(Cowan 2001; Miller 1956). Overall, LLMs have access to more resources in terms of
both data, memory and processing power than humans during language learning. We
hypothesize that imposing working memory and processing constraints in a learning
model may trigger the emergence of grammatical structure as a way to overcome
combinatorial problems inherent to language acquisition. It has previously been shown
that limited working memory capacity may facilitate grammar induction (Shain et al.
2016). Possibly, models that are able to represent and process very long strings, paired
with training on massive data, can achieve what humans judge as grammatically correct
output, without establishing a system of grammatical categories and relations.

The training task of LLMs and many other connectionist language learning models
is to predict words. In natural language learning, sound or word prediction undoubt-
edly provides support for efficient language processing, but it is theoretically possible
to learn a language without predicting upcoming elements. On the other hand, the
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identification of units that can be mapped to meanings, is a step that needs to be taken
to achieve both understanding and production. While segmentation is not the only or
necessarily the most important task in language learning, it is a task that is relatively
easy to implement in a model, as cues to rewards are present in text, and it may bring
the modeled process closer to a real life learning process than word prediction.

2.3 Parsing and Grammar Induction

Automatic syntactic parsers superficially share our goal of extracting grammatical struc-
ture from linguistic input. These models are, however, often not built with the aim of
representing cognitively plausible learning processes. Supervised parsing depends on
predefined syntactic rules and/or categories, human labeling, and training (Manning
and Schutze 1999; Sanford and Sturt 2002; Nivre et al. 2020) and does in that sense not
resemble informal language learning.

In contrast, unsupervised grammar induction aims at inferring grammatical struc-
ture from linguistic data without any explicit training on how to encode syntactic
relationships. Many unsupervised grammar induction models still assume the existence
of given formal syntactic relations, providing the model with initial information on
categories related to grammatical dependencies or constituents (Muralidaran, Spasić,
and Knight 2021). This top–down perspective is not compatible with domain-general
learning. Unsupervised data-oriented parsing (DOP) models are more compatible with
a usage-based perspective, as they apply a bottom–up methodology with no pre-
defined categories. In this approach, the most probable binary trees are computed from
the shortest derivations of sentences (Bod 2006, 2009; Post and Gildea 2013). Another
approach that makes relatively few cognitive assumptions is the unsupervised hierar-
chical hidden Markov models (UHHMM) presented by Shain et al. (2016), which learns
hierachical syntax statistically. While DOP and UHHMM demonstrate that grammar
can be induced without relying on predefined categories, one drawback of these models
lies in their need for simultaneous access to large amounts of data for probability
computations. This requirement renders them both cognitively implausible and com-
putationally costly. Another theory-neutral approach is the automatic distillation of
structure (ADIOS), a model that extracts statistical patterns incrementally from a corpus
of sentences and outputs a directed multigraph, whose patterns can be represented as a
context-free grammar (Solan et al. 2003; Berant et al. 2007; Brodsky and Waterfall 2007).
Differently from DOP and UHHMM, ADIOS carries out structural inferences locally.
However, before extracting statistical patterns, pre-processing of the data is made where
the corpus is loaded to a pseudograph with lexical entries as vertices. The local inference
is thus not made on a raw stream of linguistic input.

Another paradigm of automatic grammar induction involves assessing hypothet-
ical grammars of formal languages via Bayesian inference (Rule et al. 2018; Rule,
Tenenbaum, and Piantadosi 2020; Piantadosi, Tenenbaum, and Goodman 2016; Amalric
et al. 2017; Planton et al. 2021; Ullman, Goodman, and Tenenbaum 2012; Ellis et al.
2018). The formal languages are composed of sequences generated by rule systems
known as artificial grammars organized within a mathematical hierarchy of escalating
generative power, commonly referred to as the Chomsky hierarchy (Chomsky 2002,
1959). The Bayesian approach to formal language learning assumes the existence of a
prior that is evaluated against data. This means that the learner needs to formulate
and reformulate hypotheses about the entire system that is being learned, overlooking
the possibility that grammatical rules may be inferred without a prior framework or
without formulating hypotheses about the entire system. Furthermore, many formal

1381



Computational Linguistics Volume 50, Number 4

languages in such studies do not resemble natural languages. Context-free languages
like anbn, for example, are even impossible for humans to learn without explicit counting
if n is high. Results from Hochmann, Azadpour, and Mehler (2008) suggest that human
recognition of such strings relies on distributional regularities rather than on hypotheses
about underlying grammar.

We propose a perspective that differs in some crucial aspects from all grammar
induction models reviewed here. First, we initially present the learner with a stream
of words without cues of sentence borders, whereas other grammar induction studies
present sentences one by one. Presenting an unsegmented stream makes the input
more similar to that of an early language learner and, at the same time, allows for
using sentence borders as cues for reinforcement. Secondly, we apply local decision-
making and updating of probabilities of actions, and never let the learner have access
to more data than the current state and values of actions associated with it. This is not
only computationally cheap, but also an empirically grounded approach to learning.
Third and lastly, reinforcement learning allows for structures to be optimized for a
task related to language learning instead of being identified purely on the basis of
statistical regularities. We are primarily interested in exploring this new approach as
a way of understanding how humans induce grammar from data, and not necessarily
in optimizing performance in parsing. For this reason we do not compare our model’s
performance with other grammar induction models at this stage, but rather study its
learning process and evaluate its potential for understanding the cognitive prerequisites
underlying human language learning.

3. Computational Framework

The method used in this article is that of reinforcement learning applied to a Markov
Decision Process (MDP) (Sutton and Barto 2018), that encodes a language learning task.
The learner tries to identify sentences by placing boundaries between words and gets
positive reinforcement when it succeeds and negative reinforcement when it fails. The
model will then be evaluated by looking at learning curves, that is, the fraction of cor-
rect responses from a population of agents, and at the grammar induced by the model.
This section provides an overview of the learning task, learning algorithms, and evalu-
ation methodology.

3.1 The Learning Task

We start by defining the learning task our cognitive architecture will use. Following
Sutton and Barto (2018), we define the task as an MDP. MDPs provide a useful frame-
work for studying learning from interactions to achieve a goal. In this framework, a
learner is called an agent. In our case, the agent aims to identify sentences in a sequence
of words constituting the environment. The sequence of words used here is generated
using a probabilistic context free grammar (PCFG), but our model should work on
any sequential input with well-defined units. To illustrate the type of input the model
receives, it is useful to take a natural language example. Consider, for example, the
following three sentences:

The cat chases the dog. The man loves his girlfriend. The sun shines.

Because identifying sentences in this context is too easy due to punctuation and capital-
ization, we create a raw input by removing any hint as to the beginning of sentences—
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for example, capital letters and punctuation are removed from the list of words—
yielding the following modified input:

the cat chases the dog the man loves his girlfriend the sun shines

The information about sentence boundaries is stored in a Boolean sequence encoding
whether a word in the raw input is preceded by a boundary or not. This Boolean
sequence is used to drive the reinforcement procedure. The aim of the learning agent
is then to identify sentences, that is, sequences of words separated by boundaries
and not containing any other boundaries. This task can be seen as a masking task,
where sentence boundaries are masked and the aim of the model is to predict where
boundaries occur.

3.1.1 MDP Formalism: States, Actions, and Rewards. In order to specify this task within the
MDP framework, we need to specify

1. how agents represent information (i.e., their state space);

2. what they can do in a given state (i.e., their action spaces, which depends
on their state), and

3. what consequences their actions have (i.e., the reward structure and
transitions between states).

More specifically, the agent interacts with its environment at discrete time steps, t =
0, 1, 2, 3, . . . . At each time step t, the agent is in a given state St ∈ S and takes an action
At ∈ A(St). As a result of that action, the agent receives a reward Rt+1 ∈ R ⊂ R and
finds itself in a new state St+1 ∈ S. To encode the behavior of the agent, we use state-
action values Q(s, a) encoding the value of taking action a ∈ A(s), when the agent finds
herself in state s and define the policy of an agent π(a|s) as the probability to select action
a ∈ A(s) when in state s.

3.1.2 Specifying the Language Learning Task as an MDP. In our case, the states are encoded
as pairs of structured chunks of words. A chunk refers to a sequence of words and
an associated binary tree with the words as leaves. For a chunk of length n, there are
Cn−1 = 1

n
(2(n−1)

n−1

)
possible binary tree structures, where Cn is the n-th Catalan number.

By default, the second and most recently perceived chunk always consists of a single
word. An example state is given by:

St =




cakeeatsJohn
,

and


 (1)

In such a state, the agent has a number of possible actions: She can choose to place a
boundary between the two elements of her state, or to integrate the second element
into the structure of the first. Figure 1 illustrates the four possible actions associated
with the example above. The possible actions in a given state depend on the structure
of the binary tree and on how many ways it can be chunked with the second element
of the state. We define the right-depth of a state d(St) as the number of ways the second
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


cakeeatsJohn

,

and


⇒





andcakeeatsJohn

(a0)

andcakeeatsJohn

(a1)

andcakeeatsJohn

(a2)

cakeeatsJohn

boundary

and

(a3)

Figure 1
Illustration of the four possible actions. On the right, the results of the four actions are shown. As
can be seen, there are three different ways of chunking the second element into the first.

chunk can be integrated into the first. In the example above d(St) = 3, as is illustrated
in Figure 1. There are d(St) + 1 possible actions a0, . . . , ad(St ) in state St. We refer to the
chunking actions as a0 when chunking at the root, and we increase the index as we go
down the tree. The deepest chunking action we can take is ad(St )−1. For example, action
a2 in Figure 1 corresponds to grouping the last two stimuli together. The last action
ad(St ) corresponds to placing a boundary between the elements of St.

When a chunking action is selected, the resulting chunk becomes the first element
of St+1 and the next word is read. In this case, no reward is given.

Upon boundary placement, reinforcement is triggered. Whenever the first element
of St is a correct sentence, a positive reward of Rt+1 = r+ > 0 is given. Otherwise, a
negative reward of Rt+1 = r− < 0 is given. The next section describes how the rewards
are used to update state-action values and the policy of the agents. After reinforcement,
we considered two different ways of reinitializing the task:

Continuous. The second element of St becomes the first element of St+1 and the
next word is read to instantiate the second element.

Next sentence. The first element of St+1 is set to the first word of the next sentence
in the sequence of words, and the second element is the following word.

These types of reinitialization processes make the MDP episodic in the sense that the
process terminates upon boundary placement and restarts in a new state. Thus, each
attempt to identify a sentence constitutes a new episode. Note that we are mainly in-
terested in the Continuous condition, since this is the only condition where the two bor-
ders need to be identified. The Next sentence condition corresponds to a simpler task
where only the second boundary needs to be identified. We chose to study the Next
sentence condition as an intermediary condition between the Continuous condition and
the situation where the two borders are known, common in other grammar induc-
tion models.
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3.2 Learning Algorithms

During learning, an agent must choose between actions in order to increase its expected
reward. In this article, we use a variant of the Q-learning algorithm (Sutton and Barto
2018), in which state-action values are updated according to a temporal difference
algorithm. These state-action values can be considered as estimators of the expected
reward from that specific state and learning is driven by reducing the error in prediction.
In our case, states possess a hierarchic structure whenever d(St) > 1 and it is possible to
modify the standard Q-learning algorithm to take advantage of this structure.

3.2.1 State-action Values, Sub-states, and Sub-actions. In order to decide what to do in a
given state, an agent relies on the state-action value Q(s, a) of taking action a in state
s. However, the states we consider here have a hierarchic structure. If the right-depth
of a state d(st) > 1, then there are a number of associated sub-states and corresponding
actions. Consider again the state in Equation (1). Since this state has right-depth 3, it has
two associated sub-states, namely,

S1
t =

(

cakeeats
,

and

)
and S2

t =

(

cake
,

and

)

where we use an upper index to label these sub-states. The original state is labeled
0 or is left unlabeled. An action a0

i ∈ A0
t (S0

t ) associated with the state corresponds
to an action ak

i−k ∈ Ak
t (Sk

t ) associated with sub-state Sk
t whenever i− k ≥ 0. To specify

the learning mechanism, it is convenient to use the Heaviside step function H(x), de-
fined as

H(x) =

{
1 if x ≥ 0
0 otherwise

To take advantage of this structure, we define two composite versions of the state-
action values:

1. The average composite state-action value Q(s, ai) is defined as:

Q(s, ai) :=

∑d(s)−1
k=0 Q(sk, ak

i−k)H(i− k)
∑d(s)−1

k=0 H(i− k)
, i = 0, . . . , d(s)

2. The additive composite state-action value Q̃(s, ai) is defined as:

Q̃(s, ai) :=
d(s)−1∑

k=0

Q(sk, ak
i−k)H(i− k), i = 0, . . . , d(s)

The average composite state-action value Q(s, ai) averages the state-action values of
a state and its sub-states. The Heaviside function selects the actions that are valid for
the sub-states. This quantity will be used in decision-making. The additive composite
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state-action value Q̃(s, ai) computes the sum of state-action values from a state and its
associated sub-states. This quantity will be used in the learning mechanism to imple-
ment blocking in a similar way as Rescorla and Wagner (1972).

3.2.2 Updating State-Action Pairs. We are now in a position to explain how state-action
values are updated. We consider two alternative learning rules:

Q-learning. In this case, state-action values associated with states and sub-states
are updated independently. The updating rule is given by

Q(Sk
t , ak

i−k)← Q(Sk
t , ak

i−k) + α
[
RT −Q(Sk

t , ak
i−k)

]
H(i− k)

Rescorla-Wagner Q-learning. In this case, state-action values associated with
states and sub-states are considered elements of a composite stimulus. The
updating rule is given by

Q(Sk
t , ak

i−k)← Q(Sk
t , ak

i−k) + α
[
RT − Q̃(St, ai)

]
H(i− k)

In both cases, RT is the reward obtained upon boundary placement and α is a learning
parameter. The update is performed for all time steps t ∈ 0, . . . , T of the episode and for
all sub-states k ∈ 0, . . . , d(St). These temporal difference algorithms are driven by the
error in prediction of the reward RT. The Heaviside function is there to avoid updating
an action that does not exist in a given sub-state. The difference between Q-learning and
Rescorla-Wagner Q-learning is that in the first case, the state-action values are used as
predictors, whereas in the latter case, we use the additive composite state-action values.

State-action values are initialized by setting

Q(St, ai) =

{
qb if i = d(St),
qc otherwise

The parameters qb and qc encode the initial values of placing a border or choosing a
chunking behavior, respectively.

3.2.3 Using State-Action Pairs to Make Decisions. In order to choose actions in a given state,
St, we use a softmax policy. The softmax policy computes the probability of choosing a
given action using the rule

π(ai|St) = eβQ(St,ai )
∑d(St )+1

k=0 eβQ(St,ak )

where β is a parameter controlling the amount of exploration performed by the model.
Note that we use the average composite state-action values Q(ST, ai) as the support for
each action. We want to take advantage of the internal structure of the state and this is
the best way to avoid creating biases towards one specific behavior. We use the same
policy for the two possible learning rules mentioned above. Overall, the model has 6
parameters, summarized in Table 1. The values of these parameters have been chosen
to initially favor boundary placement (qb > qc) in order to avoid the model chunking
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Table 1
Parameters of the model.

Parameter Interpretation Value

α Learning rate 0.1
β Exploration parameter 1.0
r+ Positive reward 25
r− Negative reward −10
qb Initial value for border 1
qc Initial value for chunking −1

everything, which would inhibit learning. The values of the other parameters have been
chosen to obtain reasonable learning times. However, there is room for optimization.
Our aim is not to get the best possible performances, but rather to obtain a proof of
principle that our architecture works as intended.

3.3 Evaluation Methods

To evaluate the performance of the model, we need to assess whether it successfully
learns the input languages and, if so, how quickly. In addition, we are interested in what
grammatical information it extracts and to study the process of grammar induction. To
achieve these goals, we use learning curves to test the ability of the model to learn and
quantify its speed. Grammatical information is extracted directly from the state-action
values at different stages of the learning process and tested at the same time points.

3.3.1 Extracting Learning Curves. In order to get a learning curve, we simulate N agents
and record for each episode of the MDP whether the decision was correct or incorrect.
We then compute the fraction of agents being successful at each episode and plot the
fraction of correct responses as a function of the number of episodes of the MDP that
we refer to as trials. If all agents eventually learn the language perfectly, then the
fraction of correct responses should go to one.

In order to estimate the learning speed, we fit a logistic curve of the form

f (x) = 1
1 + e−k(x−x0 ) (2)

which has the two parameters k and x0. k is a measure of the stiffness of the logistic
curve and x0 corresponds to the parameter where the function value is 1

2 . We estimate
the learning time as 2x0, since at the beginning of the simulation the fraction of correct
responses is 0.

3.3.2 Testing the Performance of the Model. Since we are interested in how learning un-
folds, we need to test the performance of the model at various stages of the learning
process. To this end, we use a test sequence consisting of ntest sentences produced
with the same PCFG as the word sequences used for learning. Due to the small size
of the languages studied, and the lack of strong generalization, sentences in the test
sequence overlap with the sentences used in the training phase. We do not consider this
to be problematic, since the beginning and the end of these sentences must be correctly
identified for the system to perform well on the test sequence.
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To evaluate how learning unfolds, we pause learning at different times of the
learning process and record the performance of the model on the test sequence without
learning. The learning phase then continues until the next snapshot time is reached.
We measure the fraction of correct sentence identification and qualitatively discuss
the tree structures used by the model for these sentences. In particular, we discuss
the distribution of tree structures associated with a given sentence structure and the
changes of that distribution over time.

3.3.3 Extracting Grammatical Information. In our model, all grammatical information is
encoded in the state-action values of states and their associated sub-states, namely, in
the Q values and the Q values. In order to extract grammatical information, we need
to extract the most likely action to be taken in each state. This information is encoded
in the maximum value of Q. Furthermore, the states used by the model are lexicalized,
that is, individual words are not grouped into grammatical categories. However, we can
group states sharing the same structure according to the underlying PCFG to display
the results. As a proxy for the learned information, we choose a threshold 0 < tG < r+
and extract all state-action values greater than tG and report averages of Q and Q over
lexicalized states sharing the same structure. Displaying both Q and Q is informative be-
cause if Q > Q, then the larger structure controls the decision, whereas when Q < Q the
decision is controlled by sub-states. Of course, state-action with lower values also consti-
tute grammatical information, but a threshold is necessary to select data to display. For
each state (i.e., for each pair of chunks) we then have the most likely action to be taken
and its associated values. This representation of grammatical information does not con-
stitute a standard grammar, but is instructive for understanding how an agent learns.
The extracted grammatical information is then saved in an Microsoft Excel spreadsheet.
The code of this project as well as all Excel files used in this project are available online
in the GitHub repository: https://github.com/michaudj/LanguageLearner/.

Because one of the aims of this article is to provide a transparent model of language
acquisition, we use this technique of extracting grammatical information at various
stages of the learning process and save them as different sheets in an Excel file. This
allows us to look at how the grammatical information of an agent changes over time
and whether it converges to a systematic representation.

For more complex languages in which the number of relevant state-action values
is too high to be displayed, we will provide relevant examples and a more qualitative
discussion of the learned grammatical information.

4. Results

In this section, we present the results of our experiments on various artificial languages.
We start by considering a simple language consisting of nouns (N) and verbs (V) orga-
nized in sentences with the structure noun-verb-noun (NVN), and then move on to
consider more complex grammars. The NVN language is agnostic to the subject and ob-
ject status of the nouns and may thus represent sentences occurring in English as well
as many other languages. In the more complex grammars we use English as a model
language but focus on phenomena that are typical of many languages with diverse
typological profiles, like recursion and variable multi-word constituents.

4.1 A Baseline Case: NVN Languages

Our baseline case has been chosen to illustrate how the agent learns the language
and will be used to motivate the choice of learning algorithm used for more complex
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languages. We start by considering a simple NVN language. In this language, word
transitions are enough to identify sentences, which, among other things, allows for
testing whether the model is able to identify the most economic strategy of learning.

Our language is generated by PCFG G = (M, T ,R,S,P ), whereM is the set of non-
terminal symbols, T is the set of terminal symbols,R is the set of production rules, S is
the start symbol, and P is the set of probabilities on production rules.

4.1.1 Defining the Grammar. For our simple NVN grammar, we use

M = {S, N, V}
T = {n1, n2, . . . , nKn} ∪ {v1, v2, . . . , vKv}
S = S

where Kn is the total number of nouns and Kv is the total number of verbs. The produc-
tion rules are:

R =





S→ N, V, N

N→ n1| n2| n3| . . .
V → v1| v2| v3| . . .





(3)

and are equiprobable. This means that S always rewrites as N, V, N, and the nouns N
rewrite as ni, i ∈ [1, 2, . . . , Kn] uniformly at random, and similarly for the verbs.

4.1.2 Learning Curves. With this NVN language defined, we test the ability of our mod-
els to learn this language using the proposed task. We consider the four cases combin-
ing the definition of Sections 3.1.2 and 3.2.2:

QC. Q-learning with continuous border condition;

QN. Q-learning with next sentence border condition;

RWQC. Rescorla-Wagner Q-learning with continuous border condition;

RWQN. Rescorla-Wagner Q-learning with next sentence condition.

The obtained learning curves are displayed in Figure 2. We see that all variants of the
model successfully learn the language reaching a fraction of correct responses very close
to 1. Using the fit to the logistic curve in Equation (2), we estimated the learning times
of the four models in Table 2.

We observe that when the next sentence condition is used, learning is faster. This
is not surprising, since the task is easier because only one of the two boundaries of a
sentence has to be identified. With respect to learning times, there is very little difference
between Q-learning and Rescorla-Wagner Q-learning, which is expected since the two
learning algorithms are very similar. The main difference between these two algorithms
is the information used to drive error-correction, namely, whether blocking is used or
not. This will be examined below when we look at what is learned at different stages of
the learning process.
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Figure 2
Learning curves for the four combinations of sentence conditions QC, QN, RWQC, and RWQN.
The NVN language has Kn = Kv = 5. Fractions are obtained over 100 agents.

Table 2
Learning times of the four learning algorithms for a NVN language with Kn = Kv = 5.

Algorithm Learning time

QC 927
QN 402
RWQC 925
RWQN 388

4.1.3 Grammar Extraction and Acquisition Process. As we have seen above, the perfor-
mance of Q-learning and Rescorla-Wagner Q-learning are very similar in terms of
learning curve. The question addressed in this section is what type of grammatical
information is extracted and used by these two learning algorithms and whether the
sentence condition affects what is learned. To achieve this, we report the grammatical
information extracted in terms of the two elements of a state/sub-state, the action
with the highest state-action value and the corresponding average composite state-
action value. The results are shown in Tables 4 and 5 for the continuous border condi-
tion and are extracted from the two Excel spreadsheets QLearnerC2 revisedFinal.xlsx
and RWQLearnerC2 revisedFinal.xlsx available in the GitHub repository: https://
github.com/michaudj/LanguageLearner/. Snapshots are taken at the beginning of the
S-shaped learning curve, when learning fraction is close to 0.5, when learning is just
completed, and at two later points, when performances are very high. The columns
labeled # refer to the number of lexicalized states (s1, s2) matching the pattern. For
example, two states ([n2, v3], n4) and ([n1, v5], n2) have the same structure and consti-
tute two instances of the ([N, V], N) state. The results for the next sentence condition
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are similar and can be found in Excel spreadsheets QLearnerN2 revisedFinal.xlsx and
RWQLearnerN2 revisedFinal.xlsx in the GitHub repository.

Our results show that the Rescorla-Wagner algorithm is much more parsimonious
in the number of state-action values it relies upon. This is best seen by looking at the
number of instances of a given state-action pair reported in column “#” of Tables 4
and 5. While these numbers steadily increase in Q-learning, only some of them increase
in Rescorla-Wagner Q-learning and some of them even decrease after some time. For
example, in the last three rows of Table 5. This shows that the model learns more specific
information than the Q-learning algorithm. The same can be observed in the averaged
state-action values, where all actions reported an increase in value for the Q-learning
algorithm, while only some of them increase for Rescorla-Wagner Q-learning and some
even decrease after some point. In addition, the effect of blocking is clearly visible when
looking at the last three rows, since the value of the average composite state-action Q
does not decrease, showing that the sub-state are contributing more to the decision than
the state itself.

The results for Q-learning suggest that all state-action pairs will eventually reach
the maximum reinforcement value of 25 and the rule will not specify a preferable tree
structure over the sentence. For instance, both [N, [V, N]] and [[N, V], N] tree structure
will occur with significant probability. This grammatical output is not very informative.
In order to test this hypothesis, we conduct a performance test at the same snapshot
times as for the Q values reported in Tables 4 and 5 using a test sequence of length
ntest = 100. The results are reported in Table 3. We see that in the Rescorla-Wagner Q-
learning, the number of sentences with the tree structure [N, [V, N]] is larger than for
Q-learning. In addition, the next sentence condition produces a large bias towards that
same structure. This is likely due to the fact that this specific structure has a higher right-
depth and recruits information from more sub-states in the decision-making process.
As argued above, we are providing results for the next sentence condition mainly for
comparison, since we are interested in the full segmentation task. Together, these results
suggest that the Rescorla-Wagner version of the algorithm is a better choice.

Table 3
Test results at different stages of learning for the four models QC, QN, RWQC, and RWQN. The
test consists of ntest = 100 sentences. The number reported are the number of correctly identified
sentences in the test set associated with the corresponding tree structure. When the total number
does not add up to 100, it means that the other sentences were not correctly identified.

Snapshot times
Model Tree 300 600 900 2,000 4,000

QC [[N, V], N] 10 15 44 45 45
[N, [V, N]] 10 25 51 55 55

Total 20 40 95 100 100

QN [[N, V], N] 30 21 18 18 18
[N, [V, N]] 55 78 82 82 82

Total 85 99 100 100 100

RWQC [[N, V], N] 4 34 31 36 36
[N, [V, N]] 5 20 50 64 64

Total 9 54 81 100 100

RWQN [[N, V], N] 26 15 15 15 15
[N, [V, N]] 66 85 85 85 85

Total 92 100 100 100 100
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Table 4
Grammar extracted for a NVN language with Rn = Rv = 5 by the Q-learning algorithm with continuous border. Snapshots are taken after 300, 600,
900, 2,000, and 4,000 trials and a threshold of tG = 5. Columns labeled “Q/Qi” report averaged values of Q((s1, s2), aj) and Q((s1, s2), aj) over the
number of relevant instances (reported in the # columns) after i trials. There are two values whenever Q 6= Q. The total number column reports the
maximum number of lexicalized states matching the pattern.

s1 s2 action Q/Q300 # Q/Q600 # Q/Q900 # Q/Q2000 # Q/Q4000 # Total

N N a1 (border) 6.76 1 6.18 4 10.90 21 24.78 25 25.00 25 25

N V a0 (chunk) 7.94 1 6.59 5 10.13 22 24.77 25 25.00 25 25

V N a0 (chunk) 6.81 1 7.05 2 11.22 7 22.89 17 24.58 18 25

[N, V] N a0 (chunk at root) — — 8.03 1 6.99 17 16.36 55 23.26 53 125

[N, V] N a1 (chunk deep) 7.94/7.38 1 7.69/6.32 3 6.99/8.62 17 14.80/19.27 69 22.90/23.89 72 125

[V, N] N a2 (border) — — 6.40/5.04 6 7.08/9.71 20 13.87/19.32 81 20.90/22.95 88 125

[[N, V], N] N a2 (border) — — 5.56/1.81 1 6.01/9.38 13 7.44/16.12 186 11.08/18.04 267 625

[N, [V, N]] N a3 (border) — — 5.56/5.45 6 5.77/8.61 18 7.10/15.83 197 10.96/19.41 344 625
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Table 5
Grammar extracted for an NVN language with Rn = Rv = 5 by the RW Q-learning algorithm with continuous border. Snapshots are taken after 300,
600, 900, 2,000, and 4,000 trials and a threshold of tG = 5. Columns labeled “Q/Qi” report averaged values of Q((s1, s2), aj) and Q((s1, s2), aj) over the
number of relevant instances (reported in the # columns) after i trials. There are two values whenever Q 6= Q. The total number column reports the
maximum number of lexicalized states matching the pattern.

s1 s2 action Q/Q300 # Q/Q600 # Q/Q900 # Q/Q2000 # Q/Q4000 # Total

N N a1 (border) — — 7.16 3 12.66 23 19.72 25 20.47 25 25

N V a0 (chunk) — — 7.11 4 13.97 24 24.81 25 25.00 25 25

V N a0 (chunk) — — 6.98 3 12.13 16 19.98 19 20.23 19 25

[N, V] N a0 (chunk at root) — — 6.05 3 6.80 18 14.84 43 21.97 43 125

[N, V] N a1 (chunk deep) 5.59/3.57 1 7.36/6.32 2 6.28/9.74 19 6.18/12.94 31 6.54/12.59 14 125

[V, N] N a2 (border) — — 5.96/3.96 5 6.36/9.45 23 5.51/12.16 28 5.52/12.16 4 125

[[N, V], N] N a2 (border) — — 5.63/3.51 3 5.73/9.36 6 5.52/12.95 11 5.31/12.91 9 625

[N, [V, N]] N a3 (border) — — 5.73/4.02 5 5.81/8.25 8 5.70/9.84 5 5.14/10.02 2 625
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The results for Rescorla-Wagner Q-learning suggest that if learning continues only
4 state-action pairs are relevant for the decision-making process:

1. Place border between N and N;

2. Chunk together N and V;

3. Chunk together V and N;

4. When [N, V] is followed by N, chunk at the root in 43/125 cases, yielding
[[N, V], N] and chunking deep otherwise, yielding [N, [V, N]], in good
agreement with the test performances provided in Table 3.

This means that all information about sentence boundary placement is encoded in
the N −N transitions and rules 2, 3, and 4 control the emergent tree structures. This
model seems much more informative about the learning process and is, in some sense,
minimalist with regard to the information it extracts. Therefore, we choose Rescorla-
Wagner Q-learning for the analysis of more complex sentence structures.

4.2 Towards Natural Language Input

In this section, we explore how the Rescorla-Wagner Q-learning algorithm with contin-
uous border condition performs on more complex grammars. We consider a number of
different grammars. First, we consider a grammar that has both mono- and ditransitive
verbs to explore the model’s behavior and performance when introducing a minimal
change that makes N −N transitions unreliable predictors of sentence transitions. We
then increase the complexity of the grammars by either introducing relative clauses or
a number of other adnominal elements. Relative clauses allow for including recursive
repetition of structures within a sentence, a very common feature of the world’s lan-
guages. Complexifying the noun phrase allows for studying how the models behave
when exposed to variable structures within a recurring constituent.

For the two latter more complex languages, the grammatical information extracted
will often be too big to analyze in a table as we have done for the NVN language.
Instead, we study the learning curve and break it down by sentence length to get
some insight into which sentences are learned first. This analysis is complemented by
performance tests. We then examine some examples of tree structures to show some
systematic reuse of identified structures.

4.2.1 Mono- and Ditransitive Verb. We first consider a grammar with both monotransitive
verbs (MV), that are always followed by one noun, and ditransitive verbs (DV), that are
always followed by two nouns. The grammar is defined as follows:

M = {S, N, MV, DV},
T = {n1, n2, . . . , nKn} ∪ {mv1, mv2, . . . , mvKm} ∪ {dv1, dv2, . . . , dvKd

},
S = S,
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where, Kn is the total number of nouns, Km is the total number of monotransitive
verbs, and Kd is the total number of ditransitive verbs. The production rules are

R =





S→ N, MV, N| N, DV, N, N

N→ n1| n2| n3| . . .
MV → mv1| mv2| mv3| . . .
DV → dv1| dv2| dv3| . . .





(4)

and are equiprobable. This means that S always rewrites as N, MV, N in 50% of the cases
and as N, DV, N, N otherwise. The different word classes rewrites uniformly as in the
NVN language above. We refer to this language as the MD language.

Here, we report results for a MD language with Kn = 5, and Km = Kd = 1. We
simulate the learning using the Rescorla-Wagner Q-learning with continuous border
condition.

Figure 3 reports the learning curve for this language. The first panel displays the
standard learning curve and the second panel shows the learning curve for different
sentence lengths. Sentences of length 3 are monotransitive sentences and sentences of
length 4 are ditransitive sentences. As can be seen, even when N −N transitions are
not a reliable predictor of sentence boundaries, the learning algorithm still learns to
identify sentences. The second panel shows that monotransitive sentences are learned
first and that there is some interference between the mono- and ditransitive sentences.
At the beginning, monotransitive sentences are quickly learned, but the learning slows
down as the learner figures out how to deal with ditransitive sentences. After a tran-
sition period, both types of sentences are learned. In order to better understand how
the processing is done, we look at snapshots taken during the learning process. All
data is available online in the Excel spreadsheet RWQLearnerC MD revisedFinal.xlsx
stored in the GitHub repository: https://github.com/michaudj/LanguageLearner/.
The results are displayed in Table 6.

Figure 3
Left: Learning curve for the Rescorla-Wagner Q-learning with continuous border condition for
the MD language with Kn = 5, Km = Kd = 1. Fractions are obtained over 200 agents. Right:
breakdown of the learning curve by sentence length. Note that if at a given trial no learners
encounter a sentence of a given length, then it contributes to sentences of length 0, which are,
therefore, meaningless.
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Table 6
Grammar extracted for an MD language with Rn = 5, and Rm = Rd = 1 by the RW Q-learning algorithm with continuous border. Snapshots are taken
after 1,000, 1,500, 3,000, 6,000, and 25,000 trials and a threshold of tG = 10. Columns labeled “Q/Qi” report averaged values of Q((s1, s2), aj) and
Q((s1, s2), aj) over the number of relevant instances (reported in the # columns) after i trials. There are two values whenever Q 6= Q. The total number
column reports the maximum number of lexicalized states matching the pattern.

s1 s2 action Q/Q1000 # Q/Q1500 # Q/Q3000 # Q/Q6000 # Q/Q25000 # Total

N N a1 (border) — — — — 13.02 17 16.50 24 18.08 25 25

N MV a0 (chunk) — — 14.05 5 24.92 5 24.42 5 25.00 5 5

N DV a0 (chunk) — — — — 20.68 5 24.30 5 25.00 5 5

MV N a0 (chunk) — — 11.98 2 15.97 5 15.35 5 15.75 5 5

DV N a0 (chunk) — — — — 18.14 4 19.78 4 19.78 4 5

[N, MV] N a0 (chunk at root) — — 11.18 4 22.93 8 24.94 8 24.96 8 25

[N, MV] N a1 (chunk deep) — — 12.85/12.96 1 10.65/12.74 5 10.28/12.10 4 10.51/12.50 8 25

[N, DV] N a0 (chunk at root) — — — — 13.38 4 24.75 4 25.00 4 25

[N, DV] N a1 (chunk deep) — — — — — — 11.77/8.82 1 15.44/12.48 1 25

[MV, N] N a2 (border) 12.50/4.68 2 13.19/6.15 8 12.46/10.58 15 — — — — 25

[DV, N] N a0 (chunk at root) — — — — 17.69 11 20.37 15 19.38 17 25

[DV, N] N a1 (chunk deep) — — — — 13.05/9.60 4 13.65/10.59 6 14.02/10.41 6 25

[[N, MV], N] N a2 (border) — — 11.41/5.87 4 12.35/10.81 23 11.55/13.40 20 — — 125

[[N, DV], N] N a0 (chunk at root) — — — — 12.05 7 19.44 15 24.37 15 125

[[N, DV], N] N a1 (chunk deep) — — — — — — 12.83/10.17 3 15.01/12.48 3 125

[N, [DV, N]] N a0 (chunk at root) — — — — 12.56 2 19.69 11 24.44 13 125

[N, [DV, N]] N a1 (chunk deep) — — — — — — 10.32/11.67 1 12.33/12.50 3 125

[N, [DV, N]] N a2 (chunk deepest) — — — — — — 10.22/8.30 1 10.26/8.33 1 125
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The first two snapshots show that at this stage of learning, only information about
monotransitive verbs has been learned and decision making relies a lot on full sentences
(Q ≥ Q). However, from trial 3,000, the learner starts to rely more on shorter chunks
in the decision making process. At this point, the learner starts to have knowledge
about ditransitive verbs. At the next snapshot, learning is complete and we see that
now boundary placement essentially relies on N −N transitions as in the NVN case.
The ditransitive case is solved by using longer chunks containing ditransitive verbs
to inhibit border placement and favor a chunking action instead. But in both sentence
structures, border placement relies on N −N transitions. This is best seen in the last
snapshot where only the N −N transition supports border placements.

In order to see how the performance of the model evolves, we perform a perfor-
mance test at each of the snapshot times. The test set contains 100 sentences divided
into 52 monotransitive sentences and 48 ditransitive sentences. Results of these tests are
reported in Table 7. We observe that the tree structures of monotransitive sentences are
similar to those of the NVN language, with a bias towards the [N, [V, N]] structure. In
contrast, the ditransitive sentences do not have a uniform distribution of tree structures;
instead the structure [N, [[DV, N], N]] is overly represented and accounts for 48% of the
cases, while the structure [[N, DV], [N, N]] only occurs in 2% of the cases. This suggests
that the chunk [DV, N] is used to inhibit border placement and promotes chunking
instead, while allowing the final N to correctly predict border placement.

4.2.2 Adding Relative Clauses. The next sentence structure we analyze are relative clauses.
We add possible relative clauses to the MD grammar above, by letting some nouns be
followed by a relative pronoun (Rel), a monotransitive verb, and a noun. We choose to
only include monotransitive verbs in relative clauses to avoid a combinatorial explosion
in the output. The grammar is defined as follows:

M = {S, VP, Rel, N, MV, DV, R}
T = {n1, n2, . . . , nKn} ∪ {mv1, mv2, . . . , mvKm} ∪ {dv1, dv2, . . . , dvKd

} ∪ {r1, r2, . . . , rKr}
S = S

Table 7
Test results for the MD language. The test set contains 100 sentences divided into 52
monotransitive and 48 ditransitive sentences. The table reports the sentences that were correctly
identified at each snapshot and the tree structure associated with it. When the total number does
not add up to 100, it means that the other sentences were not correctly identified.

Snapshot times
Sentence Tree 1,000 1,500 3,000 6,000 25,000

N, MV, N [[N, MV], N] 12 17 22 23 23
[N, [MV, N]] 12 26 29 29 29
Total 24 43 51 52 52

N, DV, N, N

[[[N, DV], N], N] 4 6 8 9 9
[[N, [DV, N]], N] 1 2 8 7 7
[[N, DV]], [N, N]] 0 2 0 1 1
[N, [[DV, N], N]] 0 4 21 23 23
[N, [DV, [N, N]]] 0 2 9 8 8
Total 1 10 38 39 39
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where, Kn is the total number of nouns, Km is the total number of monotransitive verbs,
Kd is the total number of ditransitive verbs, and Kr is the number of relative pronouns.
The production rules are:

R =





S→ N, VP

VP→MV, N| DV, N, N|MV, N, Rel| DV, N, N, Rel

Rel→ R, MV, N

N→ n1| n2| n3| . . .
MV → mv1| mv2| mv3| . . .
DV → dv1| dv2| dv3| . . .

R→ r1| r2| r3| . . .





(5)

and the probabilities of the different production rules for the verb phrase VP are set
to 0.3 for production rules without relative clause and to 0.2 for production rules with
relative clause; that is, N, MV, N occur 30% of the time, N, DV, N, N occur 30% of the
time, N, MV, N, R, MV, N occur 20% of the time, and N, DV, N, N, R, MV, N occur 20%
of the time. Other production rules are equiprobable. We refer to this language as the
RelClause language.

Here, we report results for a RelClause language with Rn = 5, Rm = Rd = Rr = 1.
Once again, learning is done using the Rescorla-Wagner Q-learning algorithm with
continuous border condition. The learning curves are displayed in Figure 4. Once again,

Figure 4
Left: Learning curve for the Rescorla-Wagner Q-learning with continuous border condition for
the relative clause language with Kn = 5, Km = Kd = Kr = 1. Fractions are obtained over 100
agents. Right: breakdown of the learning curve by sentence length. Note that if at a given trial no
learners encounter a sentence of a given length, then it contributes to sentences of length 0,
which are, therefore, meaningless. Since only a fraction of learners encounter a sentence of the
same length, explaining the layering structure of the breakdown plot.
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we see that the model learns this language without problems. Interestingly, we observe
a U-shaped curve at the beginning of the learning process and we can clearly see that the
learning process is irregular and shows a staircase pattern with a plateau around trial
15,000. The breakdown into sentence lengths is showing that at first short sentences
are learned well, but then performances decrease while the system learns to deal with
ditransitive structures and relative clauses. After some delay all longer sentences get
learned without significant delays, pointing out the generalization process over the end
of sentences, for instance, 75% of the sentences end with MV, N, making [MV, N]−N
transitions a good predictor of sentence boundaries.

We now take a closer look at the development of the grammatical information
of a single learner by extracting snapshots of its state-action values. Selected results
are displayed in Table 8. Not all constructions are displayed due to their high num-
ber. The display is limited to s1 constructions of a maximum length of 3 to avoid a
combinatorial explosion in the table. The display is also limited to constructions that
are relatively frequent or that reach relatively high Q-values, but not necessarily high
Q values. The threshold of the Q-values of the displayed structure is set to tG = 4,
lower than previous thresholds, in order to capture what is going on in the initial U-
curve. Full data on all the state-action values above for this learner are available in the
Excel file RWQLearnerC rel revisedFinal.xlsx available online in the GitHub repository
https://github.com/michaudj/LanguageLearner/.

In the snapshots, we first explore the initial U-shaped curve using both the Q and
Q values and performance tests. From the performance test, we see that monotransitive
sentences have the structure [[N, MV], N] and Table 8 suggests that this identification
relies on the full structure, since only the border placement with that structure has a
weight about the threshold. Note that Q > Q, which suggests that the decision is not
based on sub-states. The performance test shows that at this stage some ditransitive
sentences are recognized, but without a preferred tree structure. Soon, at 1,000 trials,
the model performances deteriorate and the number of sentences correctly identified
drops to nearly 0. In Table 8, we observe that the model still relies on full structures for
decision-making, but the weights are lower than in the first snapshot. Such a decrease
in performances can be explained by the presence of ditransitive sentences in which
the N −N transition is not a good predictor of sentence boundaries. After 7,000 trials
the U-curve has turned and the model learns that monotransitive sentences should be
analyzed [N, [MV, N]] as shown in Table 9 and the [MV, N]−N transition becomes a bet-
ter boundary predictor. Table 8 also contains more information about ditransitives, but
the learner still doesn’t know how to process relative clauses. The performances then
steadily increase until the learner is proficient. In the specific learner analyzed in detail
here, a high proficiency level is only reached at the last snapshot. This is illustrated by
the much higher performance on the test set and the much more systematic structures
used by the model.

Between trial 15,000 and trial 50,000, the model learns to identify the relative
constructions and starts relying on the shorter transitions to a higher degree. This is
shown by the better nearly perfect performances of the model and by the Q-values
displayed in Table 8. Note that now the Q values tend to be higher than the Q values,
showing that the model now relies on shorter structures to make decisions. Note that
the border is now mainly predicted by three sub-states: N −N transitions, [MV, N]−N
transitions, and [N, N]−N transitions. The last two are being used to differentiate
between ditransitive sentences and other sentences.
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Table 8
Grammar extracted for a RelClause language with Rn = 5, and Rm = Rd = Rr = 1 by the RW Q-learning algorithm with continuous border. Snapshots
are taken after 400, 1,000, 7,000, 15,000, and 50,000 trials, and a threshold of tG = 4. Columns labeled “Q/Qi” report averaged values of Q((s1, s2), aj)
and Q((s1, s2), aj) over the number of relevant instances (reported in the # columns) after i trials. The total number column reports the maximum
number
of lexicalized states matching the pattern.

s1 s2 action Q/Q400 # Q/Q1000 # Q/Q7000 # Q/Q15000 # Q/Q50000 # Total
N N a1 (border) — — — — — — — — 13.44 25 25
N MV a0 (chunk) — — — — — — — — 21.96 5 5
N DV a0 (chunk) — — — — — — — — 24.97 5 5
N R a0 (chunk) — — — — — — — — 14.95 4 5
MV N a0 (chunk) — — — — — — — — 21.56 5 5
DV N a0 (chunk) — — — — — — — — 15.51 5 5
R MV a0 (chunk) — — — — — — — — 23.25 1 1
[N, MV] N a0 (chunk at root) — — — — — — 4.68 1 25.00 1 25
[N, MV] N a1 (chunk deep) — — — — 7.28/−0.27 5 10.07/0.00 24 4.36/12.35 7 25
[N, DV] N a1 (chunk deep) — — — — — — 5.12/−2.11 4 9.47/12.49 25 25
[N, N] N a2 (border) — — — — 5.37/−1.05 2 5.65/−2.68 8 5.16/9.05 69 125
[R, MV] N a1 (chunk deep) — — — — — — — — 4.56/13.00 3 5
[MV, N] N a2 (border) — — — — 7.70/−0.79 5 8.28/−1.20 24 7.32/10.38 25 25
[MV, N] R a0 (chunk at root) — — — — — — — — 19.72 2 5
[MV, N] R a1 (chunk deep) — — — — — — — — 7.76/11.33 3 5
[DV, N] N a0 (chunk at root) — — — — — — — — 19.77 7 25
[DV, N] N a0 (chunk deep) — — — — — — 5.21/−1.13 3 18.87/10.43 18 25
[[N, MV], N] N a2 (border) 5.34/0.90 1 4.30/−0.76 5 5.71/0.41 24 9.12/0.22 16 7.86/10.82 17 125
[N, [MV, N]] N a3 (border) — — 4.22/0.63 1 5.88/−1.16 11 9.11/2.14 98 4.38/8.42 99 125
[N, [MV, N]] R a1 (chunk deep) — — — — — — — — 5.24/12.48 10 25
[N, [MV, N]] R a2 (chunk deepest) — — — — — — 5.32/−1.45 1 — — 125
[N, [DV, N]] N a1 (chunk deep) — — — — — — 4.49/1.12 1 5.22/12.51 29 125
[N, [DV, N]] N a2 (chunk deepest) — — — — — — 5.36/0.40 5 4.80/8.53 53 125
[MV, [N, R]] MV a1 (chunk deep) — — — — — — — — 6.76/11.89 2 5
[[DV, N], N] N a3 (border) — — — — 4.24/−2.13 1 5.00/−1.21 3 9.06/11.18 37 125
[[DV, N], N] R a1 (chunk deep) — — — — — — — — 8.40/11.66 6 25
[DV, [N, N]] N a3 (border) — — — — — — 5.56/−0.15 12 5.27/7.77 86 125
[DV, [N, N]] R a2 (chunk deepest) — — — — — — — — 5.10/7.93 5 25
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Table 9
Test results for the RelClause language. The test set contains 200 sentences. The table reports the
sentences that were correctly identified at each snapshot and the tree structure associated with it.
When the total number does not add up to 200, it means that the other sentences were not
correctly identified.

Snapshot times
Sentence Tree 400 1,000 7,000 15,000 50,000

N, MV, N
[[N, MV], N] 4 1 0 0 1
[N, [MV, N]] 0 0 4 10 67

N, DV, N, N

[[[N, DV], N], N] 2 0 0 0 0
[[N, [DV, N]], N] 1 0 0 0 1
[[N, DV]], [N, N]] 2 1 0 0 0
[N, [[DV, N], N]] 1 0 1 1 16
[N, [DV, [N, N]]] 0 0 0 1 46

N, MV, N, R, MV, N

[[[[[N, MV], N], R], MV], N] 3 0 0 0 0
[[[[N, [MV, N]], R], MV], N] 0 1 0 0 0
[[N, [[MV, N], R]], [MV, N]] 0 0 0 0 1
[[N, MV], [[N, R], [MV, N]]] 0 0 0 0 2
[[N, [MV, [N, R]]], [MV, N]] 0 0 0 0 1
[N, [[MV, [N, R]], [MV, N]]] 0 0 0 0 10
[N, [[MV, N], [R, [MV, N]]]] 0 0 0 0 4
[N, [MV, [[N, R], [MV, N]]]] 0 0 0 0 9
[N, [[[MV, N], R], [MV, N]]] 0 0 0 0 5
[N, [MV, [[[N, R], MV], N]]] 0 0 0 0 2

N, DV, N, N, R, MV, N

[[[[N, [[DV, N], N]], R], MV], N] 0 0 0 1 0
[[[N, [DV, [N, N]]], R], [MV, N]] 0 0 0 0 1
[[N, [DV, [N, N]]], [R, [MV, N]]] 0 0 0 0 6
[[N, [DV, [N, [N, R]]]], [MV, N]] 0 0 0 0 1
[N, [[DV, [N, N]], [R, [MV, N]]]] 0 0 0 0 5
[N, [[DV, [N, [N, R]]], [MV, N]]] 0 0 0 0 2
[N, [[[DV, N], [N, [R, MV]]], N]] 0 0 0 0 1
[N, [DV, [[N, [N, R]], [MV, N]]]] 0 0 0 0 5
[N, [[[DV, N], [N, R]], [MV, N]]] 0 0 0 0 2
[N, [[DV, N], [[N, [R, MV]], N]]] 0 0 0 0 1
[N, [[DV, N], [N, [R, [MV, N]]]]] 0 0 0 0 2
[N, [[DV, N], [[N, R], [MV, N]]]] 0 0 0 0 1
[N, [[[DV, N], N], [R, [MV, N]]]] 0 0 0 0 2
[N, [[DV, [N, [[N, R], MV]]], N]] 0 0 0 0 1
[N, [DV, [N, [[N, R], [MV, N]]]]] 0 0 0 0 1
[N, [DV, [N, [N, [R, [MV, N]]]]]] 0 0 0 0 1
Total 13 3 5 13 197

At the end of the learning process, we observe that tree structures for different
sentences share many properties. Almost all monotransitives are analyzed [N, [MV, N]],
most of the ditransitives are analyzed [N, [DV, [N, N]]], and almost all relative clauses
end with a [MV, N] chunk. As stated in Section 3.1.2, a sentence of length n has Cn−1
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possible binary tree structures. For sentences of length 3, 4, 6, and 7, we get C2 = 2,
C3 = 5, C5 = 14, and C6 = 42, tree structures, respectively. Counting only structures
with more than 1 instance in the last column of Table 9, we find that monotransitive
sentences are associated with 1 tree structure, ditransitive sentences with 2 out of 5
possible tree structures. For relative sentences, we get 6 out of 14 and 7 out of 42, respec-
tively. This illustrates the efficient reuse of recurring structures. The two most common
tree structures associated with relative clauses of length 6 are [N, [[MV, [N, R]], [MV, N]]]
and [N, [MV, [[N, R], [MV, N]]]], which only differ in one decision and lead to structures
that are equally efficient for the task. For sentences of length 7, the length of the
test set is likely too short to gather sufficient statistics, but we see that 3 structures
occur more often than the others. These structures are [[N, [DV, [N, N]]], [R, [MV, N]]],
[N, [[DV, [N, N]], [R, [MV, N]]]], and [N, [DV, [[N, [N, R]], [MV, N]]]], which all analyze the
ditransitive part in the same way and only differ in how the relative clause is integrated
into the structure. However, the final chunk [MV, N] used to predict sentence transitions
is preserved.

4.2.3 Complexifying NPs. In this section, instead of adding relative clauses to the noun
phrase (NP), we add and vary several shorter adnominal elements to see how the model
handles these more complex and variable NPs. We add determiners (D) and one or two
adjectives (A) before the noun, and prepositional phrases consisting of a preposition (P)
and a noun after the noun. The language we use is specified by:

M = {S, NP, VP, N, MV, DV, A, D, P},
T = {n1, n2, . . . , nKn} ∪ {mv1, mv2, . . . , mvKm} ∪ {dv1, dv2, . . . , dvKv} ∪ {a1, a2, . . . , aKr}
∪ {a1, a2, . . . , aKa} ∪ {d1, d2, . . . , dKd

} ∪ {p1, p2, . . . , pKp},

S = S,

where, Kn is the total number of nouns, Km is the total number of monotransitive verbs,
Kv is the total number of ditransitive verbs, Ka is the number of adjectives, Kd is the
number of determiners, and Kp is the number of prepositions. The production rules are

R =





S→ NP, VP

NP→ N| D, N| D, A, N| D, A, A, N| N, P, N

VP→MV, NP| DV, NP, NP

N→ n1| n2| n3| . . .
MV → mv1| mv2| mv3| . . .
DV → dv1| dv2| dv3| . . .

A→ a1| a2| a3| . . .
D→ d1| d2| d3| . . .
P→ p1| p2| p3| . . .





, (6)
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where all productions rules are equiprobable except for NPs which rewrite according to
the following probabilities:

• NP→ N: 0.25

• NP→ D, N: 0.25

• NP→ D, A, N: 0.1875

• NP→ D, A, A, N: 0.0625

• NP→ N, P, N: 0.25

This means that double adjectives are less common than single adjective NPs, and NP
with adjectives are as common as other NP production rules. We refer to this language
as a ComplexNP language.

Here, we report results for a ComplexNP language with Kn = Km = Kv = Ka =
Kd = Kp = 1. This language contains 150 different sentence structures, which is much
more than the 4 possibilities of the RelClause language above. This is why we restrict
the analysis to a smaller vocabulary. Figure 5 displays the learning curve for that
language. We again used the Rescorla-Wagner Q-learning algorithm with continuous
border condition. As we can see, the learner successfully learns this language but as
in the RelClause language, the learning curve does not follow a standard S-shaped
curve. The fit to the logistic is thus imperfect to capture the learning time. We chose
not to display the breakdown of the learning curve by sentence length because many
different sentence structures are of the same length, for example, compare the sentences
D, N, MV, N, to N, DV, N, N. Both have length 4, and there are other structures of length 4,
such as N, MV, D, N. This ambiguity is even stronger for longer sentences, which justifies
only displaying the overall learning curve.

Figure 5
Learning curve for the Rescorla-Wagner Q-learning with continuous border condition for the
ComplexNP language with Kn = Km = Kv = Ka = Kd = Kp = 1. Fractions are obtained over 100
agents.
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Table 10
Sample of tree structures of sentences from the ComplexNP language. We report only the tree
structures of sentences starting by D, A, N, DV, D, A, N. The second column shows the possible
tree structures and the last column report frequencies between the 500,000 and the 1,000,000
trials.

Sentence Tree structure Frequency
D, A, N, DV, D, A, N, N [[D, A], [[N, [DV, [[D, A], N]]], N]] 0.62

[[D, A], [[N, [DV, [D, [A, N]]]], N]] 0.17
[[[D, A], [N, [[DV, D], [A, N]]]], N] 0.17
[[D, A], [N, [[DV, D], [[A, N], N]]]] 0.04

D, A, N, DV, D, A, N, D, N [[D, A], [N, [[[DV, [[D, A], N]], D], N]]] 0.55
[[[D, A], [N, [[DV, [D, [A, N]]], D]]], N] 0.16
[[D, A], [N, [[[DV, D], [A, N]], [D, N]]]] 0.10
[[D, A], [N, [[DV, [[D, A], N]], [D, N]]]] 0.06
[[D, A], [[N, [[[DV, D], [A, N]], D]], N]] 0.05
[[D, A], [N, [[DV, D], [[A, N], [D, N]]]]] 0.03
[[D, A], [[N, [DV, [[D, A], [N, D]]]], N]] 0.02
[[D, A], [N, [[[DV, D], [[A, N], D]], N]]] 0.02
[[D, A], [N, [[DV, [D, [[A, N], D]]], N]]] 0.01
[[D, A], [N, [[DV, D], [A, [[N, D], N]]]]] 0.01

D, A, N, DV, D, A, N, N, P, N [[D, A], [[N, [DV, [[D, A], N]]], [[N, P], N]]] 0.49
[[[D, A], [N, [[DV, D], [A, N]]]], [[N, P], N]] 0.18
[[D, A], [[N, [DV, [D, [A, N]]]], [[N, P], N]]] 0.15
[[D, A], [[[N, [DV, [[D, A], N]]], [N, P]], N]] 0.08
[[D, A], [[N, [DV, [[D, A], N]]], [N, [P, N]]]] 0.04
[[D, A], [[N, [[DV, D], [[A, N], N]]], [P, N]]] 0.03
[[D, A], [[N, [DV, [D, [A, N]]]], [N, [P, N]]]] 0.02
[[D, A], [N, [[DV, D], [[A, N], [[N, P], N]]]]] 0.01

D, A, N, DV, D, A, N, D, A, N [[D, A], [[N, [[[DV, [[D, A], N]], D], A]], N]] 0.56
[[D, A], [N, [[[[DV, [D, [A, N]]], D], A], N]]] 0.09
[[D, A], [N, [[[[DV, D], [A, N]], D], [A, N]]]] 0.09
[[D, A], [N, [[[DV, [D, [A, N]]], D], [A, N]]]] 0.07
[[D, A], [N, [[[DV, [[D, A], N]], [D, A]], N]]] 0.05
[[D, A], [N, [[[DV, D], [A, N]], [[D, A], N]]]] 0.05
[[D, A], [[N, [[DV, D], [[A, N], D]]], [A, N]]] 0.04
[[[D, A], [N, [DV, [[D, A], [N, D]]]]], [A, N]] 0.02
[[D, A], [N, [[DV, [[D, A], N]], [[D, A], N]]]] 0.01
[[D, A], [N, [[DV, [D, [A, N]]], [[D, A], N]]]] 0.01
[[D, A], [N, [[[DV, D], [A, N]], [D, [A, N]]]]] 0.01

D, A, N, DV, D, A, N, D, A, A, N [[D, A], [[N, [[[DV, [[D, A], N]], D], [A, A]]], N]] 0.45
[[D, A], [N, [[[DV, [D, [A, N]]], D], [[A, A], N]]]] 0.15
[[D, A], [N, [[[[DV, [[D, A], N]], D], A], [A, N]]]] 0.09
[[D, A], [[N, [[DV, [[D, A], N]], [[D, A], A]]], N]] 0.06
[[D, A], [N, [[[DV, D], [A, N]], [[[D, A], A], N]]]] 0.06
[[D, A], [N, [[[[DV, D], [A, N]], D], [[A, A], N]]]] 0.06
[[D, A], [[N, [[DV, D], [[A, N], D]]], [[A, A], N]]] 0.04
[[D, A], [N, [[[DV, [D, [A, N]]], D], [A, [A, N]]]]] 0.03
[[[D, A], [N, [DV, [[D, A], [N, D]]]]], [[A, A], N]] 0.02
[[D, A], [N, [[DV, [D, [A, N]]], [[D, A], [A, N]]]]] 0.01
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Figure 5 is characterized by an irregular learning curve, where short plateaus can
be seen. The learning curve displays a period of quick learning followed by a period
of slow learning. Why this pattern occurs is unclear, but to get an idea of how the
sentences are processed, we study one specific learner and record the sentences correctly
identified between trial 500,000 and trial 1,000,000, i.e., after learning is complete. This
provides an alternative way to test performances and is chosen for this language due
to the high number of possible sentences and corresponding tree structures. Sampling
the behavior after learning is complete provides better statistics how sentences are
actually analyzed. Due to the large number of possible sentences, we only study 5 sen-
tence structures, those starting with D, A, N, DV, D, A, N, that is, ditransitive sentences
in which the first two NPs rewrite as D, A, N. Data for these 5 sentences as well as
other structures is available in the Excel spreadsheet sentencesCompNP paper.xlsx in
the GitHub repository https://github.com/michaudj/LanguageLearner/. For these
five sentence structures, we report the frequency of each tree structure in Table 10.
Looking at the most frequent structures, we observe that they are very similar. Com-
pare the most likely structure for the first and third sentences in the table. The struc-
tures are [[D, A], [[N, [DV, [[D, A], N]]], N]] and [[D, A], [[N, [DV, [[D, A], N]]], [[N, P], N]]],
which only differ in the tree structure of the last NP where N is replaced by [[N, P], N].
Similar analysis holds for the three other sentences, which shows the high reuse of
extracted information.

Another thing we can discuss is the parsimony of the grammatical information
extracted. Although there are many different structures available in this table, the
number of possible tree structures is actually considerably larger. It is given by the
Catalan number Cn−1 = 1

n
(2(n−1)

n−1

)
for a sentence of length n. This means that for a

sentence of length 8 such as the first sentence of Table 10 there are C7 = 429 different
tree structures, which is much larger than the 4 listed above. The same argument holds
for longer sentences. We have about 10 tree structures for the other sentences, but the
Catalan number increases extremely rapidly. In fact, we have C8 = 1,430, C9 = 4,862,
C10 = 16,796, which means that the 10 tree structures for the last sentence are among
the 16,796 possibilities.

5. Discussion

Our results show that our model is able to identify and reuse chunks of information
that facilitates language learning in artificial languages exposing different degrees of
complexity. It thus accounts, in a simplified manner, for the emergence of grammar
during learning in a cognitive architecture with a short and flexible sequence memory
as its core feature. The results thus lend support to the sequence hypothesis, which
suggests that faithful sequence representation is a key to understanding the human
language capacity.

We also find support for the hypothesis that grammar is an emergent solution to
combinatorial challenges during language learning. For a simple language only contain-
ing the sentence structure noun-verb-noun, we see that the model is able to efficiently
avoid the combinatorial explosion that comes with recognizing each sentence individu-
ally by only relying on noun-noun transitions to identify sentence borders. In a slightly
extended language with both mono- and ditransitive verbs, containing the sentence
structures noun-verb-noun and noun-verb-noun-noun, the noun-noun transition is no
longer a reliable cue to sentence borders. The model then learns to use the information
in the ditransitive verbs to avoid border placement between the nouns following them,
and keeps the noun-noun transition as support for border placement in all other cases.
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The model is also able to learn languages with extended complexity, including relative
clauses and noun phrases with determiners, adjectives, and prepositional phrases. In
these languages, that include common features of natural languages, we see how the
model gradually learns to identify and reuse sequences of words that often occur
together, like verbs and following nouns, or elements of noun phrases, thus reproducing
empirical observations of natural language acquisition, where structures are initially
acquired by learning frequency-based multi-word sequential chunks (Tomasello 2005;
Tomasello, Kuhn, and Siegler 2008; Bybee 2002b; Arnon and Clark 2011).

The reuse of information depends on, and results in, high parsimony in the emer-
gent tree-structures, where only a tiny fraction of all the possible tree structures actually
occur. Emergent tree structures and their contained chunks seem to be optimized for
the given task of sentence identification. Relying purely on transitions between words
is the most economic strategy, and this strategy is also preferred by the model when
word transitions contain enough information to identify sentences. When transitions
are not sufficient, instead of using the all information in the full sentence strings, the
model finds shorter chunks that contain enough information to make correct decisions.
In a previous pilot study of this model, we show that flexible chunking that allows
for all possible tree structures makes learning more efficient than a linear version of the
model, which always considers the complete string it has been exposed to since its latest
border placement (Jon-And and Michaud 2020). Our model thus chooses tree structures
that promote compromises between economy and information, a trade-off that has been
demonstrated as significant for the emergence of linguistic structure in studies of other
aspects of language evolution (Kirby et al. 2015).

Studying learning curves and snapshots from our models’ acquisition of different
languages also shows that shorter sentences are acquired earlier than longer sentences,
similarly to natural language acquisition (Hoff and Shatz 2009). Furthermore, in a
language with relative clauses we see an interesting development where the model
initially learns to rely on some frequent noun-verb and noun-noun transitions for
identifying sentences, and then over-uses this knowledge before it has identified longer
less frequent constructions or the transition to relative clauses. In order to learn to iden-
tify longer sentences, the model needs to unlearn these efficient strategies and passes
through a period of very low performance before reaching a higher proficiency, where
it is able to adapt strategies to different sentence structures. The model thus reproduces
a U-shaped curve that can be compared to those resulting from over-regularization that
typically occur in early phases of language acquisition (Bowerman 1982; Plunkett and
Marchman 2020; Marcus et al. 1992; Ramscar, Dye, and McCauley 2013).

Another interesting result concerns the use of the blocking mechanism inspired by
the Rescorla-Wagner model when learning to respond to a hierarchical structure. It is
well observed that when animals learn to respond to compound stimuli containing one
known element that is sufficient for making a good decision, they do not update any
stimulus-response associations for the other elements in the compound, thus blocking
unnecessary learning about new stimuli (Rescorla and Wagner 1972). Here we apply the
same principle when our model is exposed to a hierarchical structure in which one state
can contain many dependent sub-states, with possibilities to recruit information from all
levels. A state with one or more sub-states can be compared to a compound stimulus. We
tested the model without blocking, i.e., reinforcing the state-action values for all levels
in the hierarchy separately and with blocking, where all levels are reinforced jointly.
We found that blocking leads to a more parsimonious grammar and seems to be a more
efficient strategy for extracting relevant information from linguistic input, since the more
informative levels are allowed to block the reinforcement of less informative levels.
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Our cognitive architecture uses the framework of Markov Decision Processes. This
framework can be related to memory systems and other cognitive theories. We can
interpret the state-action values as representing the long-term memory of the learners.
Information about action selection during an episode of the MDP (Sutton and Barto
2018) constitutes the short-term memory. States, sub-states, and the selected actions are
stored and manipulated during the processing of a sentence and this information is
used for decision-making and reinforcement. This processing system resembles what
Baddeley et al. call the Central Executive in their model of the working memory
(Baddeley, Eysenck, and Anderson 2015). Furthermore, the limited access to infor-
mation in the working memory is compatible with the chunk-and-pass principle of
Christiansen and Chater (2016b) and mirrors the memory limitations discussed in
Cowan (2001) and Miller (1956). All these aspects of our model stress its cognitive
plausibility and highlight its minimalist nature.

The architecture we present and its learning conditions differ from those of other
grammar induction models in some aspects. Our model is simple and transparent,
lacks assumptions on pre-defined categories, and uses cognitively plausible localized
decision-making and learning. Learning is based purely on incremental exposure to
a raw unsegmented stream of words, where sentence borders are used as cues for
reinforcement. The model succeeds in identifying sentences and finds parsimonious
tree structures to support this task, which may serve as a basis for more extensive gen-
eralizations. This indicates that the more elaborate predispositions or more extensive
data processing involved in other models may not be necessary for grammar induction.
Moreover, our model provides a starting point for operationalization of usage-based
language learning (Bybee 2006; Ellis, O’Donnell, and Römer 2015; Tomasello 2003),
and the results indicate that the architecture and task offers a promising direction for
developing models that can provide a more complete insight into how humans induce
grammar from data.

Our minimal temporal difference model is also different from connectionist models,
including LLMs, as it aims for maximal simplicity. This makes results easier to trace and
interpret, and it also enables us to make as few assumptions as possible and see how
far they can take us in understanding the human language learning process. Our results
indicate that limiting working memory and training data may be cues to understanding
human language learning, as our model learns to find the shortest and most informative
chunks as a strategy to overcome these constraints. Our results also indicate that a
limited sequence memory combined with flexible chunking are central components for
learning language.

The model we explore is limited by the lack of generalization and abstraction,
preventing it from scaling to larger languages. We see that learning times increase when
increasing the size of the vocabulary or the complexity of the artificial languages. While
our results provide an initial proof of concept that the minimal cognitive architecture
we present is able to extract grammatical information, future studies should explore
generalization to generate abstract categories that would enable testing the model on
languages with larger vocabularies and eventually apply it to natural languages. Emer-
gent abstract categories would then be expected to resemble grammatical categories
like word classes or syntactic constituents. Error-correction models have previously
successfully accounted for the emergence of phones (Milin, Tucker, and Divjak 2023)
and the learning of regular and irregular morphological forms (Ramscar, Dye, and
McCauley 2013; MacWhinney et al. 1989) in a human-like manner from exposure to
limited parts of language that are relevant to these tasks. The modeling of the emergence
of syntactic categories is arguably a more challenging and more interesting problem, as
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it needs to involve tracing relationships between words and constituents at different
levels, and requires exposure to a somewhat complete language.

A generalization system in our model should generalize over the information that
the model uses, namely, information about sequences and chunks. A possible approach
to such generalization is the mathematical theory of type systems, being the simplest
mathematical framework for handling ordering, composition, and abstraction of things
(Heunen, Sadrzadeh, and Grefenstette 2013), thus incorporating the features sequence
memory, chunking, and schematizing. In generative linguistics, an application of this
framework is made in the theory of syntactic types (Lambek 1958). An advantage
of syntactic types in comparison to other grammatical formalisms is that a formula
encoding how a unit can be combined with other units is associated with each element,
which can be a word or a chunk. This allows for local support of decisions on whether
and how to chunk elements in incremental processing, and the learner does not need
to have access to an entire grammatical system at the moment of a decision, but only to
information that concerns the units that are being processed. This makes the framework
suitable for implementation in a reinforcement learning paradigm. In a pilot study, we
have modified the theory of syntactic types to be dynamic and compatible with usage-
based learning. In this novel framework, which we call an evolutionary type system, no
assumptions are made on primitives or types initially, other than that there are mean-
ingful units (sentences). The lack of predefined categories or tags, and the open-ended
dynamics of this system set it apart from other categorial-based formalisms (Steedman
and Baldridge 2011; Kogkalidis, Moortgat, and Moot 2020; Bisk and Hockenmaier
2012). The evolutionary type system allows the learner to make the simplest possible
generalization based on sequential order and chunking when a sentence is correctly
identified, which is that each element in the chunk can become a meaningful unit, if
combined with the preceding and/or following element(s) in this chunk. Initially the
system starts with a single primitive representing sentences and corresponding to the
start symbol of context free grammars. New primitives and types are then invented
when needed, replicated through type assignment and selected based on their useful-
ness for sentence segmentation. The innovation and selection processes positions this
system in the general category of evolutionary systems. Our pilot results show that
under these conditions, functional abstract categories can emerge for short sentences
(Jon-And and Michaud 2024), indicating that this is a promising framework for further
development.

Another limitation of our model is that it only considers syntax and not seman-
tics. This complicates the learning task since the meaning of words highly constrain
the possible parsing of a sentence. Form-meaning pairings are considered fundamen-
tal for usage-based learning and the compatible framework of construction grammar
(Langacker 2002; Goldberg 2007; Croft and Cruse 2004; Tomasello 2005). In LLMs, even
though words are not mapped onto real-world meanings, meaning is represented in
a distributional sense and is central to their performance (Piantasodi and Hill 2022;
Manning et al. 2020; Amaratunga 2023). This distributional, text-related sense of mean-
ing could be implemented in a minimalist model like ours and would likely be a key
for it to perform well on natural language corpora. A further possible future develop-
ment of our model would be to use the emergent grammar it abstracts for linguistic
production, and to let production and feedback to production be part of the learning
process. This would be an important step towards testing the model’s ability to account
for the complete language acquisition process. There are still quite a few steps that need
to be taken to achieve this, but our initial results motivate further development and
exploration of this minimal cognitive architecture.
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Manning, Sampo Pyysalo, Sebastian
Schuster, Francis Tyers, and Daniel Zeman.
2020. Universal dependencies v2: An
evergrowing multilingual treebank
collection. arXiv preprint arXiv:2004
.10643.

Nowak, Martin A., Natalia L. Komarova, and
Partha Niyogi. 2002. Computational and
evolutionary aspects of language. Nature,
417(6889):611–617. https://doi.org
/10.1038/nature00771, PubMed:
12050656

Pavlov, Ivan P. 1949. Conditioned responses.
Readings in General Psychology,
pages 249–267. https://doi.org/10
.1037/11352-036

Peters, Ann M. 2013. Language
segmentation: Operating principles for the
perception and analysis of language. In
The Crosslinguistic Study of Language
Acquisition. Psychology Press,
pages 1029–1067.

1412

https://doi.org/10.1017/9781108768450.023
https://doi.org/10.1017/9781108768450.023
https://doi.org/10.1098/rsos.180778
https://doi.org/10.1098/rsos.180778
https://pubmed.ncbi.nlm.nih.gov/30564390
https://doi.org/10.1371/journal.pone.0290546
https://doi.org/10.1371/journal.pone.0290546
https://pubmed.ncbi.nlm.nih.gov/37672549
https://doi.org/10.3758/BF03197977
https://doi.org/10.3758/BF03197977
https://doi.org/10.1016/0749-596X(89)90033-8
https://doi.org/10.1016/0749-596X(89)90033-8
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117
https://pubmed.ncbi.nlm.nih.gov/32493748
https://doi.org/10.2307/1166115
https://doi.org/10.2307/1166115
https://pubmed.ncbi.nlm.nih.gov/1518508
https://doi.org/10.1037/rev0000126
https://doi.org/10.1037/rev0000126
https://pubmed.ncbi.nlm.nih.gov/30604987
https://doi.org/10.1016/j.tics.2010.06.002
https://doi.org/10.1016/j.tics.2010.06.002
https://pubmed.ncbi.nlm.nih.gov/20598626
https://doi.org/10.1163/22105832-00901003
https://doi.org/10.1163/22105832-00901003
https://doi.org/10.1017/langcog.2023.11
https://doi.org/10.1017/langcog.2023.11
https://doi.org/10.1017/langcog.2023.11
https://doi.org/10.1037/h0043158
https://doi.org/10.1037/h0043158
https://pubmed.ncbi.nlm.nih.gov/13310704
https://doi.org/10.1017/S1351324920000327
https://doi.org/10.1017/S1351324920000327
https://doi.org/10.1038/nature00771
https://doi.org/10.1038/nature00771
https://pubmed.ncbi.nlm.nih.gov/12050656
https://doi.org/10.1037/11352-036
https://doi.org/10.1037/11352-036


Jon-And and Michaud Usage-based Grammar Induction from Minimal Principles

Piantadosi, S. T. 2023. Modern language
models refute Chomsky’s approach to
language. Lingbuzz Preprint, lingbuzz, 7180.

Piantadosi, Steven T., Joshua B. Tenenbaum,
and Noah D. Goodman. 2016. The logical
primitives of thought: Empirical
foundations for compositional cognitive
models. Psychological Review,
123(4):392–424. https://doi.org
/10.1037/a0039980, PubMed: 27077241

Piantasodi, Steven T. and Felix Hill. 2022.
Meaning without reference in large
language models. arXiv preprint
arXiv:2208.02957.

Pinker, Steven and Ray Jackendoff. 2005. The
faculty of language: What’s special about
it? Cognition, 95(2):201–236. https://
doi.org/10.1016/j.cognition.2004
.08.004, PubMed: 15694646

Planton, Samuel, Timo van Kerkoerle, Leı̈la
Abbih, Maxime Maheu, Florent Meyniel,
Mariano Sigman, Liping Wang, Santiago
Figueira, Sergio Romano, and Stanislas
Dehaene. 2021. A theory of memory for
binary sequences: Evidence for a mental
compression algorithm in humans. PLoS
Computational Biology, 17(1):e1008598.
https://doi.org/10.1371/journal
.pcbi.1008598, PubMed: 33465081

Plunkett, Kim and Virginia Marchman. 2020.
U-shaped learning and frequency effects in
a multilayered perceptron: Implications for
child language acquisition. In R. Ellis &
G. W. Humphreys, editors, Connectionist
Psychology: A Textbook with Readings.
Psychology Press, pages 487–526. https://
doi.org/10.4324/9781315784779-15

Post, Matt and Daniel Gildea. 2013. Bayesian
tree substitution grammars as a
usage-based approach. Language and
Speech, 56(3):291–308. https://doi.org
/10.1177/0023830913484901, PubMed:
24416958

Ramscar, Michael, Melody Dye, and Stewart
M. McCauley. 2013. Error and expectation
in language learning: The curious absence
of “mouses” in adult speech. Language,
pages 760–793. https://doi.org/10
.1353/lan.2013.0068
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