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Pseudowords such as “knackets” or “spechy”—letter strings that are consistent with the ortho-
tactical rules of a language but do not appear in its lexicon—are traditionally considered to be
meaningless, and used as such in empirical studies. However, recent studies that show specific
semantic patterns associated with these words as well as semantic effects on human pseudoword
processing have cast doubt on this view. While these studies suggest that pseudowords have
meanings, they provide only extremely limited insight as to whether humans are able to ascribe
explicit and declarative semantic content to unfamiliar word forms. In the present study, we
utilized an exploratory-confirmatory study design to examine this question. In a first exploratory
study, we started from a pre-existing dataset of words and pseudowords alongside human-
generated definitions for these items. Using 18 different language models, we showed that the
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definitions actually produced for (pseudo)words were closer to their respective (pseudo)words
than the definitions for the other items. Based on these initial results, we conducted a second,
pre-registered, high-powered confirmatory study collecting a new, controlled set of (pseudo)word
interpretations. This second study confirmed the results of the first one. Taken together, these
findings support the idea that meaning construction is supported by a flexible form-to-meaning
mapping system based on statistical regularities in the language environment that can accom-
modate novel lexical entries as soon as they are encountered.

1. Introduction

1.1 Pseudowords and Their Meanings

Imagine receiving a text from a friend asking, “Did you feed the cat?”. You could easily
understand the meaning of what they are asking for. Now imagine this text: “Did you
feed the quocky?”. You would have more trouble understanding what a quocky is, but
you could probably still be able to rely on some contextual information; it might be a
slang word that your friend uses to name cats or other animals. Now imagine that you
are walking and you hear someone saying: “quocky!”. Again, you might have no real
idea what a quocky is, but you could rely on the tone of the voice (and other non-verbal
sources of information) to try to grasp its meaning. Finally, imagine reading on a sign
by the street with the word “quocky” shown in isolation, without any external sources
of information. Would you still be able to intuitively understand its meaning?

This empirical question is particularly intriguing as, on the one hand, it allows us
to investigate and understand how speakers deal with novel (verbal) information, and
on the other hand, it fits within the fervent debate regarding the relationship between
word form and meaning (Dingemanse et al. 2015; Haslett and Cai 2023). Previous
studies have investigated this topic by using verbal stimuli labeled “novel words” or
“pseudowords.” Briefly, these labels are generally used to refer to strings of letters that
are consistent with the orthotactical rules of a given language, but do not appear in the
language (e.g., “boppies,” “knoddled,” or “quocky”), and thus can be safely assumed
to not be known to a given speaker.1

Contrary to the naïve perspective that these out-of-vocabulary stimuli are com-
pletely meaningless, recent behavioral studies have shown (by demonstrating that
well-established semantic effects in word processing literature are also found for pseu-
doword targets) that pseudowords can be indicative of meaning (Bonandrini et al. 2023;
Chuang et al. 2021; Hendrix and Sun 2021) and that the same mechanisms governing
word meaning can also subserve pseudowords (Gatti, Marelli, and Rinaldi 2023). Other
studies have further demonstrated that humans are able to reliably assign affective
content (Aryani, Isbilen, and Christiansen 2020; Gatti et al. 2023; Sabbatino et al. 2022;
Sulpizio, Pennucci, and Job 2021) or lexical categories (Cassani, Chuang, and Baayen
2020) to these stimuli. A recent study by Pugacheva and Günther (2024) even showed
that speakers, when instructed to do so, can generate pseudowords to communicate
given word meanings to other speakers, who are then occasionally able to infer the
original word meanings back from the produced pseudowords.

1 In the present article, we use the term pseudoword as described here, word for letter strings that are part
of the lexicon and do appear in a language, and item or (pseudo)word as umbrella terms for both.
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These findings speak in favor of humans’ ability to detect systematic and statistical
regularities in the (language) environment (Romberg and Saffran 2010; Vidal et al. 2021)
to better adapt to it. However, one main limitation of these studies is that, while they
suggest that humans are able to exploit certain systematic regularities to make sense
of these out-of-vocabulary stimuli, their investigation was mainly limited to behavioral
effects attributed to semantics in word processing studies (Bonandrini et al. 2023; Gatti,
Marelli, and Rinaldi 2023; Hendrix and Sun 2021) and did not consider the participants’
interpretation of the stimuli. That is, these studies suggested that pseudowords do elicit
meaning-related responses and can be associated with quantifiable semantic dimen-
sions such as valence and arousal (Aryani, Isbilen, and Christiansen 2020; Gatti et al.
2023), but it is not very clear if this also means that humans are able to produce non-
random detailed, free interpretations of their meaning. In the present study, to fill this
gap, we analyze speakers’ free definitions of pseudowords in two studies by taking
advantage of language models that are able to provide quantitative representations for
stimuli not included in their underlying training corpora.

1.2 (Pseudo)Word Meanings in Language Models

Defining meaning has proven to be a challenging endeavor across all disciplines that
deal with semantics. Philosophical and linguistic approaches define meaning in relation
to states of the world (Chierchia and McConnell-Ginet 2000), whereas in psychology,
semantics is usually defined by some form of relationship between words and con-
ceptual structure (Murphy 2004; see Lake and Murphy 2023 for an overview). When
dealing with pseudowords, adopting the definition of meaning rooted in formal lin-
guistics leads to obvious complications: If one posits that the meaning of the word
cat is the set of all the cats (or, equivalently, a function that, given an entity, returns
a truth value according to whether the entity is a cat or not; see Delfitto, Zamparelli
et al. 2009), then, the meaning of “knackets” would be essentially identical to the
meaning of “boppies” (an empty set, or a function that returns False for every entity
it is applied to). While adjudicating among different approaches to semantics is far
beyond the scope of this article, we adopt a conceptual approach to (pseudo)word
meaning, whereby (pseudo)words are considered as “pointers” to some components
of the conceptual system (Lake and Murphy 2023). Then, we choose to use language
models (LMs) as practical approximations for the conceptual semantic content to which
such (pseudo)words are pointing.

Language models are neural networks, generally based on the Transformer architec-
ture (Vaswani et al. 2017), that are trained on large collections of texts to predict the next
token following a given sequence (a task that is referred to as causal or auto-regressive
language modeling) or some masked tokens within the sequence (masked language
modeling). Unlike their predecessors (Recurrent Neural Networks) that process data
sequentially, transformer-based architectures can process the input data in parallel by
relying on self-attention to weigh the importance of the different tokens in the input.
The self-attention mechanism enables the model to prioritize different segments of
the input data by assessing the relevance of each piece of information to the word
being processed. This allows Transformers to capture contextual relationships within
the data. Self-attention computes a weighted sum of all the values in the sequence,
where the weights are based on the compatibility between keys and queries. Essentially,
self-attention allows the models to dynamically focus on different parts of the input
text to better capture complex dependencies between words and phrases. This process
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involves computing a weighted sum of the token representations, where the weights
are determined by the model’s assessment of how each input element relates to the rest.
Contemporary LMs usually have a large capacity in terms of number of parameters,
often scaling into billions (Brown et al. 2020), and it has been shown that the neural
capacity of LMs is a crucial determinant of their performance (Kaplan et al. 2020).
While learning to predict masked or upcoming words, LMs get tuned to the statistical
patterns and regularities of language. This process causes their inner representations
to encode linguistic properties that serve as high-level conditioning features with pre-
dictive capacity for language modeling. Such properties have been shown to extend to
several levels of linguistic analysis, spanning from sublexical properties to discourse,
encompassing syntax and semantics (Jawahar, Sagot, and Seddah 2019).

From a cognitive perspective, LMs have been proposed to develop some degree
of isomorphism between their internal representations and the representations that
humans produce when processing language, as assessed across several metrics and
tasks. This proposal has been corroborated by the observation that contextualized
word and sentence embeddings can successfully predict functional neural data in the
human language network (e.g., fMRI and ECoG recordings, see Caucheteux and King
2022; Schrimpf et al. 2021; Toneva and Wehbe 2019; Tuckute et al. 2024), behavioral
measurements of incremental sentence processing difficulty (De Varda and Marelli
2023; Shain et al. 2024; Wilcox et al. 2020, inter alia), and word meaning judgments
and processing times (Cassani et al. 2023). We must note, however, that there are
still important differences in the ways humans and language-based statistical models
process and represent language, including the different strength of the links to goals
and beliefs (Lake and Murphy 2023), grounding to perception and action (Borghesani
and Piazza 2017; Andrews, Vigliocco, and Vinson 2009; Glenberg and Robertson 2000;
Chemero 2023), and different learning efficiency (Linzen 2020; Warstadt and Bowman
2022).

LMs represent contextualized token meanings as dense numerical vectors (also
referred to as “embeddings”) that reflect the distributional history of the tokens as
encountered during training (Lenci et al. 2022). This distributional history of a word
is highly informative of its meaning, as words with similar meanings also tend to be
used similarly in the same linguistic contexts (Harris 1954; Lenci 2008). Using such
distributional vectors or word embeddings as computational models of semantic rep-
resentation stands in a long and empirically successful tradition, also in psychology
and cognitive science (Günther, Rinaldi, and Marelli 2019; Jones, Willits, and Dennis
2015; Kumar, Steyvers, and Balota 2021; Landauer and Dumais 1997). Central to this
process of meaning induction in LMs is the concept of sub-word tokenization, which
defines how the models divide text sequences into smaller units. While early language
models relied on word-level tokenization, treating each word as a distinct unit (Bengio
et al. 2003), this approach had limitations, particularly in handling the vast vocabulary
that characterizes several human languages with productive word formation processes
(Sennrich, Haddow, and Birch 2016). Items that were not present in the training data
(out-of-vocabulary items) posed a substantial challenge, as the models had no reference
for their distributional properties, limiting the models’ ability to process text involving
these lexical items. Sub-word tokenization emerged as a solution to this problem. Tech-
niques like Byte Pair Encoding (BPE; Sennrich, Haddow, and Birch 2016) or its variants
are commonly used to pre-process the text that is fed to LMs. These methods split words
into smaller sub-word units based on frequently occurring character sequences; more
specifically, BPE iteratively merges the most frequent character pairs in the training
data creating a vocabulary of larger character sequences. As an example, the BPE-based
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GPT2 tokenizer breaks down the word obfuscate into the sub-word units ob, fusc, ate.
This approach allows the tokenizer to process a wider range of items, including those
not explicitly present in the training dataset. Crucially, sub-word tokenization enables
the model to represent also lexical items that do not effectively exist. For instance, the
GPT2 tokenizer can properly encode the pseudoword arwarts with the sub-word tokens
ar, warts. The vector representation of such a pseudoword will reflect the distributional
history of the sub-word tokens, each weighted with self-attention. This approach allows
us to project words and pseudowords onto the same embedding space, which in turn
allows us to compare similarity values between pseudoword representations and their
speaker-produced free definitions.

Note that our study is not the first to use computational models that operate at the
sub-word level to investigate semantic and syntactic effects in pseudoword processing.
Cassani, Chuang, and Baayen (2020) showed through computational simulations that
it is possible to infer word category (noun vs. verb) from the phonological form of
pseudowords implementing a linear mapping between the words’ form and semantic
vectors. Chuang et al. (2021) utilized a linear discriminative learning model to demon-
strate that the semantic neighborhoods of pseudowords, represented as numerical vec-
tors, can predict reaction times in a lexical decision task (see also Hendrix and Sun
2021). In a similar vein, Gatti, Marelli, and Rinaldi (2023) derived semantic vectors for
both word and pseudoword stimuli with fastText (Bojanowski et al. 2017), and used
model-based similarity estimates to predict human response data in a semantic priming
task. Bonandrini et al. (2023) compared fastText—an embedding model using sub-
word tokens—and compositional semantic models in predicting human performance
on a lexical decision task involving affixed pseudowords, highlighting the cognitive
relevance of morphological structure in semantic access. Pugacheva and Günther (2024)
utilized distributional semantic models in a taboo game setting to illustrate that model-
based semantic proximity between target words and participant-generated novel words
can facilitate word recognition and comprehension. These previous studies collectively
demonstrate the feasibility and effectiveness of using computational tools to derive
semantic representations for pseudowords that align closely with human cognitive
processes. However, our study departs from prior approaches by utilizing contextual-
ized language models, enabling us to derive embeddings not only for pseudowords
and words but also for the sentences through which participants define them. This
advancement allows us to assess the relationship between lexical items and the declar-
ative semantic content they are associated with (expressed in the form of sentences),
offering new insights into the ways participants produce free definitions of pseu-
dowords.

1.3 Objectives

In the present work, utilizing a range of different LMs and exploiting their ability to
approximate the meaning of pseudowords, we first re-analyzed free word and pseu-
doword definitions from a previous study by Gatti et al. (2023) in an exploratory
analysis (Study 1). Gatti et al. (2023) asked participants to provide a written defini-
tion of the (possible) meaning of pseudowords following a decision on their affective
content. In a subsequent confirmatory analysis (Study 2, which was preregistered after
Study 1, https://doi.org/10.17605/OSF.IO/C2QG3), we aimed to replicate the results
of Study 1 on a new set of pseudowords (and existing words) in a controlled and well-
balanced experiment.
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2. Study 1: Exploratory Analysis

2.1 Method

2.1.1 Dataset. In this first exploratory study, we used a dataset consisting of
(pseudo)words and their definitions collected by Gatti et al. (2023, Experiment 3) in an
online experiment. The pseudowords used as stimuli were constructed using Wuggy
(Keuleers and Brysbaert 2010). Starting from a given word, Wuggy allows for the gener-
ation of written polysyllabic pseudowords that obey a given language’s phonotactic
constraints and that match its template in sub-syllabic structure. These stimuli are
highly word-like but also not easily identifiable as related to existing words. In the Gatti
et al. (2023) paper, Wuggy was set using its standard parameters, that is: orthographic
English module, restricted match length of sub-syllabic segments, restricted match letter
length, restricted match transition frequencies, and match segments 2 out of 3. This data
was originally collected in a study investigating the valence of pseudowords, in which
participants had to select the most negative and most positive out of sets of six pseu-
dowords. In order to encourage participants to create some meaning representations for
these pseudowords, they were then asked to provide a possible definition for the words
they selected using an affirmative sentence (i.e., defining what it is, not what it is not).
Participants were instructed that in cases where a word was new to them (i.e., also for
pseudowords), they should still provide what they thought was a plausible meaning
or interpretation.

In addition to 25 trials consisting only of pseudowords, each participant was also
presented with the same two practice trials and four catch trials consisting of six existing
words with clear correct responses (to check if participants actually performed the
task as intended). The complete dataset, collected from 112 participants, includes 1,356
definitions for 31 different existing words (with between 1 and 112 definitions per
word) and 5,640 definitions for 499 pseudowords (with between 1 and 29 definitions
per pseudoword).

2.1.2 Modeling. Words and pseudowords were embedded along with their definition
onto a shared vector space through statistical language models based on the Trans-
former architecture (Vaswani et al. 2017). Eighteen pre-trained Transformer models
were considered. Out of these 18 models, 14 were standard causal (or auto-regressive)
language models trained on next-word prediction. The causal language models consid-
ered were the original GPT model (Radford et al. 2018), four models in the GPT2 family
(Radford et al. 2019), three models in the GPT-Neo family (Black et al. 2021), and six
models in the Pythia family (Biderman et al. 2023). The additional four models were
masked language models, two from the BERT family (Devlin and Toutanova 2019) and
two from the RoBERTa family (Liu et al. 2019). The pre-trained models were used as
out-of-the-box language representation models, and did not undergo any fine-tuning
or adaptation process. The models were accessed through the transformers Python
library (Wolf et al. 2020). A summary of the models considered in this study is provided
in Table 1.

The LMs described above were utilized to derive data-driven semantic representa-
tions for both (pseudo)words and their definitions. The models we considered operate
at the sub-word token level, generating embeddings for linguistic units equal to or
smaller than a word. Sub-word vector representations were obtained from the last layer
of the Transformer models (i.e., the layer prior to next- or masked-word prediction; see,
for instance, Li et al. 2020). Out-of-vocabulary characters (e.g., curly quotation marks)
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Table 1
Summary of the language models considered in the study.

Model Type Family Parameters Citation
GPT Causal GPT 117M Radford et al. 2018
GPT2124M Causal GPT2 124M Radford et al. 2019
GPT2355M Causal GPT2 355M Radford et al. 2019
GPT2775M Causal GPT2 775M Radford et al. 2019
GPT21.5B Causal GPT2 1.5B Radford et al. 2019
GPT-Neo125M Causal GPT2 125M Black et al. 2021
GPT-Neo1.3B Causal GPT2 1.3B Black et al. 2021
GPT-Neo2.7B Causal GPT2 2.7B Black et al. 2021
Pythia70M Causal Pythia 70M Biderman et al. 2023
Pythia160M Causal Pythia 160M Biderman et al. 2023
Pythia410M Causal Pythia 410M Biderman et al. 2023
Pythia1B Causal Pythia 1B Biderman et al. 2023
Pythia1.4B Causal Pythia 1.4B Biderman et al. 2023
Pythia2.8B Causal Pythia 2.8B Biderman et al. 2023
BERT110M Masked BERT 110M Devlin and Toutanova 2019
BERT340M Masked BERT 340M Devlin and Toutanova 2019
RoBERTa125M Masked RoBERTa 125M Liu et al. 2019
RoBERTa360M Masked RoBERTa 360M Liu et al. 2019

were replaced with their in-vocabulary counterparts (straight quotes). Occurrences of
these cases were very rare (0.0023% of the characters in the definitions). Word-level
representations for all words and pseudowords were obtained by averaging over the
sub-word tokens composing the word. Sentence-level representations for the definitions
were obtained by averaging over the word-level representations of the included words,
in accordance with previous work using mean-pooling to derive definition embeddings
(Giulianelli et al. 2023).

In order not to artificially inflate the similarity between matching pairs of
(pseudo)words and definitions, the occurrences of the (pseudo)word to be described
were removed from the definitions. For instance, if a participant produced the sentence
“Sibre is a noun referring to a musical instrument similar to a flute” as a definition of the
pseudoword sibre, the string sibre was deleted from the definition. Then, for the same
purpose, definitions that, after the removal of the target (pseudo)word, still contained
sub-word tokens that were shared with the target (pseudo)word were eliminated from
the following analyses (e.g., definitions containing swing when the target pseudoword
was baxswing).

The word and the pseudoword data were analyzed separately. As a first step, we
measured the cosine similarity of all the (pseudo)words with all the (pseudo)word def-
initions. These cosine similarity values represent our dependent variable, and we eval-
uated whether they varied as a function of the target-definition match. In other words,
we evaluated whether the model-quantified similarity scores were different for actual
target-definition pairs vis-à-vis all other pairs of elements. A schematic representation of
our analytical approach is presented in Figure 1. To account for the hierarchical structure
of the data, characterized by non-independence of observations at multiple levels, we
conducted our analyses with linear mixed-effects models with random intercepts for
(a) the (pseudo)word for which the definition was provided (word_from_sent), (b) the
(pseudo)word being compared with the definition (word_compared), (c) the participant
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Figure 1
Graphical depiction of the experimental approach. Each definition embedded with a given
language model is compared with the vector representation of all the (pseudo)words in the
dataset, both matching and non-matching; the cosine similarity between the vector
representation of the definition (the sentence embedding) and the (pseudo)word is the
dependent variable in the analyses. The item within square brackets is excluded before
deriving the sentence embedding.

id (participant), and (d) the definition id (sentence_id).2 The linear mixed-effects models
were fit in Julia with the package MixedModels. We expected matching (pseudo)words
and definitions to display a higher level of similarity, thus we anticipated the coefficient
and t-value associated with our predictor to be positive and statistically significant.

The analyses presented above test whether the similarity between matching pairs
of (pseudo)words and definitions is above chance. To better interpret the extent to
which such similarity scores outperform chance level, we considered three additional
metrics based on hit at k (Hit@k). For each (pseudo)word definition, we ranked all
the (pseudo)word embeddings according to their cosine similarity with the defini-
tions. Then, we recorded whether the target (pseudo)word was listed among the top
k (pseudo)words, with k ∈ (1, 10, 20). We repeated this procedure for all definitions
and averaged the scores. This is effectively a version of Hit@k with a single relevant
document for each definition. Thus, Hit@k was calculated as detailed in (1):

Hit@K = 1
N

N∑
j=1

max
i=1...k

{
1 if wij = tj

0 otherwise
(1)

2 The models were fitted with the formula cosine ∼ match + (1|word_from_sent) + (1|word_compared) +
(1|participant) + (1|sentence_id).
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Where N is the number of definitions, k is the cutoff value for the rank of considered
(pseudo)words, wij is the ith-ranked pseudoword for the jth definition, and tj indicates
the target (pseudo)word for the jth definition. Simply put, this metric indicates how
often the target (pseudo)word is listed among the top 1, 10, or 20 closest (pseudo)word
neighbors with respect to the corresponding definitions.

The analyses described in this section allow us to test the semantic similarity be-
tween the pseudowords and the corresponding participants’ definitions, as measured
through the set of candidate models listed in Table 1. Using a set of candidate models
makes it possible to assess the robustness of our findings with respect to some model
properties such as their pre-training objective, data, and architecture. This entails that
our effect of interest, namely, the participants’ ability to produce (pseudo)word defi-
nitions that resemble the (pseudo)word meanings, could be quantified differently by
different models. We chose to operationalize our effect of interest as measured with
each model both on the word and the pseudoword data as the t-value associated with
the main regressor of interest, that is, the independent variable indicating for a given
observation whether word and definition were matched or not. T-values in regression
analysis are standardized, meaning they are scaled to account for the variability in the
data and the scale of the coefficients. This makes them a useful metric for comparison
across different datasets because they provide a consistent measure of the strength
of each predictor’s relationship with the dependent variable. The quantification of
the effect of interest according to each model allowed us to choose the most suitable
architecture for the confirmatory part of our study (Study 2), as well as examine the
relationship between the estimated effect according to each model in the word and the
pseudoword data.

The code and data supporting our study can be found on OSF.3

2.2 Results

Figure 2 depicts the t-values associated with the categorical regressor of interest, both
for words (2a) and pseudowords (2b). The results presented in Figure 2 are reported in
numerical format in Table 2, along with the models’ Hit@k scores. The results show that,
across the word and the pseudoword data, matching (pseudo)word-definition pairs
are associated with higher cosine similarity values than their non-matching counter-
parts. The results are significant for all the considered models, except for GPT2355M
in the pseudoword data (t = 1.6907, p = 0.0909). A clear pattern that emerges from
Figure 2 is that the resemblance to the definitions is more evident in the word than
in the pseudoword data, as expected. Note that t-values are sensitive to sample size,
and the number of datapoints in the word data was substantially smaller than on the
pseudoword data; thus, the figure under-represents the difference between the models’
performances in the two data subsets.

Among the auto-regressive language models, the two largest models in the GPT2
family (GPT2775M and GPT21.5B) estimated the strongest effect of our independent
variable of interest, whereas the results based on RoBERTa360M obtained the highest
t-values among the bidirectional language representation models. GPT21.5B achieved
a Hit@1 score of 0.3247 for word definitions (with chance level being 31−1 = 0.0322)
and a Hit@10 of 0.8077 (with chance level being 0.3226), meaning that the target word
was the closest word to the definition in about one third of the cases, and among the

3 https://osf.io/5bv8r/.
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Figure 2
T-values obtained in the linear mixed effects regression with the representations from the
models detailed in Table 1.

top 10 words in 80.77% of the cases. Despite the reliable statistical significance, Hit@k
values were relatively low in the pseudoword data (although note that the Hit@k
metrics are not comparable across word and pseudoword data because of the difference
in the number of ranked alternatives). The highest Hit@1 and Hit@10 scores were ob-
tained with GPT2775M, with Hit@1 = 0.0066 (with chance level being 499−1 = 0.002) and
Hit@10 = 0.0371 (with 0.03 chance level). The strongest Hit@20 performance was ob-
tained by GPT21.5B (Hit@20 = 0.0682, chance level = 0.04). Overall, Hit@k and the
t-values from the mixed effects models show a similar pattern of results. In the word
data, the highest values in both metrics are obtained by GPT21.5B. In the pseudoword
data, GPT21.5B obtains the highest t-values and Hit@20, while GPT2775M is associated
with higher Hit@1 and Hit@10 scores than its larger-capacity counterpart; this minor
incongruity is not worrisome as GPT2775M and GPT21.5B produced the second highest
estimates for the t-values and Hit@1, Hit@10, respectively.

A qualitative pattern that emerges from the model comparison is that, within each
model family, representations from larger-capacity models display a tendency to esti-
mate higher t-values than their smaller analogs, with the exception of the BERT model
family. This is especially noticeable for the GPT2 family, where the two largest models
(GPT2775M and GPT21.5B) estimate the highest t-values among all models tested, while
the two smaller models (GPT2124M and GPT2555M) are at the very low end.

Figure 3 represents the relationship between each model’s estimate of the effect on
the word and the pseudoword data. Our results clearly document a positive relationship
between the effect estimated by the models in the two data subsets (r = 0.81, p < .0001).

2.3 Discussion

Using a dataset of (pseudo)words and their definitions (Gatti et al. 2023), in this first
exploratory study we identified that pseudoword definitions are in fact not random:
According to most language models we used, cosine similarities were higher for match-
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Table 2
Results of the linear mixed effects models (Experiment 1), divided between words (top) and
pseudowords (bottom). The table also reports Hit@k values, with k ∈ (1, 10, 20). The highest
Hit@k and t-values for words and pseudowords are highlighted in bold.

Model B t p SE Hit@1 Hit@10 Hit@20
GPT 0.0196 14.6080 < 0.0001 0.0013 0.1276 0.7153 0.9159
GPT2124M 0.0004 3.4545 0.0006 0.0001 0.0303 0.4135 0.7833
GPT2355M 0.0006 5.3553 < 0.0001 0.0001 0.0843 0.3484 0.7448
GPT2775M 0.0546 58.2387 < 0.0001 0.0009 0.3217 0.7618 0.9334
GPT21.5B 0.0557 63.2299 < 0.0001 0.0009 0.3247 0.8077 0.9364
GPT-Neo125M 0.0254 17.5735 < 0.0001 0.0014 0.1087 0.4534 0.7892
GPT-Neo1.3B 0.0348 27.7198 < 0.0001 0.0013 0.1317 0.4763 0.8706
GPT-Neo2.7B 0.0466 27.1207 < 0.0001 0.0017 0.1146 0.4312 0.7670
Pythia70M 0.0012 19.5572 < 0.0001 0.0001 0.0732 0.5551 0.7879
Pythia160M 0.0191 29.4249 < 0.0001 0.0006 0.0687 0.4885 0.8544
Pythia410M 0.0333 39.8707 < 0.0001 0.0008 0.0976 0.5196 0.7583
Pythia1B 0.0388 31.4820 < 0.0001 0.0012 0.0517 0.5639 0.8115
Pythia1.4B 0.0288 45.9791 < 0.0001 0.0006 0.1013 0.5499 0.9084
Pythia2.8B 0.0424 30.6373 < 0.0001 0.0014 0.2047 0.5920 0.7664
BERT110M 0.0233 12.6048 < 0.0001 0.0018 0.0363 0.4249 0.7565
BERT340M 0.0103 2.8194 0.0048 0.0037 0.0222 0.2346 0.5433
RoBERTa125M 0.0043 10.2119 < 0.0001 0.0004 0.1686 0.7611 0.8846
RoBERTa360M 0.0013 42.8403 < 0.0001 0.0000 0.1043 0.4756 0.8299
GPT 0.0073 20.4520 < 0.0001 0.0004 0.0041 0.0402 0.0631
GPT2124M 0.0002 5.2517 < 0.0001 0.0000 0.0032 0.0260 0.0529
GPT2355M 0.0001 1.6907 0.0909 0.0000 0.0021 0.0234 0.0431
GPT2775M 0.0090 25.3988 < 0.0001 0.0004 0.0066 0.0371 0.0676
GPT21.5B 0.0090 26.3442 < 0.0001 0.0003 0.0060 0.0363 0.0682
GPT-Neo125M 0.0055 7.2277 < 0.0001 0.0008 0.0026 0.0273 0.0482
GPT-Neo1.3B 0.0056 10.2236 < 0.0001 0.0005 0.0030 0.0252 0.0488
GPT-Neo2.7B 0.0067 8.7534 < 0.0001 0.0008 0.0040 0.0258 0.0492
Pythia70M 0.0003 10.6332 < 0.0001 0.0000 0.0036 0.0277 0.0531
Pythia160M 0.0037 13.4106 < 0.0001 0.0003 0.0021 0.0264 0.0491
Pythia410M 0.0050 13.2044 < 0.0001 0.0004 0.0044 0.0294 0.0541
Pythia1B 0.0054 7.8603 < 0.0001 0.0007 0.0030 0.0256 0.0493
Pythia1.4B 0.0045 14.1977 < 0.0001 0.0003 0.0036 0.0266 0.0558
Pythia2.8B 0.0062 9.7680 < 0.0001 0.0006 0.0030 0.0277 0.0522
BERT110M 0.0019 2.5638 0.0104 0.0007 0.0034 0.0290 0.0535
BERT340M 0.0029 3.4849 0.0005 0.0008 0.0058 0.0320 0.0567
RoBERTa125M 0.0012 8.7586 < 0.0001 0.0001 0.0026 0.0307 0.0574
RoBERTa360M 0.0002 22.3841 < 0.0001 0.0000 0.0058 0.0333 0.0637

ing than for non-matching pseudoword-definition pairs (i.e., pseudowords are closer to
their actual definitions than to the definitions of other pseudowords). Thus, the results
are not unique to a specific model. We acknowledge that the Hit@k scores obtained on
the pseudoword data are low in absolute terms; nonetheless, they are 55.2% to 120%
as high as would be expected by chance. This finding thus still represents a substantial
difference from complete randomness, with a t-value higher than 20 for several model
types and thus ten times higher than the typical significance threshold of around 2.
Complete randomness—that pseudowords presented in isolation should really not have
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Figure 3
Relationship between the t-values associated with each model in the word (x-axis) and
pseudoword (y-axis) data.

any discernable meanings and thus elicit completely random responses—would be a
very reasonable assumption in our task, but the statistical analyses provide substantial
evidence against this assumption.

The effects for pseudowords mirror the pattern we observe, in a more pronounced
manner, for existing words. We wish to remark that the effect observed on the word
data should be considered as a sanity check and a baseline for evaluating the effect on
the pseudoword sample as estimated by a particular model. In fact, language models
that are better able to discriminate between matching and mismatching pseudoword-
definition pairs quite clearly tend to be those that are also able to discriminate between
matching and mismatching word-definition pairs. Since the latter—accurately captur-
ing word meaning definitions—can be considered a core competence that a language
model ought to have, this suggests that the ability to also capture pseudoword meanings
is a function of overall language model quality and capacity, rather than a specific niche
capability. Among the models we tested, GPT2 (more specifically, GPT21.5B) estimated
the strongest matching effect for both existing words and pseudowords. This qualifies
GPT21.5B as the best tool to detect our effect of interest, and we will accordingly use this
model in our second, confirmatory study.

It is important to keep in mind that the dataset used in this exploratory analysis
was not balanced (as already described in the Dataset section): Since participants only
provided definitions for the words they selected as most positive or negative, the
number of definitions per item varies greatly. This is especially the case for the existing
words that were selected to have the most negative and positive items in each trial,
but also for the pseudowords where participants display convergent intuitions as to
which of these are more positive and negative (Gatti et al. 2023). A second consequence
of this setup is that the dataset only contains definitions for pseudowords that partici-
pants have already identified as positive or negative. On the one hand, this selects for
specific pseudowords to receive more definitions than others; on the other hand, these
definitions might be influenced by the decisions participants made (e.g., they might be
more inclined to write something more positive after they already selected the word
as positive).
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Thus, in order to base the interpretation of our results on a firm empirical basis, we
replicated this first exploratory study in a second (high-powered and pre-registered)
confirmatory study. Here, the first study directly serves to inform the sample size
justification, as well as the choice of the language model (GPT21.5B).

3. Study 2: Confirmatory Analysis

In order to generalize the findings of Study 1 and at the same time address the un-
balanced nature of the dataset used there, we set up a second confirmatory study. To
this end, we collected a well-balanced dataset of word and pseudoword definitions,
and replicated the data analysis described in Study 1. Before any data collection, this
confirmatory study was pre-registered, including detailed plans for data collection and
analysis, at https://doi.org/10.17605/OSF.IO/C2QG3.

3.1 Method

3.1.1 Sample Size Motivation. The number of items to be considered in the second
confirmatory study was set through a simulation-based bootstrapping power analysis.
Starting from the original dataset released by Gatti et al. (2023), we iteratively:

1. Selected a number of participants N, with N ∈ (2, 3, 5, 10, 20, 30, 40)

2. Sampled 100 possible subsets of Gatti et al.’s (2023) data with N
participants

3. Refitted our mixed effects model on the downsampled data

(a) A mixed-effects model was fitted with the original,
sampled response variable

(b) A mixed-effects model was fitted on the simulated
response variable

4. Calculated the power for N participants as the ratio of the 100 models
that are significant, excluding cases with singular fit.

Note that in the original dataset by Gatti et al. (2023), which was collected to
investigate the valence of pseudowords, participants in each trial first selected two out
of six items (the most positive and most negative) and then provided definitions for
those items they selected. This leads to an unbalanced dataset where the number of
definitions varies greatly between (pseudo)words. Our confirmatory study, however,
explicitly and deliberately uses a balanced design, in which we collect the same number
of definitions for each (pseudo)word. Thus, we use our power analysis to get an estimate
for the overall number of observations (i.e., individual definitions) required.

The results of the power analysis are displayed in Figure 4. Our simulations (both
with sampled and simulated response variable) showed that we already achieved
perfect power (power = 1) with 5 participants, although with 60.15% of singular fits.
With 30 participants, we achieved perfect power, with 30.56% of singular fits. With 30
participants in the original study we fitted our models on about 30 (participants) × 50
(pseudoword definitions per participant)× 499 (pseudowords being compared with the
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Figure 4
Results of the simulation-based power analysis. The figure reports the statistical power, both
with simulated and sampled data, and the percentage of singular fits, as a function of the
number of participants.

definitions) = 748,500 datapoints (note that the exact number of items might vary as a
function of the tokenizer, as we excluded definitions that shared sub-word tokens with
the target pseudoword). In our confirmatory study, we set our sample size in order to
have 10 (responses) × 400 (pseudowords) × 400 (pseudowords compared) = 1,600,000
datapoints, ensuring that our study is properly powered even with the changes to the
data structure from an unbalanced to a balanced design. Our calculations were based
on the pseudoword data, where the effect was documented to be considerably weaker;
thus, we are confident that our study is also properly powered for the word data, where
we collect the same number of 1,600,000 datapoints.

3.1.2 Dataset. As described in the previous section, the dataset for this second confir-
matory study consisted of 400 pseudowords and 400 existing words. The pseudowords
were sampled from a list of originally 1,500 pseudowords created and manually curated
by Gatti et al. (2023, Experiment 2), from which we excluded 499 pseudowords used in
their Experiment 3 (and hence included in our first dataset). The existing words were
sampled from the most well-known words of the English language (known by > 99%
of participants in the word prevalence norms by Brysbaert et al. 2019), to ensure that
participants would indeed know these words and their meanings. We only considered
words and pseudowords that do not contain morpheme-like affixes longer than one
character and that the GPT21.5B tokenizer decomposes into 2-4 subword tokens.

These items were randomly arranged into 20 different lists of 40 items (20 pseu-
dowords and 20 words) each. Each of these lists was presented to 10 different partic-
ipants who provided a definition for each item in the list, with each participant being
presented with exactly one list. The final dataset therefore contains 4,000 definitions for
400 pseudowords and 4,000 definitions for 400 words (in both cases, 10 definitions per
(pseudo)word).

After informed consent to participate in the study and providing demographic
information, participants were instructed to define the meaning of different words pre-
sented to them using an affirmative sentence. In cases where a word was new to them,
they should still provide what they thought was a plausible meaning or interpretation.
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We thus utilized the same instructions as Gatti et al. (2023), described above. After these
instructions, participants were presented with one item after the other, and could type
their definition into a text box. The instruction “Define the meaning of the following
word using a short and affirmative sentence (avoiding negations: define what it is, not
what it is not)” was always visible during a trial. After completing two practice trials
(using the word item “mouse” and the pseudoword item “kaily” in random order), all
40 (pseudo)words were presented in random order. Only responses that consisted of at
least two character strings (separated by a white space) were accepted.

The 200 participants required for this study design were recruited using the crowd-
sourcing platform Prolific. All participants were monolingual English speakers located
in the United States. In this sample (Mage = 40.6 years, SDage = 13.5 years), 114 par-
ticipants self-identified as female, 83 as male, and 3 chose a different description. Data
from an additional 30 participants were not included in the dataset or in any analyses, as
these participants often (for at least 8 out of their 20 pseudowords) produced responses
that did not comply with the instructions: (a) using the word in a sentence instead of
providing a definition, (b) providing responses like “I don’t know,” (c) providing actual
definitions for the pseudowords as words of a foreign language or proper names, most
likely as the result of an Internet search, (d) providing responses that were very likely
produced by a chatbot, or (e) providing descriptions of the word form (“This is a funny
sounding word”). Participants were reimbursed with £3 for their participation in this
study (mean completion time: 20.2 minutes).

3.1.3 Modeling. As stated before, in Study 2 we only considered GPT21.5B, the lan-
guage model that displayed the strongest effects for both words and pseudowords
on the exploratory data. Our modeling approach was left unaltered with respect to
Study 1; we derived word-level representations by averaging over sub-word token
vectors, and averaged over words to obtain definition-level embeddings. We compared
definition embeddings with the representations of both matching and non-matching
(pseudo)words, and assessed whether the cosine similarity for (pseudo)word-definition
pairs was higher when the two matched. We based our analyses on mixed-effects
regression models, and left our model structure unaltered with respect to Study 1.

3.2 Results and Discussion

The significant results obtained in Study 1 were successfully replicated and thus con-
firmed in Study 2. We were able to detect a significant effect of the binary variable of
interest in the word data (B = 0.05269, SE = 0.00043, t = 122.34, p < .0001), as expected.
The target word was the closest to the definition in about 6% of the cases (Hit@1 =
0.0560), and among the closest 10 and 20 words for about 21% and 30% of the def-
initions (Hit@10 = 0.2167, Hit@20 = 0.3063). Similarly, the effect was significant also
for pseudowords (B = 0.00821, SE = 0.0003, t = 25.00, p < .0001), with Hit@1 = 0.0055,
Hit@10 = 0.0407, and Hit@20 = 0.0776. Chance levels are 0.0025, 0.025, and 0.05 for
Hit@1, Hit@10, and Hit@20, respectively. Figure 5 reports a visualization of the cosine
similarity values between (pseudo)word embeddings and matching as well as non-
matching definition embeddings. Unlike the previous exploratory study, the balanced
structure of the dataset used in Study 2 makes the results obtained with the word and
the pseudoword data directly comparable. The results clearly show that the effect is
stronger in the word than in the pseudoword data, as documented by the t-values
associated with the regressor of interest in the linear mixed effects models, the Hit@k
metrics, and the similarity distributions across conditions.
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Figure 5
Visualization of the cosine similarity between (pseudo)word and matching and non-matching
definition embeddings. The horizontal red lines indicate the means of the distributions. The
width of the dark red lines report the 95% confidence intervals for the means. Given our large
sample size, the confidence intervals for the non-matching similarities are very small (∼ 0.0001)
and thus not visible.

Table 3 lists some qualitative examples of the produced pseudoword definitions; in
particular, we report the best and the worst definitions (as measured with the cosine
similarity between pseudoword and definition embeddings) produced in response to
a sample of pseudowords. The table shows that participants associate pseudowords to
several semantic categories, including animals (ottruds, kittings, skeb, silths), substances
(sulfit, cryps), foods (teziels), utensils (visk, skeb), and geographical locations (tarvos).
Furthermore, pseudoword definitions convey both abstract (cryps, groanfuls, prockack)
and concrete meanings (sibre, skeb, visk).

3.3 Robustness Check

In our main analyses, we assessed whether participants were systematic in assigning
definitions to pseudowords by measuring the vector similarity between the pseu-
doword embeddings and their corresponding definitions embeddings. If participants
produced pseudoword definitions based on sub-word information contained in the
pseudowords’ form, one would expect to find an above chance similarity between pseu-
doword and definition embeddings. Crucially, one additional expectation that would
follow from a systematic form-meaning mapping mechanism linking pseudowords
to their definitions is that the definitions for a given pseudoword should be more
similar to each other than to all other definitions. For example, a given definition of the
pseudoword teziels should be more similar to other definitions produced in response to
teziels than to definitions produced for the word visk. Thus, as a robustness check, we
conducted an additional analysis aimed at providing additional support for our claims
without relying on pseudoword embeddings.

3.3.1 Methods. In this robustness check, we measured whether the definition embed-
dings were more similar to other definition embeddings corresponding to the same
(pseudo)word than to all other definitions. Our analytical approach was rather sim-
ple: We calculated the cosine similarity values between all definitions, and compared
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Table 3
Qualitative examples of pseudoword descriptions, as provided by participants for the respective
pseudowords. For each row, the first line reports the worst description provided for a given
pseudoword (i.e., the one with the lowest cosine similarity to the pseudoword representation),
and the second line reports the best one. Cosine similarity is calculated based on GPT21.5B
embeddings. The words within square brackets were excluded before deriving the sentence
embeddings.

Pseudoword Cosine Description

teziels 0.3910 a food that is shaped like a pretzel but is something else
0.5484 a pebble with irregular sides.

sulfit 0.3485 [sulfit] is a clothing brand
0.5533 a salt or ester of sulfurous acid.

ottruds 0.3755 it is a small swimming mammal
0.5445 [ottruds] are turkish footware.

clesp 0.3605 the little hook by the door where you hang your keys
0.4462 [clesp] is a verb meaning to belittle an opponent’s argument unfairly

cryps 0.3125 the gunk in the side of your eye
0.3979 [cryps] is a synonym for clues in a puzzle

kittings 0.3992 strings or ropes used to hold a balloon down
0.4972 small feline animals born in a barn

visk 0.3160 [visk] is a disease in which your legs fall off
0.4619 a container for liquids

skeb 0.3092 a small bug or other pest
0.5520 a viking weapon.

silths 0.3174 holding up something
0.4059 a type of worms

tarvos 0.3019 flooring made of wooden planks
0.5328 a region of Greece

groanfuls 0.4012 a [groanfuls] is a group of teenagers
0.6635 a cry of pain

sibre 0.3887 [sibre] is a form of animal with a lot of fur
0.5933 a flamboyant hat

prockack 0.3703 being a professional.
0.4775 a small kangaroo-like animal

the pairs where definitions were about the same (pseudo)word vis-à-vis all the other
pairings. We assessed by means of an independent-samples t-test whether the difference
between the means of the two groups of similarity scores was statistically significant. As
before, we separately conducted our analysis on both pseudowords and existing words.
These analyses were not pre-registered, as they were suggested by an anonymous
reviewer.

3.3.2 Results and Discussion. These analyses showed that definitions were indeed more
similar to other definitions produced in response to the same (pseudo)word than to
all other definitions of non-matching items. The effect was significant both for existing
words (t = 193.5664, p� 0.0001) and for pseudowords (t = 20.005, p� 0.0001). Since the
number of samples was comparable, we can again conclude that the effect was more
pronounced for existing than for non-existing words, as expected.
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This robustness check serves as a critical validation of our initial conclusions,
utilizing an independent methodology that avoids altogether the reliance on pseu-
doword embeddings. By examining the similarity of definitions assigned to the same
(pseudo)words in contrast to those assigned to different ones, without the intermediary
of pseudoword embeddings, this analysis strengthens our results by leveraging direct
comparisons between the semantic content of the definitions themselves. Once again,
the fact that the effect is much more pronounced on the word data is not surprising,
as participants providing word definitions can rely on a shared understanding and
usage of word meanings. For pseudowords, the significant (albeit less pronounced)
effect independently corroborates the notion that participants systematically generate
explicit definitions based on the sub-word information that served as a cue, even in the
absence of any pre-existing encounters with the lexical items.

4. Follow-up Analyses

In our pre-registered main analyses, we showed that pseudoword representations are
closer to the embedding representations of their corresponding definitions than to other
definitions. In order to get a better understanding of this phenomenon of pseudoword
semantics, we proceeded with two (not pre-registered) follow-up analyses, where we
shifted our focus to the word-level properties of words and pseudowords that might
influence the ease with which participants are able to associate its form with a meaning.

4.1 Sub-word Units in Pseudoword Semantics

In the first follow-up analysis, we assessed whether pseudowords composed of spe-
cific sub-word units were more successfully associated with a free definition of their
meaning.4 This analysis was not driven by explicit predictions about which specific
subword units might be particularly beneficial for the task. Instead, it was meant as
an exploration aimed at identifying the most meaning-bearing sub-word units. As for
all our previous tests, we separately conducted this exploratory analysis for words and
pseudowords.

4.1.1 Methods. In order to derive a (pseudo)word-level metric summarizing the semantic
association between the representations of each (pseudo)word and all its corresponding
definitions, we started from each definition and calculated the distribution of cosine
similarity values between its embedding representation and all the (pseudo)word em-
beddings. This first step is analogous to the base procedure of our main analyses
(see Figure 1). Then, we calculated the z-score of the cosine value of the matching
(pseudo)word with respect to the similarity distribution. This conversion to z-scores
was done to take into account the possibility that some definitions might be, in general,
closer to all (pseudo)words, whereas our measurement of interest is intended to capture
how close the definitions are to the target word, compared to all other words. As a last
step, we averaged the z-scores of all definitions corresponding to a given (pseudo)word,
and used this measure as a (pseudo)word-definition proximity metric (henceforth
“proximity”) at the item level. Table 4 reports some examples of pseudowords and their
associated proximity scores for the four quartiles of the proximity measure distribution.

4 We thank an anonymous reviewer for the suggestion.
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Table 4
Examples of pseudowords with their associated proximity score, divided by quartiles. The 1st

and the 4th quartiles report the highest and lowest-scoring items, respectively, while the items
from 2nd and 3rd quartiles are randomly sampled.

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile

Item Proximity Item Proximity Item Proximity Item Proximity
siseals 2.5333 asarps 0.8060 cruns 0.1270 wheam −2.1600
aruds 2.3096 lylik 0.6227 febs −0.1209 clact −2.1892
groanfuls 2.2754 edsows 0.5914 ellachs −0.1839 liflo −2.2280
peisels 2.2579 chufo 0.4741 mundats −0.2573 freapt −2.6228
swimacks 2.2395 mambs 0.4658 thrun −0.4408 splil −3.2274

Then, we extracted from the GPT21.5B tokenizer the individual sub-word units
composing each (pseudo)word. We filtered out all sub-word units appearing less than 5
times in our dataset, in order to have a reasonable number of occurrences for each sub-
word unit. Following this criterion, this analysis considered 29 sub-word units for the
word data and 41 units in the case of pseudowords. For each (pseudo)word form, we
dummy-coded whether it contained each of these units, and fitted a linear regression
model to predict the proximity metric described above on the basis of the presence of
each sub-word token.

4.1.2 Results and Discussion. Both our regression model based on the word data (F =
2.7104, R2 = 0.1643. p < 0.0001) and the one based on the pseudoword data (F = 1.8696,
R2 = 0.1724. p = 0.0016) were significant, indicating that at least some of the consid-
ered sub-word units were associated with definitions with different similarity to their
corresponding (pseudo)word. Table 5 reports the individual sub-word units that were
significantly predictive of our proximity metric (with p < .05, uncorrected). The table
shows that, in the case of existing words, only the sub-word unit “s” is associated with
higher word-definition proximity. Five other units are associated with lower proximity.
When considering pseudowords, the sub-word unit “s” was once again associated
with higher average pseudoword-definition proximity. We speculate that this consistent
finding might be related to the morpheme -s indicating plurality in English. Thus, the
plural marker could be a meaningful cue both when retrieving the semantic content of
a known lexical item and when inferring the meaning of an unknown letter string, and
participants might consistently associate words ending with -s to definitions referring
to plural entities. Apart from “s,” several other sub-word units are associated with both
higher (e.g., “ons,” “h”) and lower proximity scores (“amb,” “raud”).

The outcome of this analysis shows that some specific sub-word units influence the
ease with which participants are able to retrieve or infer the meaning of letter strings,
both in the case of words and pseudowords. Thus, not only the combination of these
units, but also their identity, is associated with the ability of participants to derive
free pseudoword interpretations. Interestingly, most of the units that have a significant
impact on pseudoword definition proximity are not morphemes. This finding highlights
the fact that the cognitive process underlying the interpretation of novel words is
flexible and can utilize various sub-lexical cues for meaning inference.
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Table 5
Sub-word units predictive of (pseudo)word-definition proximity.

4.2 Length and Sequential Predictability

In these analyses, we restricted our scope to two main factors: the orthographic length
of a pseudoword, and its sequential predictability. We hypothesized that the richness of
a pseudoword’s form, operationalized as its number of characters, should be positively
associated with the participants’ success in freely describing its meaning (and thus, with
higher proximity between the pseudoword and the definition embeddings). Indeed,
if the human ability to describe the semantics of a novel word is supported by a
form-to-meaning mapping system, the bare quantity of a pseudoword’s form should
endow participants with more sub-word material to support such mapping. Regarding
the effects of sequential predictability, we expected a tension between two opposing
tendencies. Letter sequences that are unpredictable carry more information (Shannon
2001); thus, strings with low sequential predictability should be better associated with
their meaning since their word form is more informative (A). On the other hand, very
improbable letter sequences will be more distant to the form of existing words, making
it more difficult to exploit existing form-meaning mappings (B). Thus, (A) would entail
a negative relationship between a pseudoword’s sequential predictability and the prox-
imity of its definitions. Conversely, (B) predicts a positive relationship between the two
variables. Alternatively, the prediction stemming from (A) and (B) acting simultaneously
would be a non-linear relationship between the two constructs, with a local increase
in pseudoword-definition proximity when sequential predictability is relatively low
(following B), and a decrease for high predictability values (following A).

4.2.1 Methods. As in the previous follow-up analysis, we used as a measure of
(pseudo)word-definition proximity the average z-score of the cosine value of the
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definition and the matching (pseudo)word with respect to the similarity distribution
among the definition and all other (pseudo)words.

Word and pseudoword length was simply calculated as the number of letters con-
tained in each string. Sequential predictability was calculated with character trigrams;
in particular, we used character-level negative log-probability values, with the base of
the logarithm set to 2. Trigrams, sequences of three characters, offer a more fine-grained
estimation of sequence predictability than bigrams (two-character sequences) without
the substantial increase in computational complexity and data sparsity associated with
higher-order n-grams. Furthermore, character-level sequential predictability has been
calculated with trigrams in a previous study (Thompson et al. 2022). We calculated
trigram probabilities starting from the vocabulary in SUBTLEXUS (Brysbaert and New
2009). Trigram probabilities were computed at the type—as opposed to token—level;
this means that the trigrams composing each word were counted once for each word,
irrespective of its number of occurrences in the corpus (as in Thompson et al. 2022).
Character-level log-probabilities were summed to derive a word-level estimate of se-
quential predictability.

To be able to detect non-linear relationships between the variables we consider, we
analyzed our data with Generalized Additive Models (GAMs), a regression technique
designed for measuring curve shapes (Wood 2006). The GAM models were fitted with
the Python package pyGam; both sequential predictability and orthographic length were
modeled as non-linear splines with a penalty on their second derivative, with identity
link and normal error distribution. The λ parameter, which controls the strength of the
penalty for the splines, was set with a grid search. GAMs are known to overfit, and,
when smoothing parameters have to be estimated, significance testing can reject the
null too readily. Thus, to ensure that our findings were robust, we ran a permutation
test to obtain more reliable p-value estimates. To do so, we focused on each of the two
predictors separately, and shuffled its values while keeping the other unmodified. This
procedure was repeated 1,000 times for each of the two predictors, and a non-parametric
p-value was calculated as the proportion of simulations yielding a pseudo-R2 value
higher or equal than the non-shuffled model.

4.2.2 Results. Our analyses showed that, for the pseudoword data, the orthographic
length and transitional probability of pseudowords were significantly associated with
their proximity scores (length: EdoF = 2.2, p = 0.0454; sequential predictability: EdoF =
4.3, p = 0.001; pseudo-R2 = 0.1649, N = 400). The statistical significance of the smooth
terms was corroborated by the non-parametric permutation test (length: p = 0.005;
sequential predictability: p < 0.001). The functional form of the effects of the two
predictors is graphically depicted in Figure 6. There is a positive, monotonic relationship
between orthographic length and proximity (6b). The steepness of the relationship is
higher in the 6-8 letter range. As for the transitional probability effects, we detected
a non-linear relationship between trigram negative log-probability and pseudoword-
definition proximity (6d). The relationship appears to be quadratic and concave from
visual inspection, with a local increase in proximity around the 30–70 information range,
and a decrease from around 80 to 130 bits. In the word data, neither orthographic length
(6a) nor sequential predictability (6c) were significantly associated with average word-
definition proximity (length: EdoF = 1.1, p = 0.136; sequential predictability: EdoF =
3.4, p = 0.496; pseudo-R2 = 0.0744, N = 400). The absence of statistical significance in
the word data was supported by the permutation test (length: p = 0.588; sequential
predictability: p = 0.960).

1333



Computational Linguistics Volume 50, Number 4

Figure 6
Spline terms associated with orthographic length (top) and transitional probability (bottom) for
both words (left) and pseudowords (right). On the y-axis, interpretation quality is displayed in
terms of the marginal effect of the predictor in question. The dashed red lines indicate the 95%
confidence intervals. The subplots on top and on the right of each plot display kernel density
estimates of the data distributions corresponding to the variables on the two axes.

4.2.3 Discussion. Our follow-up analysis explored the role of form quantity and pre-
dictability on form-meaning mappings in language, focusing on how orthographic
length and sequential predictability of words and pseudowords affect their semantic
interpretations. The results are compatible with the idea that participants exploit sta-
tistical form-to-meaning regularities when inferring the meaning of words unknown
to them. The positive and monotonic relationship between the orthographic length
of pseudowords and their proximity to their definitions aligns with our hypothesis:
Longer pseudowords provide more sub-word material, facilitating the formation of
richer semantic representations for novel lexical entries. This finding contributes to
our understanding of how the human language system makes use of the form of a
novel word to derive useful clues about its meaning, emphasizing the importance of
the raw amount of a word’s form content in semantic expansion. The results concerning
sequential predictability offer a more complex view of the role of the characters’ distri-
butional properties. Our findings align with one of our hypotheses, namely, that two
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antithetical pressures might shape the relationship between sequential predictability
and pseudoword-definition proximity. At higher predictability (i.e., low information)
levels, additional informativeness of the pseudoword’s form enhances proximity, sup-
porting the idea that information-richer word forms facilitate access to specific se-
mantic representations (A). However, as the pseudowords’ informativeness increases
further, the increased distance from known word forms appears to hinder existing form-
meaning mappings, reflecting the difficulty in relating highly unfamiliar letter strings
to prior semantic knowledge (B). This non-linear trend highlights the tension between
informativeness and familiarity in the understanding of novel words. An alternative
(and possibly complementary) explanation of this pattern can be understood in terms of
the pseudowords’ orthographic proximity to known English words. Easily predictable
pseudowords may resemble a broad range of English words, leading to difficulties
for participants when attempting to interpolate meanings based on this extensive set
of familiar lexical items. Conversely, pseudowords with low sequential predictability
might bear too little resemblance to familiar English words, challenging the partici-
pants’ ability to leverage their existing linguistic knowledge for meaning induction.

Intriguingly, the observed patterns did not extend to real words, where neither
orthographic length nor sequential predictability had a significant impact on word-
definition semantic proximity. The reported disparity between words and pseudowords
highlights the flexibility of semantic interpretation processes in response to novel lin-
guistic stimuli compared to the access to the meaning of established lexical items. This
asymmetry might be attributed to the more rigid form-to-meaning relationships that
drive the understanding of real words. The meaning of a word is already known, and
needs to be retrieved—as opposed to inferred—from the form; this entails that form-
level properties should have a reduced impact on non-speeded semantic access.

5. General Discussion

Pseudowords, orthotactically viable letter strings that however do not occur in the
lexicon of a given language, are traditionally considered as lexical items with a valid
form but without any meaning. As such, they play a crucial role for example as control
stimuli in word processing studies (Balota et al. 2007; Hutchison et al. 2013). Recent
studies have challenged this characterization by collecting evidence that these words do
indeed carry semantic content and display some of the same semantic effects as existing
words (Gatti, Marelli, and Rinaldi 2023; Gatti et al. 2023; Hendrix and Sun 2021), without
however elucidating whether participants can have explicit and deliberate access to
detailed meaning representations for pseudowords. In other words, previous research
has mainly focused on detecting meaning-related processing correlates in pseudoword
recognition, without assessing whether humans can characterize their semantic content
with explicit definitions. In the present work, we use LMs to extend these findings,
showing across two studies utilizing an exploratory-confirmatory setup that speakers
can assign non-random free meaning interpretations to pseudowords: On average,
definitions generated for a given pseudoword are closer to that pseudoword than those
definitions generated for other pseudowords (as measured by the cosine similarity
between their respective vector representations). This reflects, albeit to a lesser degree, a
pattern that emerges very clearly also for existing words. The results of our studies not
only confirm the presence of a flexible form-to-meaning mapping system in humans,
but also reveal a critical parallel between pseudoword representations in humans and
language models. This suggests that the cognitive processes enabling humans to infer
meanings from novel word forms operate under principles that are, to some extent,
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mirrored by the statistical learning processes used by modern language models. This
correspondence provides compelling evidence for the cognitive plausibility of distribu-
tional learning mechanisms at the sub-word level. When faced with unknown lexical
items, humans might decompose them into smaller units and leverage their distribu-
tional properties to construct plausible meanings. Such a mechanism would represent a
highly efficient strategy for navigating the linguistic environment, enabling speakers
to adaptively expand their lexicon by extrapolating from known linguistic patterns
to interpret new words. In addition to our main results, we identified in follow-up
studies that interpretations are, on average, closer to their respective pseudowords for
pseudowords that were longer, and whose sequential trigram probabilities were in the
medium range. Here, we identified patterns that are unique to pseudowords and do not
generalize to words.

As speakers encountered the pseudowords for the first time and without any rele-
vant context information, their meaning had to be inferred purely from their form. For
pseudowords that are not morphologically parsable (see Appendix A for a replication
of our results when excluding the four parsable pseudowords from our dataset), such
inferences have to be made based on a very general form-to-meaning correspondence,
rather than from specific and well-delineated morpho-semantic information. While on
a very fundamental level the correspondence between forms and meanings in language
has long been considered arbitrary (de Saussure 1916), this view has increasingly come
under pressure from empirical studies (for overviews, see Dingemanse et al. 2015;
Haslett and Cai 2023). On the one hand, cases of iconicity (where the linguistic form
reflects physical characteristics of the associated meaning, as in meow) introduce a cer-
tain ground-level connection between perceptual experience and linguistic forms that
is not specific to a given language (Perniss and Vigliocco 2014). On the other hand, once
a given linguistic system is established, there is a non-negligible tendency for words
that are similar in form to also be more similar in meaning than would be expected by
chance (Marelli and Amenta 2018; Monaghan et al. 2014). Our results fall well into line
with these perspectives, suggesting that speakers are able to pick up these systematic
patterns and regularities, and use this information to make informed guesses about
novel stimuli. Since encountering new words is not a rare phenomenon (Brysbaert et al.
2016, estimate than an average speaker learns a new lemma every two days) this ability
allows us to make some predictions that help us make sense of non-familiar stimuli,
which allows us to navigate our complex and changing world.

Of course, both our Study 1 and Study 2 show that the relative match of pseu-
doword definitions to their actual targets is far smaller than it is for existing words. To
put this into context, we have to highlight again that for existing words speakers can
rely on an established and conventionalized meaning, while for pseudowords they can
only rely on their form; and although it exists, systematic form-meaning mapping is a
rather weak phenomenon in natural languages (Marelli and Amenta 2018; Monaghan
et al. 2014). In addition, for the purpose of our study we had to ensure that all existing
words we used are generally known to all English speakers (Brysbaert et al. 2019). These
extremely well-known and frequent words, the meaning of which is clear to every
speaker, form the toughest possible comparison for the pseudowords. We expect that
the discrepancy between words and pseudowords will diminish for words with lower
prevalence or frequency. An especially interesting comparison would be to consider
words that follow the same criteria as our pseudoword sample but are unknown to
most speakers, like alnico, stotinka, gomuti, or feoff (very low-prevalence examples from
Brysbaert et al. 2019). This would allow us to conclude if there is anything special about
existing words at all (which might be the case due to etymological connections, or the
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word in principle referring to an actual existing concept for which it made sense to
coin it in the first place), or if pseudowords and unknown words are really functionally
equivalent.

The fact that we can model human definitions of pseudowords using LMs has rel-
evant implications for current (psycho)linguistic theories of form-to-meaning mapping
and representation systems (Stevens and Plaut 2022). Here, the last years have seen an
intense debate (see, for example, Bonandrini et al. 2023; Stevens and Plaut 2022) between
morphological models (e.g., Marelli and Baroni 2015; Taft and Forster 1975), in which
the relevant representational units at the sub-word level are morphemes (the smallest
meaning-bearing units in a language), amorphous models (Baayen et al. 2011, 2019) that
reject this notion and instead take the embedded letter n-grams as their basic represen-
tational unit that map directly onto meaning (which is also adapted in word embedding
models like fastText; Bojanowski et al. 2017), and distributed connectionist models that
start from the same assumption as amorphous models but further assume hidden layers
between basic form units and meaning that allow for the emergence of more complex
representational units like morphemes (Plaut and Gonnerman 2000). On the one hand,
our results show that a traditional morpheme-based representation system cannot be
a complete account for a form-to-meaning mapping system, because pseudowords do
not have a morphemic structure and cannot be parsed into what one would traditionally
consider morphemes. To fully uphold such a morpheme-based view, one would have to
accept the notion that the sub-word units identified by the BPE—such as ob, fusc, and ate
in obfuscate—essentially have morpheme status: In the model architecture, they are the
smallest units for which vector representations are available and thus very literally the
smallest meaning-bearing units. On the other hand, the success of the BPE algorithm—
demonstrated by its widespread adoption in contemporary language models—suggests
that it may be useful to not simply consider all embedded n-grams as meaning-bearing
representational units. However, this depends on whether models using BPE generally
outperform across a wide range of representative tasks models based on n-gram tok-
enizers, which remains to be tested in future studies. If this indeed turns out to be the
case, the BPE-based sub-word representations used by language models would align
best with the hidden-layer representations in distributed connectionist models: They
differ in length and are more structured than n-grams, they emerge from experience
with the linguistic system, but the exact set of these units can also differ substantially
from the morphemes identified in the traditional literature.

6. Future Directions

Our approach provides experimental evidence in support of a flexible form-meaning
mapping system and opens new avenues for research on the mechanisms that support
it. Starting from these results, future studies could address which properties of the
pseudoword forms contribute to particular semantic interpretations, thus providing
an algorithmic account on how the system operates. This component is a relevant
aspect of the pseudoword interpretation process and raises further questions about the
exact nature of the cognitive processes involved. Thus, while our study sheds light on
the capacity of individuals to ascribe meaning to pseudowords, it opens up avenues
for further exploration into the intricate dynamics of form-meaning relationships in
language. The data we have made available offers a valuable starting point for this
continued investigation.

An additional line of research where language models could be used as a critical
tool in understanding pseudoword interpretation processes is the analysis of the role of
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the (linguistic) context in understanding novel lexical items. In this study, we deliber-
ately focused on the word-internal mechanisms supporting the extraction of semantic
information from form alone. On the other hand, previous research has also shown that
the (sentence) context in which a novel lexical item is encountered plays a major part
in forming a semantic representation for said item (e.g., Borovsky, Kutas, and Elman
2010; Günther et al. 2020; Lazaridou, Marelli, and Baroni 2017). Future studies should
thus investigate the interplay between such contextual information and the word-level
information encoded in the pseudowords’ form: Language models have the ability to
process and represent language based on context. By incorporating contextual analysis,
future research could explore how surrounding words, sentences, or even larger text
structures contribute to the meaning that humans attribute to pseudowords.

From a practical standpoint, our approach could be helpful in providing addi-
tional experimental control in studies utilizing pseudowords as stimuli. For instance, in
pseudoword learning experiments, researchers might want to ensure that the sub-word
content of a pseudoword is not associated a priori with certain semantic properties that
the participants are expected to learn during the experiment (which so far required addi-
tional data collection from human participants; see for example Günther, Dudschig, and
Kaup 2018). More generally, it is likely that researchers in psycholinguistics might want
to control for the semantic content that is encoded in a pseudoword’s form. In cases
where such semantic content might be expressed as a single word, simpler alternatives
such as fastText might suffice; however, if the semantic content to be controlled is more
complex and needs to be articulated at the sentence level, our approach might provide
a straightforward way to measure in a data-driven fashion the semantic association
between a pseudoword’s form and declarative meanings.

A: Removal of pseudo-compounds

To ensure that the effect we reported could be ascribed to general sub-word form-to-
meaning relationships (as opposed to consolidated word-level semantic knowledge),
we took care to re-run our main confirmatory analysis after the exclusion of pseudo-
compound words. Indeed, semantic composition relies on established word-level se-
mantic features, and this process of conceptual combination is outside of the scope of
the paper. In the data we collected for Study 2, there were four morphologically parsable
pseudowords (switchcraps, punstack, popend, danchunk). Thus, as a control, we repeated
the main analysis after removing those words and their corresponding definitions. Our
results showed that the main effect of our independent variable of interest was not
critically dependent on the presence of pseudo-compounds in our data, as it remained
significant after their exclusion (B = 0.00809, SE = 0.00032, t = 24.56, p < .0001). The
target pseudoword was the closest to its associated definition in about .5% of the cases
(Hit@1 = 0.0056; chance level: 0.0025), and among the closest 10 and 20 words for about
4% and 8% of the definitions (Hit@10 = 0.0408, Hit@20 = 0.0782, with chance level
being 0.0253 and 0.0505, respectively).
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