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The staggering pace with which the capabilities of large language models (LLMs) are increasing,
as measured by a range of commonly used natural language understanding (NLU) benchmarks,
raises many questions regarding what “understanding” means for a language model and how
it compares to human understanding. This is especially true since many LLMs are exclusively
trained on text, casting doubt on whether their stellar benchmark performances are reflective of
a true understanding of the problems represented by these benchmarks, or whether LLMs simply
excel at uttering textual forms that correlate with what someone who understands the problem
would say. In this philosophically inspired work, we aim to create some separation between form
and meaning, with a series of tests that leverage the idea that world understanding should be
consistent across presentational modes—inspired by Fregean senses—of the same meaning.
Specifically, we focus on consistency across languages as well as paraphrases. Taking GPT-
3.5 as our object of study, we evaluate multisense consistency across five different languages
and various tasks. We start the evaluation in a controlled setting, asking the model for simple
facts, and then proceed with an evaluation on four popular NLU benchmarks. We find that the
model’s multisense consistency is lacking and run several follow-up analyses to verify that this
lack of consistency is due to a sense-dependent task understanding. We conclude that, in this
aspect, the understanding of LLMs is still quite far from being consistent and human-like, and
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deliberate on how this impacts their utility in the context of learning about human language and
understanding.

1. Introduction

In the past ten years, the abilities of neural language models (LMs) have developed at
a—for most—unimaginable pace. This progress has aroused much excitement among
both scientists and applied researchers, and it comes with a range of interesting ques-
tions in various domains. One category of such questions pertains to the type of (linguis-
tic) intelligence that neural networks possess and how studying them may help us make
progress on scientific questions related to linguistics, cognitive science, and human
language processing (e.g., Baroni 2023; Linzen and Baroni 2021; Hupkes 2020; Pavlick
2023). Specifically, recurrent neural networks (Elman 1990), which were originally pro-
posed as alternative theories of human sequential processing, have been examined
in this context, primarily with respect to topics in syntax and morphology (among
many others, Dankers et al. 2021; Lakretz et al. 2021; Jumelet et al. 2021; Malouf 2017;
Van Schijndel and Linzen 2018; Abnar et al. 2019). More recently, their attention-based
counterparts have also gained popularity in exploring human linguistic processing (e.g.,
Timkey and Linzen 2023; Lakretz et al. 2022). In the fields of cognitive science and
psychology, neural networks have, among other things, taken on an important role in
the debate about syntactic nativism. In particular, later generations of neural networks,
which show strong command of natural language syntax (for an overview, see Chang
and Bergen 2023, Section 3), are by some considered to provide a counter-argument to
the claim that innate biases are required to learn natural languages (Contreras Kallens,
Kristensen-McLachlan, and Christiansen 2023; Piantadosi 2023; Mahowald et al. 2023,
i.a.).

While the debate on this has hardly been resolved1—and likely will not be for a long
time—LMs have arrived at a stage where their mastery of syntax is almost undisputed,
as they obtain nearly perfect scores on syntactic datasets that are challenging even
for humans (Wang et al. 2019; Kocijan et al. 2023; Liang et al. 2023). In recent times,
research exploring the capabilities of (large) language models—(L)LMs—has therefore
shifted to their ability to correctly process semantics. In this vein, many datasets have
been developed to quantify the extent to which LMs are able to conduct a range of
different natural language understanding (NLU) tasks (e.g., Wang et al. 2018, 2019;
Hendrycks et al. 2021). In the literature, there is considerable discussion about the extent
to which these datasets accurately measure what they claim to measure. Commonly
used arguments center around the concept of construct validity, and are supported by
findings that datasets contain biases (Gururangan et al. 2018; Benchekroun et al. 2023),
can be solved with heuristics rather than understanding (McCoy, Pavlick, and Linzen
2019; Saxon et al. 2023; Sen and Saffari 2020; Niven and Kao 2019), or do not agree with
other datasets claiming to measure the same skill (Sun, Williams, and Hupkes 2023). A
much less frequently discussed topic is what this new wave of models, which according
to many learn under vastly different circumstances than humans, can still teach us about
human language (processing).

1 A frequently mentioned critique of this ability is that LMs require vastly more data than humans to arrive
at this level of performance (see, e.g., Dupoux [2018] or Warstadt and Bowman [2022] for a discussion).
Therefore, more and more research is being carried out to study which syntactic skills language models
can learn from smaller amounts of data (Zhang et al. 2021), or even amounts comparable to what children
have ingested (Warstadt et al. 2023).
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While training on inconceivable amounts of data likely makes modern LLMs less
suitable to study questions related to syntactic processing and grammar, their new-
found NLU abilities open the door to studying a new realm of questions, related to
the nature of meaning and how language expresses it. Some have argued that it is
a priori not possible to learn meaning from form alone (e.g., Bender and Koller 2020),
yet others disagree or argue that the training signal for at least some LLMs goes beyond
form (e.g., Piantadosi and Hill 2022; Mollo and Millière 2023; Pavlick 2023; Mandelkern
and Linzen 2023). Here, we take a different stance: Although our approach is embed-
ded in theoretical arguments about the concept of meaning, we propose an empirical
method to investigate the notion of meaning acquired when (mostly) being exposed to
form. Our focus is not on explaining how meaning is acquired from form, but rather
on individuating necessary criteria for grasping meaning and developing a metric to
quantify this in LLMs.

Our method is inspired by the seminal works of Frege (1892) and Wittgenstein
(1953), who both put forward influential philosophical theories of meaning. Frege’s
work starts from the observation that if the meaning of a word or phrase were uniquely
determined by what it denotes, this would imply that the statements “a=a” and “a=b”
were equally informative, which is evidently not the case, even if a and b refer to the
same object. To solve this apparent paradox, Frege introduced the key concept of the
sense (Sinn) of an expression, which conveys the mode of presentation by which a
particular phrase denotes a referent. As such, Frege’s work acknowledges and formal-
izes the idea that different linguistic expressions can share the same referent. We com-
bine Frege’s notion of sense with Wittgenstein’s idea that the meaning of language is
defined by the effect it has on the world (Wittgenstein 1953), which thus functions as
an anchor for diverse linguistic forms. Put together, this suggests that having a genuine
understanding of language entails understanding its relation to the world, which would
in turn imply consistency among different linguistic expressions that pertain to the same
entities within the world. As LLMs are trained without direct access to the anchor that
is the world, we propose that their understanding can be tested by investigating if
they—nevertheless—have constructed their representational space such that they re-
spond consistently across different forms with the same meaning.

We translate this idea into a method to probe the semantic depths of the form-
driven meaning acquired by LLMs, which we call multisense consistency.2 Crucially,
we do not presuppose that particular linguistic expressions have the same meaning,
but we ask the model itself to generate meaning-preserving expressions, thus focusing
more on whether a model has acquired a notion of meaning than on whether that
notion is exactly aligned with ours. If a model generates consistent responses when
prompted with these expressions, this would suggest it might be linking them to their
common underlying meaning. We apply our consistency-based test to investigate one
of the currently most advanced models: GPT-3.5.3 In a series of experiments, beginning

2 It is worth pointing out that, according to Frege, different linguistic expressions with the same referent
may also have the same sense. Our borrowing of the term is, in that sense, loose.

3 Note that GPT-3.5 was trained on more than form. While the details are unknown, the training involved
Reinforcement Learning from Human Feedback (Ouyang et al. 2022), which arguably provides
additional information such as communicative intent. It has also been argued that, even without this
additional training stage, typical training corpora contain information beyond form, for example, written
computer programs and the outputs they generate (Bender and Koller 2020). Detecting inconsistencies
thus suggests that even this kind of additional information does not give rise to a meaning-based
understanding. Beyond that, multimodal LLMs, which we do not consider here, encounter more explicit
information about form-meaning mappings during training.
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with the evaluation of basic truth-conditional statements and progressing to more
complex ones, we discover numerous instances where the LLM responds inconsistently
across different, meaning-preserving expressions, even in scenarios as straightforward
as reiterating a fact. This is true both when meaning-preserving senses are paraphrases
and translations. Our results, which we substantiate with several follow-up analyses,
illustrate that even one of the best-performing LLMs does not seem to have meaning-
preserving representations that align with what a Fregean theory of meaning may
consider true meaning. While this may come as no surprise to many, it still begs the
question of what the conclusion would have been if the model did pass this consistency-
based test, and if there is anything that could convince us that an LLM has—in fact—
truly acquired meaning. We elaborate on this in our discussion.

Outline. In the remainder of this article, we will first take a closer look at Frege’s theory
on sense and reference, which provides the framework for our approach (§ 2). We will
then give a high-level overview of how multisense consistency can be used to study
the discrepancy between competence in form and competence in meaning (§ 3) before
providing more details on our experiments, such as the model and the senses consid-
ered (§ 4). We discuss results for two different types of datasets—simple hand-crafted
probes of factual knowledge and popular NLU benchmarks (§ 5 and § 6, respectively),
following up with several analyses to study when and why inconsistencies arise (§ 7).
Finally, we position our contribution in the context of related work (§ 8) and discuss our
findings within the broader scope of using LLMs as models of meaning (§ 9).

2. Philosophical Background

Our study draws inspiration from philosophical notions of meaning, in particular the
one put forth by Frege (1892). Here, we provide a short discussion of this philosophical
backbone and its relevance to evaluating LLMs.

Sense and Reference. Before Frege, theories of meaning often struggled to explain the
relationship between words and the world they describe, typically approaching this
relationship in a linear and simplistic way. These theories faced difficulties in explaining
how language could meaningfully refer to non-existent entities, define the meaning of
statements that cannot be easily mapped to a truth value, or handle identity statements
where two different expressions appear to refer to the same object. Frege’s introduction
of the concepts of sense (Sinn) and reference (Bedeutung) offered a solution to these
problems. The reference of an expression is the actual entity or concept the expression
corresponds to in the real world and is decisive in determining the truth value of a
sentence. The sense of an expression, in contrast, comprises the way in which this
reference is presented. For example, the morning star and the evening star refer to
the same celestial body, Venus, but have different senses (see Figure 1). Not only can
the same reference be presented through different senses, but the same sense can also
be realized through different expressions—with some surface level variations (Frege
[1918–1919] mentions injections such as “alas” or “thank God” as examples). If two
forms (expressions) have the same sense, it is possible to determine a priori that they
map to the same referent. However, if two forms have different senses, learning that
they have the same referent provides an extension of our knowledge. The distinction
between sense and reference is vital for understanding identity statements and lan-
guage paradoxes, where the same reference may be approached through distinct senses.
Furthermore, it implies that language is not just a tool for naming or describing things
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Figure 1
Illustration of the relationship between sense and meaning for the classical Fregean example of
“morning star” and “evening star” (left) and for the ADDITION task in our experiments (right).4

but serves as a window into how speakers conceptualize and engage with their envi-
ronment. By distinguishing between sense and reference, Frege provided a framework
that could handle the subtleties of language use, such as ambiguity, metaphor, and the
context-dependent nature of meaning. This framework, now central to the philosophy
of language, underscores that a certain reference can be expressed and conceptualized
in different ways.

Relevance to LLMs. Making use of the conceptual groundwork laid by Frege, we posit
that true linguistic understanding in LLMs should be evident not just in processing
the surface form of text but in grasping the reference that underlies this text. Our
methodology leverages this principle by examining the model’s consistency across
different expressions that refer to the same underlying meaning. By using the model
itself to generate the alternative forms, we ensure that it should—in principle—“know”
that they have the same meaning. Taking the example above, if a person is not aware
that “evening star” and “morning star” have the same reference (or “two plus two” and
“the sum of two and two” for that matter), their response to these two expressions will
likely not be the same. However, if a person knows that the two expressions can be used
interchangeably, they should be able to answer the same facts about Venus regardless
of the choice of expression. By testing across languages and paraphrases, we essentially
probe whether LLMs can discern that different textual forms (or senses) may converge
on the same reference or meaning, thus revealing a more profound understanding of
language beyond mere textual mimicry.

Adopting a loose interpretation of Frege’s notion of “sense”, our multisense con-
sistency method applies to the more general case of different senses as well as the
more specific case of different forms expressing the same sense. At the same time,
considering translations and paraphrases as potentially involving shifts from one sense
to another acknowledges the complexity and richness of language. Different languages
and (paraphrased) expressions can present the same referent (or truth value) in diverse
ways, capturing the many-sided nature of human thought and culture. Regardless of
shifts in sense, the crucial factor is the preservation of the reference—the actual object

4 The illustration of Venus was taken from https://www.universiteitleiden.nl/leven-in-het
-heelal/over-leven/venus.
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Figure 2
Illustration of the multisense consistency paradigm. We use a model to generate alternative
meaning-preserving senses of the original input, and then evaluate whether the same model
gives consistent responses to the original input and alternative sense. In this example, the task
is to answer a simple factual question, and the model is asked to generate an alternative
sense through translation (from English to German). The example illustrates that accuracy
and consistency are distinct. Even though the model’s responses are incorrect
(Marrakesh/Marrakesch instead of Rabat), they are consistent because they refer to the same city.

or truth condition the expressions pertain to. This approach is consistent with Frege’s
emphasis on the importance of reference in determining the truth value of sentences.

3. Evaluating Multisense Consistency

Concretely speaking, we investigate whether LLMs can be considered to have a form-
independent notion of meaning by constructing a test that quantifies whether their
understanding is consistent across different expressions with the same meaning. In
what follows, we refer to those tuples of expressions as senses. Before diving into our
experiments, we first give a high-level overview of the main components of this idea.
We discuss how we generate different senses (§ 3.1), what data we start from to do
so (§ 3.2), and our method for computing multisense consistency (§ 3.3). We provide a
schematic in Figure 2.

3.1 Generating Different Senses

The first important component of our paradigm comprises the senses: tuples of expres-
sions that express the same meaning in different manners. Senses could be generated
in several ways. In this work, we consider two different methods: translation and para-
phrasing, which we will denote by the superscripts T and P, respectively. Importantly,
we use the model under investigation to generate meaning-preserving senses, with
the idea that if the model has a meaning-based understanding and is proficient at
generating alternative senses (which we control for in § 7), these senses should have the
same meaning according to the model and should thus elicit consistent responses. On
the contrary, if a model’s meaning is tied to a specific form, there is no reason to assume
the response to two senses that have the same meaning should be the same. Thus,
using the model to generate the senses controls for subjective meaning-consistency.
This approach mirrors Frege’s seminal distinction between sense and reference (Frege
1892) emphasizing that true understanding transcends linguistic form to grasp the
underlying meaning. Just as Frege illustrated how different expressions can denote the
same reference, our paradigm tests whether LLMs can discern and maintain this crucial
distinction in a computational context.
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3.2 The “Base” Data

The second component of our paradigm is a “base” dataset, to generate different senses
from. While the multisense consistency paradigm can in theory be applied to any data,
generating senses that have the same meaning may be more or less difficult depend-
ing on the initial data and the sense-generation procedure. In this article, we work
with two types of datasets. The first type comprises synthetically constructed datasets
with simple facts. Because we can be certain that their meanings are consistent across
languages, they allow us to test form-independent meaning in a very controlled way.
We describe this data as well as our experiments with this data in § 5. Secondly, we
consider benchmarks commonly used to evaluate understanding in LLMs. Specifically,
we include four different benchmarks covering four different types of NLU tasks: PAWS
(Zhang, Baldridge, and He 2019) for paraphrase detection, the English portion of XNLI
(Conneau et al. 2018) for natural language inference, COPA (Roemmele, Bejan, and
Gordon 2011) for commonsense (causal) reasoning, and Belebele (Bandarkar et al. 2023)
for reading comprehension. We describe this data as well as our experiments with this
data in § 6.

3.3 Measuring Self-consistency

Lastly, given two senses with the same meaning and two model responses to those
senses, we need to define when those two responses are considered to be the same.
In other words, we need to specify a method to compute consistency. Consistency is
distinct from accuracy or other performance metrics, in that the model’s responses to
one sense are evaluated against its responses to the other sense, rather than the ground
truth (see Figure 2). Whether responses count as consistent depends both on the task
and the way that different senses are generated. For instance, if senses are generated
through paraphrasing and the task is a classification task where a model has to pick
an answer from a predefined list (e.g., “yes”/“no”), exact match is a good candidate
to quantify consistency. If senses are generated through translation, however, model
answers will likely be given in different languages, and may look completely different
but still share a meaning (e.g., “yes” in English, “ja” in German). In that case, a more
custom consistency function is required to judge consistency across senses. For open-
ended generation tasks, it can be complicated to define consistency. In such cases,
one option is to ask the model itself to judge whether its two answers have the same
meaning. In our experiments, we use different methods to evaluate consistency, which
we elaborate upon in the respective sections.

3.4 Summary of the Procedure

Overall, our procedure can be summarized as follows. Given a modelM and a task T ,
which consists of datapoints T = {x1, . . . , xn},

1. Collect the model’s responses on T : R = (r1, . . . , rn), with ri =M(xi).

2. Use the model to generate an alternative sense T ∗ of the task, using a
specific prompt p: T ∗ = {x∗1 , . . . , x∗n}, with x∗i =M(p, xi).
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3. Collect the model’s responses on T ∗: R∗ = (r∗1 , . . . , r∗n ), with r∗i =M(x∗i ).

4. Calculate the consistency between R and R∗ according to some function:
C(R, R∗) = 1

n
∑n

i=1 f (ri, r∗i ).

The resulting consistency value C expresses multisense consistency.

4. Experimental Details

Before coming to our experiments, we provide some basic details about the setup that
all experiments share.

4.1 Model

We investigate GPT-3.5-TURBO-0613, a specific snapshot of GPT-3.5-TURBO from 13
June 2023. We use the default parameters but set the temperature to 0.2. The sampling
temperature can be chosen between 0 and 2, and 0.2 is considered a low value, leading
to more deterministic and focused output (see also the OpenAI API documentation5).
In our case, a small temperature yields model responses that closely match the template
answers for benchmarking, as well as model translations that closely preserve the
meaning of the source sentences.

4.2 Senses

In all our experiments, our starting point is an English dataset, which we denote with
en. We consider model-generated paraphrases of that data and model-generated transla-
tions into other languages. For some datasets, we also have external translations, which
we use for saliency checks and comparisons. Target languages include German (de),
Italian (it), Dutch (nl), and Swedish (sv). We use the current common crawl statistics6

to compute an estimate of how low- or high-resource these languages are in Web-based
corpora. Of this corpus, English constitutes 46% of the data, German 5.8%, Italian 2.7%,
Dutch 2.2%, and Swedish 0.7%. We assume that the GPT-3.5 training data qualitatively
follows a similar pattern for these languages, from higher- to lower-resource. The mul-
tisense evaluation method only works if the model is able to accurately paraphrase and
translate the inputs. Therefore, we do not include even-lower-resource languages. With
our selection of languages, we aim to cover some range in the amount of training data
without compromising translation quality.

4.3 Same-sense Baseline

We report multisense consistency next to a same-sense baseline consistency. The base-
line consistency is the consistency between two generations with the exact same En-
glish input (id). In other words, the two inputs underlying the baseline consistency do
not even differ in form. Differences in model responses on these inputs can thus be
attributed to inherent model stochasticity (possible because of the non-zero sampling
temperature). The baseline consistency therefore serves as a reference, which can be

5 https://platform.openai.com/docs/api-reference/chat/create.
6 https://commoncrawl.github.io/cc-crawl-statistics/plots/languages, CC-MAIN-2023-40.
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used to estimate the degree to which inconsistencies between different senses can be
attributed to differences in form rather than such inherent stochasticity.

5. Multilingual Factual Consistency

In our first set of experiments, we test the model’s form-dependency when answering
simple questions about facts. To do so, we generate datasets that assess a model’s
consistency in representing basic factual information from various knowledge domains.
The power of these datasets lies in their simplicity. There is little room for nuances
in wording across different senses that could cause the model to assign a different
meaning. Factual knowledge—in contrast to more complex aspects such as expressions
of sentiment—is easy to keep stable across senses, because the meaning of factual
statements collapses to their truth value. To give an example, if you ask a colleague
who is fluent in both French and English if a particular statement is true, you expect
their answer to be invariant to the language (French or English) in which you ask
this question. Along the same lines, the model should generate consistent responses
when asked about the kinds of simple facts considered here. Given that the fact-based
questions leave hardly any room for ambiguity, inconsistent responses point straight to
a form-dependent “understanding”.

5.1 Methods

Our SIMPLE FACTS dataset consists of five distinct datasets, each containing one or more
subtasks.

Dataset Creation. Table 1 provides an overview of the datasets and subtasks, including
information on the dataset size and examples. Each dataset comprises a single tem-
plate with specific content fields masked out. During dataset creation, different entities
(names, dates, etc.) are inserted into these fields. For instance, the WRITERS dataset is
based on the template “In what year was the writer [WRITER] born?” and in each

Table 1
Simple facts datasets. In this table, we provide the templates we used to generate the SIMPLE
FACTS datasets, and the total number of examples in each dataset (N). For each template, we
provide an example in which the mask(s) are populated with an example datapoint (in bold)
from our datasets.

dataset subtask N template / example

ARITHMETICS – 500 “What is three hundred seventy-five plus twenty-three?”

ELEMENTS

FROM-ELEMENT 90 “What is the atomic number of the chemical element He?”

FROM-POSITION 90
“What is the atomic number of the chemical element
in period 5 and group 7?”

OLYMPICS 100M 148
“Who won the gold medal in the men’s 100 meters at the
2000 Summer Olympics?”

DOWNHILL 117
“Who won the bronze medal in the women’s downhill
competition at the 1976 Winter Olympics?”

WRITERS – 186× 5 = 930 “In what year was the writer Friedrich Schiller born?”

COMPANIES – 100× 5 = 500 “In what city does Airbus SE have its headquarters?”
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datapoint, [WRITER] is replaced by the name of a different writer. For both WRITERS
and COMPANIES, we ensure—with some simplification—that the writers and companies
are evenly distributed over countries in which the languages we consider constitute the
dominant language.7 More details on each dataset can be found in Appendix A.

Sense Generation. We prompt the model to generate different senses for each (sub)task
by asking it to paraphrase or translate the corresponding template. Because only the
template changes, we can evaluate the quality of the generated paraphrases and trans-
lations by hand. Details on the instructions used for generating different senses can be
found in Appendix B and the original instructions and the model’s translations can be
found in Appendix C.

Model Instructions. To facilitate the performance and consistency evaluations, we always
instruct the model to respond with a single entity (e.g., the name of the athlete for
OLYMPICS) or number (e.g., “4754” for ARITHMETICS).8 On the ARITHMETICS dataset,
the model is further instructed to reply with the numerical answer, even though the
two summands are spelled out.

Consistency Evaluation. The SIMPLE FACTS datasets contain a set of correct answers Ad
for each datapoint d. For example, the answer sets for COMPANIES cover all varia-
tions in city names for the languages we work with (e.g., for the city of Berlin, Ad =
{“Berlin”, “Berlijn”, “Berlino”}). To give another example, the answer sets for OLYMPICS
contain different variations of the athletes’ names (e.g., for the winner of the men’s hun-
dred meters in 1920, Ad = {“Charlie Paddock”, “Charles Paddock”, “Charles William
Paddock”}) as well as multiple names if there is more than one winner. Model responses
are always normalized by lowercasing and removing surrounding white spaces and
punctuation. Given the normalized model responses, R and R∗, the consistency

C(R, R∗) = 1
n

n∑
i=1

f (ri, r∗i )

(see § 3.4, step 4) is calculated as

f (r, r∗) =

{
1r∈A & r∗∈A, if ∃A : r ∈ A or r∗ ∈ A ,
1r=r∗ , else ;

where A is a set of possible answers for a datapoint in T (which are the same as the
answer sets for T ∗) and 1 is the indicator function. In other words, if an answer set is
available that contains the model’s response r or r∗, both of the responses have to be
in that set to be consistent. If no such set exists, consistency is approximated by exact
match.

7 The languages we consider are spoken in different countries, but we tend to focus on one country each.
For example, for COMPANIES, we consider an equal amount of US, German, Italian, Dutch, and Swedish
companies, establishing a rough correspondence between prompt languages and factual information.

8 We double-checked if the model sometimes indicates that it does not know the correct answer, if it is not
instructed to respond in these particular ways. On all datasets but WRITERS, it does so very rarely (≤ 1%).
Additionally, a comparison of the model’s responses to WRITERS in en and deT showed that even if the
model indicates that it does not know the correct answer, it does not do so consistently between senses.
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Figure 3
Accuracy (%) for the SIMPLE FACTS datasets, with 95% confidence intervals. Apart from the
arithmetics task, the accuracy scores are generally similar across different senses. Numerical
scores can be found in Table 7.

5.2 Results

Before studying the model’s consistency, we consider its ability to correctly answer the
factual questions. The model’s performance helps us put its consistency into perspective
because it sets an upper and a lower bound for the consistency. For instance, if a
model reaches maximal performance across senses on some task, it will also be perfectly
consistent.

Performance. We compute the accuracy (exact match) scores across datasets and senses.9

For some datapoints there are several correct answers; the model’s response counts as
correct if it corresponds to one of them. The set of correct answers contains variations
in naming (e.g., “Charles Paddock”, “Charlie Paddock”, “Charles William Paddock”),
including variations between the languages we use (e.g., “Berlin”, “Berlino”, “Berlijn”).
The full list of equivalent answers can be found in our repository.10 In Figure 3, we
can see that the difficulty of the tasks and subtasks varies strongly. For instance, accu-
racies on ELEMENTS-FROM-ELEMENT are uniformly close to 100% whereas accuracies
on OLYMPICS-DOWNHILL are below 38%. However, the model’s performance within
subtasks is relatively consistent across the different senses, except for ARITHMETICS,
where performance in English is vastly higher than performance for other languages.

The differences in accuracy for ARITHMETICS are striking. We double-checked if the
model fails to reply with a numerical answer in some of the languages but this was not
the case. In Swedish, the model sometimes responds with the entire equation instead of

9 The model is instructed to reply with the correct entity and no additional words. In the large majority of
the cases the model follows this instruction, such that there is little difference between counting responses
as correct when they contain the right answer instead of being an exact match. For details, see Appendix E.

10 https://github.com/facebookresearch/multisense_consistency.
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Figure 4
Consistency (%) for the SIMPLE FACTS datasets. None of the senses have a consistency close to
the maximum possible given the difference in accuracy between the two senses (indicated by the
horizontal blue lines), indicating that the models are inconsistent even beyond those differences.
Numerical scores can be found in Table 9.

the correct sum (e.g., “342 + 122 = 464” instead of “464”) but accuracy only increases by
2% when accounting for these cases. It could be that spelled-out numbers are rare in the
training corpus such that high versus low-resource effects get magnified, which could
explain why there is a big drop from en to de/it/nl, and then another one to se.

Consistency. Next, we consider how consistent the model’s representations are across
senses. We report the results in Figure 4. Because the generation process is stochastic at
non-zero temperature, asking the same question twice may lead to different responses.
We exploit this to report also same-sense consistency between two en-runs (denoted
with id). Note that if a model has a maximal accuracy on one of the senses, its con-
sistency score equals the accuracy of the other sense, without providing any evidence
for form-independent meaning representations. We therefore exclude the ARITHMETICS
and ELEMENTS-FROM-ELEM task from our consistency results. More generally, given a
difference in accuracy between two senses, ∆(Acc), the consistency cannot be higher
than 1−∆(Acc).11 We indicate these upper bounds in the figure with blue lines above
each bar. While consistency and accuracy are thus not independent, as long as accuracies
are not at 100%, they are clearly distinct. Even if the differences between the accuracies
are small, the consistency may vary wildly.

11 For example, if the model is 80% correct on one sense and 60% correct on another sense, the maximal
consistency is achieved when the respective overlap between correct and incorrect responses is maximal:
The same 60% of the datapoints are correct on both senses, and the same 20% of the datapoints are
incorrect on both senses, resulting in 100%-(80%-60%)=80% consistency.
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In Figure 4, we can see a manifestation of this statement: Although the accuracy
scores across senses are all comparable (see Figure 3), there is not a single case where
the consistencies are near-maximal. This is remarkable given the simplicity of the tasks
and instructions. Even for English paraphrases, consistency can be as low as 61.5% at a
88.9% baseline (see OLYMPICS-DOWNHILL). In this case, almost all inconsistencies arise
because the model replies with the names of different athletes, usually winners of other
medals in the same competition or winners of other competitions. For example, when
asked for the female bronze medallist in 1988, the model gives the correct answer to
the original prompt (“Brigitte Oertli”) but replies with the name of the world champion
of 1989 to the paraphrased prompt (“Karin Dedler”). More examples can be found in
Appendix G. The baseline scores (id) show that the inconsistencies are not (primarily)
caused by the model assigning equal probabilities to possible answers, leading to
different outputs on different senses. While the baseline scores are not maximal, they
are much higher than what would be expected in such a case.12 In other words, most
inconsistencies cannot be attributed to the lack of a clear winner, in which case the
model would sample from several roughly equally low probabilities.

6. Natural Language Understanding Benchmarks

Our results with the SIMPLE FACTS datasets point to substantial form-dependencies in
the LLM’s representation of factual knowledge. Next, we investigate how the model
behaves on a set of different NLU tasks in which meaning and task understanding are
more complex than merely reiterating knowledge.

6.1 Methods

For our continued evaluation of consistency across more complicated scenarios, we
consider four different benchmarks covering four different types of NLU tasks.

Datasets. First, we consider PAWS (Zhang, Baldridge, and He 2019), a paraphrase
dataset where sentence pairs were adversarially created by word-swapping, result-
ing in negative pairs that have clearly distinct meanings but high lexical overlap
(see, for instance, the example in Table 2). Second, we consider (mainly the English
portion of) XNLI (Conneau et al. 2018), a language inference task containing sen-
tence pairs that either entail or contradict each other, or have a neutral relationship.
Third, we use COPA (Roemmele, Bejan, and Gordon 2011), a dataset containing tu-
ples of a premise and two alternatives, where the task is to select the alternative
that more plausibly has a relation with the premise. Lastly, Belebele (Bandarkar et al.
2023) is a reading comprehension task with multiple choice questions where an an-
swer should be given based on a text passage. We run all our evaluations on the
test split of the respective datasets. Note that all tasks correspond to classification
problems; we standardize the model’s responses and map them onto the corre-
sponding class labels. Furthermore, for some of the languages we consider, paral-
lel data for the tasks exist either in the original corpus (in the case of Belebele and XNLI)

12 The simple facts datasets are open QA tasks. When the model is asked for an entity (e.g., a city), it can
potentially choose its answer from the set of all entities in the relevant category (e.g., all cities). If the
model assigned similar probabilities to many answers in this set, it would likely be inconsistent
whenever it is incorrect. In that case, the baseline consistency would be less than or at the maximum
(when there is a perfect overlap between correct responses) equal to the model’s accuracy on en.
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Table 2
Instructions and example inputs for the benchmark data. We provide an example for each
benchmark dataset in our experiments. The example input is given in bold, the instructions in
normal font.

dataset template / example

paws Do the following two sentences have the same meaning?
Sentence 1: “The Tabaci River is a tributary of the River Leurda in Romania .”
Sentence 2: “The Leurda River is a tributary of the River Tabaci in Romania .”
Please reply with a single word, either “yes” or “no”.

xnli (en) Given the following premise and hypothesis, please identify whether the premise entails the hypothesis,
contradicts the hypothesis, or neither of the two.
Premise: “Well, I wasn’t even thinking about that, but I was so frustrated, and, I ended up talking to him
again.”
Hypothesis: “I haven’t spoken to him again.”
Please reply with a single word: “entailment” if the premise entails the hypothesis, “contradiction” if the
premise contradicts the hypothesis, and “neutral” if the premise neither entails nor contradicts the hypothesis.

copa Given the following premise, which of the two alternatives is more plausible?
Premise: “The item was packaged in bubble wrap.”
Alternative 1: “It was fragile.”
Alternative 2: “It was small.”
Please answer with a single word: “Alternative-1” if alternative 1 is more plausible and “Alternative-2”
if alternative 2 is more plausible.

belebele Virtually all computers in use today are based on the manipulation of information which is coded in the
form of binary numbers. A binary number can have only one of two values, i.e., 0 or 1, and these numbers
are referred to as binary digits - or bits, to use computer jargon.

According to the passage, which of the following is an example of a five bit binary number?

Option A: 1010
Option B: 12001
Option C: 10010
Option D: 110101

Please reply with “A”, “B”, “C”, or “D” to indicate the correct answer. Your reply should be a single
letter and should not contain any additional words.

or in multilingual versions of the corpus (PAWS-X and XCOPA [Yang et al. 2019; Ponti
et al. 2020, respectively]). While our paradigm does not require parallel multilingual
datasets, we use them in § 7 to run additional analyses.

Sense Generation and Model Instructions. For each dataset, we write an English instruction
which together with the task input data forms the prompt presented to the model (see
Table 2). We ask the model to paraphrase and translate the instruction and the input
data separately, and we recompose the two outputs to generate the alternative sense.
Individual datapoints in the benchmarks comprise several components, for example,
a premise and a hypothesis in the case of XNLI. We provide all these components
within the same prompt when asking the model to paraphrase or translate. Com-
bining the components for each datapoint has the advantage that the resulting para-
phrases/translations will be more consistent (e.g., the model will resolve ambiguities
or make certain translation choices in the same way across components). We compared
this method to paraphrasing/translating each component separately, and it resulted
in slightly higher task accuracies on the generated senses. More details on the sense
generation can be found in Appendix B, and the model’s translations and paraphrases
of the instructions can be found in Appendix C.

Consistency Evaluation. The model’s responses for the benchmark data are standardized
and mapped onto the corresponding class label. Standardization involves lower-casing,
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removing surrounding whitespaces and punctuation. The model generally conforms
to the instruction and responds only with the correct answer. However, if necessary,
additional words are also removed (automatically). For example, if the model replies
“The answer is ‘yes’.” in English and “Ja” in German, both responses will be standard-
ized (“yes”, “ja”) and then mapped onto the corresponding class labels, l(r) = 1 and
l(r∗) = 1. Consistency (see § 3.4, step 4) is then calculated as

C(R, R∗) = 1
n

n∑
i=1

1l(ri )=l(r∗i ) ,

where 1 is again the indicator function.

6.2 Results

We discuss our results, again starting with accuracy and then continuing with consis-
tency scores.

Performance. We plot the accuracy scores in Figure 5; horizontal blue lines indicate
chance accuracy. We excluded the results for paraphrases of Belebele, because the
model consistently failed to paraphrase this task—sometimes it ignored the text passage
and sometimes it answered the question instead of paraphrasing. The accuracies for
COPA and Belebele are relatively high (≥ 79%) across senses, followed by PAWS and
then XNLI. Performance on Belebele is particularly high, considering that there are
four answer possibilities, compared to three for XNLI, and two for COPA and PAWS.
Performance on XNLI is particularly low, raising the question of whether this task is

Figure 5
Accuracy (%) for the benchmark datasets, with 95% confidence intervals. For Belebele, we have
no enP score, because the model did not provide useable paraphrases. Horizontal lines indicate
chance accuracy. Numerical scores can be found in Table 8.
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perhaps simply not suited for zero-shot evaluation. Looking into the task in more detail,
we suggest that the task may be very prompt-sensitive, with different preferences in
different model versions. For instance, we observed much higher performances with
an older GPT-3.5-TURBO snapshot as well as GPT-4 on this task. This may indicate
that XNLI is a task that is particularly form-tied, making it an interesting candidate for
evaluating multisense consistency. Overall, we observe that for each task, performance
can vary strongly across senses, with up to 19.7% points on PAWS and up to 12.7%
points on XNLI.

Consistency. Next, we look at the consistency. We plot the results in Figure 6, again
against the en same-sense baseline (id). Horizontal blue lines indicate the maximal
possible consistency when accounting for differences in accuracy. Overall, model con-
sistency is much lower on some tasks than on others. With regard to the accuracy
scores above, the model tends to be more consistent on tasks it can solve well. For
example, consistency is as low as 51.2% on the German translation of XNLI whereas
it is above 84% for all task versions of COPA. This is not entirely unsurprising because
the model can also be consistent when it has a form-dependent task understanding but
has learned to generate the correct response for each form (separately). If the model
makes a mistake, however, it is much less likely that it will generate the same mistake
in another form, if the generated responses are form-dependent. The fact that the model
overall has a higher consistency on tasks with higher accuracy thus suggests that at least
part of its consistency is not due to a form-independent understanding of meaning.
We further investigate this difference in § 7.3. We also see that consistency can vary
strongly between senses, ranging from 51.2% to 82.8% on XNLI, and 67.9% to 82.4%
on PAWS. A comparison against the baseline scores confirms that inconsistencies go

Figure 6
Consistency scores (%) for the benchmark datasets. None of the consistencies between original
and alternative sense are close to the maximum possible given the difference in accuracy
between the two senses (indicated by the horizontal blue lines), indicating that the models are
inconsistent even beyond those differences. Numerical scores can be found in Table 10.
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beyond stochasticity inherent to the model. Considering the results for both SIMPLE
FACTS and benchmark data, it seems that accuracy and consistency tend to decrease
slightly from higher- to lower-resource languages. Given that this effect is small, most
of the inconsistencies are likely not driven by the choice of senses or the process of
generating these senses with the model (see § 7.1 for a detailed analysis). In sum, the
systematic benchmark evaluation provides evidence across larger and more diverse
datasets than the SIMPLE FACTS evaluation. The results are in line with our earlier
observation that GPT-3.5 is not very self-consistent.

7. Analysis

The results in the previous sections suggest that the meaning representations of the
model we investigate are strongly tied to form. The main evidence for that is the model’s
inconsistencies across senses. In this section, we aim to better understand when and
why inconsistencies arise. More specifically:

1. We evaluate whether inconsistencies stem from the model’s inability to
generate meaning-preserving senses, that is, it does not have the ability
to adequately paraphrase or translate (§ 7.1).

2. We evaluate whether the model is inconsistent in its task interpretation,
in its task execution, or in both (§ 7.2).

3. We evaluate consistency conditioned on correctness of the model’s
responses, because—as we argue below—consistently incorrect
responses provide stronger evidence for a form-independent task
understanding than consistently correct ones (§ 7.3).

4. We study if there is a connection between requested information and
prompt language that could provide direct evidence for form
dependency as a source of inconsistency (§ 7.4).

We present these analyses for the simple facts, the benchmarks, or both, as appropriate.

7.1 Quality of Alternative Senses

The metric we propose conflates task understanding of the “primary” sense and ability
to generate different senses: If a model is not able to generate adequate translations
or paraphrases, this may give rise to inconsistencies even if it has a form-independent
understanding of meaning. While both are important qualities, and the metric favors
models that do well across the board, it makes sense to consider the two parts separately
as well. Differences in task understanding for high-quality senses point to a form-
dependent task understanding whereas, as pointed out earlier, a failure to translate or
paraphrase may not. For example, while a poor task understanding can lead to a bad
translation, a poor translation might also arise from a poor command of the target or
source language, or an inability to translate. To examine if inconsistencies are due to
one of the latter causes, we investigate the quality of the paraphrases and translations.
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Table 3
Translation quality. We consider the quality of the translations of the input data to different
senses, according to different commonly used metrics. All scores are comparatively high,
suggesting that the model’s inconsistencies are not driven by an inability to translate.

bleu rouge1 rouge2 rouge-l comet-22
paws deT 57.5 0.81 0.65 0.77 0.85
xnli deT 41.9 0.69 0.49 0.66 0.84
copa itT 40.9 0.66 0.45 0.64 0.86

belebele

deT 41.1 0.69 0.46 0.63 0.84
itT 38.1 0.69 0.44 0.61 0.85
nlT 34.3 0.68 0.40 0.57 0.85
svT 44.0 0.73 0.53 0.68 0.86

Translation and Paraphrase Quality. First, we check the quality of the translations and
paraphrases for both SIMPLE FACTS and benchmark data. To evaluate the instruction
data, we ask native speakers of each language, who are also fluent in English, to verify
whether the paraphrases and translations are correct and meaning-preserving. For the
SIMPLE FACTS data, we consider the templates; for the benchmark data, we consider
the task instructions (see Appendix C for a full list of these). For both types of data, the
instructions were largely judged to be grammatically correct and meaning-preserving,
although they tend to stay relatively close to the English original, such that a native
speaker might prefer a slightly different wording.

Next, we automatically evaluate whether the numbers for the ARITHMETICS task
are translated correctly. Each datapoint consists of a pair of numbers (see Table 1) and
the translation counts as correct if both numbers are translated correctly. We find that
the translations are highly accurate for German (99.6%) and Dutch (99.4%), but less so
for Italian (89.2%) and Swedish (81.0%). Still, the proportion of wrong translations is
significantly smaller than the proportion of inconsistencies across all languages, and
can thus explain only a small part of the inconsistencies for that task.

For the benchmark data, we further evaluate the quality of the translations of the
task input data, by comparing them to reference data, available either in the benchmark
itself (in the case of Belebele) or in the multilingual benchmark versions we use. We
report BLEU (Papineni et al. 2002), ROUGE (Lin 2004), and COMET-22 (Rei et al. 2022)
scores, all commonly adopted measures of translation quality, in Table 3. All metrics
indicate that the model’s translations are of high quality across tasks and languages.
The high scores suggest that, for most of the considered source-target language combi-
nations, inconsistencies can largely not be ascribed to changes in meaning induced by
the translation.

Translation Quality vs Consistency. To investigate the relationship between translation
quality and consistency in more detail, we run several follow-up analyses. First, we
calculate the Pearson correlation between consistency and COMET scores. The correla-
tion for XNLI is negative (ρ = −0.06), and for COPA (ρ = 0.07) and PAWS (ρ = 0.11) it
is relatively small. For Belebele the correlations are also rather small (ρ between 0.08–
0.13), with a somewhat higher value for Swedish (ρ = 0.21). Second, we evaluate the
consistencies for a subset of the best translations, considering only datapoints with
COMET scores greater than 0.80. Relative to the original scores across all datapoints,
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consistency scores change between −2.7 and 2.0 percentage points across datasets and
languages; based on a two-sided t-test this difference is not significant (p > 0.9). Finally,
we evaluate the model’s consistency when replacing the self-translated input data with
the ground truth references for each language. When reference data is available, we pair
the model’s translation of the instruction with the benchmark data for the correspond-
ing target language (e.g., deT instruction and de input data). It turns out that the model’s
consistency decreases in six out of seven cases (by up to−5.2%) and increases in one case
(by 0.7%). In other words, the model tends to be more consistent when the alternative
sense is self-generated. This result also highlights the importance of using the model’s
own translations and paraphrases: Despite imperfect translations and paraphrases, the
model treats self-generated senses as slightly more meaning-equivalent than externally
generated ones. These additional analyses show that translation quality can affect con-
sistency but is not a major driver of the inconsistencies observed in our experiments.

7.2 Interpretation versus Execution

Next, we investigate if, when a model is inconsistent across senses, this inconsistency
stems from an inadequate understanding of what the task is or from an inadequate
execution of that task in that specific language.13 To exemplify this, compare the scenario
in which you are asked to judge whether one English sentence implies the other, but
the request is made in a language that you do not have a great command of with the
scenario in which the question is asked in English, but the sentences to be judged are
in a language you do not understand well. Because the SIMPLE FACTS does not have
separate instruction and task data, we analyze this only for the benchmark data.

To disentangle the impact of changing the sense of the task instruction and the
task input data, we run an ablation experiment. Specifically, we assess the model’s
consistency when paraphrasing/translating only the instruction while keeping the orig-
inal input data (condition I), as well as its consistency when paraphrasing/translating
only the input data while keeping the original instruction (condition X). The result-
ing consistency scores are displayed in Table 4 and the corresponding accuracies in
Appendix H. Neither consistencies for translating only the instructions nor those for
translating only the input data are at their maximum, indicating that the model is in-
consistent in both interpretation and execution. Whether inconsistencies in execution or
interpretation are more pronounced depends largely on the task. In particular for XNLI,
where the instruction is very complex, consistencies are higher when using the same
instruction compared to using the same input data. For tasks with comparatively simple
instructions, the pattern is at least partially reversed. Consistency is always lower when
using the same instruction but different input data for Belebele and COPA, and in
some cases also for PAWS. When paraphrasing/translating both instructions and input
data (cf. Figure 6 / Table 10) consistencies are mostly lower than for either ablation.
Thus, inconsistencies seem to be driven by differences in both task interpretation and
execution. Differences in execution are more pronounced unless the task is difficult to
interpret.

13 This distinction is related to the fact that we evaluate the model’s understanding with different tasks.
Based on Frege’s observation that different senses can have the same meaning, we need to create an
interface that allows us to test whether LLMs actually assign the same meaning to different senses. In our
case, this interface consists of the task that the model is supposed to carry out on a given input. Thus, the
analysis can also be considered a way to disentangle the model’s meaning understanding of the input
sentences from its meaning understanding of the instructions.
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Table 4
Consistency scores (%) for the ablation experiments. We analyze whether consistencies mainly
arise from differences in task interpretation or execution, by considering ablations in which we
translate/paraphrase only the instruction (columns I) or only the input data (columns X). Where
inconsistencies are more pronounced depends largely on the task. Mostly for XNLI, interpreting
the (comparatively) complex instruction appears to be more challenging than understanding the
sentence.

paws xnli copa belebele

I X I X I X I X
enP 89.5 78.4 64.0 86.7 90.2 87.0 – 94.4
deT 77.8 81.1 57.9 88.5 94.0 88.6 94.1 84.7
itT 91.2 82.0 60.9 88.9 91.8 86.2 94.4 83.3
nlT 86.4 83.3 77.9 88.6 93.2 90.0 94.1 86.7
svT 72.7 80.3 82.4 88.6 91.0 87.4 94.2 84.9

7.3 Consistency vs. Correctness

We further investigate if there is a difference in consistency between examples for which
the model provides a correct answer and those for which it provides an incorrect an-
swer. This comparison is interesting because correct and incorrect consistent examples
provide different levels of evidence for consistency of meanings beyond form. If a model
gives consistently correct answers for an example, it is possible that it has inferred those
correct answers independently from the data for the respective languages. In that case,
consistency does thus not necessarily point to a form-independent understanding of the
particular question. This is much less likely the case for incorrectly consistent examples,
as it would require that the data the model was trained on contained the same error for
both languages. Being consistently incorrect across two examples thus points to an error
in the model’s understanding but provides stronger evidence for the consistency of its
underlying representations than examples that are consistently correct.

Figure 7 shows the consistency scores conditioned on whether the model was
correct on the source task (en), for both the SIMPLE FACTS (left) and the benchmark
data (right). The scores are averaged across senses and the id baseline is given by the
dotted lines. We can see that the model is always more consistent on correct responses
than on incorrect responses, suggesting that the responses are—at least in some cases—
consistent simply because they are independently correct in both languages. Given that
the difference between the two conditions (correct vs. incorrect) is more pronounced
for different senses than the same-sense baseline, it cannot solely be attributed to
stochasticity for cases where the model’s distribution is relatively flat among the highest
scoring answers but it can nevertheless not answer “I don’t know”. In conclusion, not
only when answering simple factual questions, but also across a range of NLU tasks,
the model seems to infer a significant amount of its responses separately for each sense.

7.4 Direct Evidence for Form-dependency

The analyses above all provide converging but indirect evidence for form dependencies
in the model’s understanding. In this final analysis, we aim to establish a direct con-
nection between the type of information the model is asked about and the form of the
question. It is plausible that certain information is more often presented to the model
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Figure 7
Consistency scores conditioned on correctness. Error bars indicate 95% confidence intervals.
Examples that are consistent and incorrect provide stronger evidence for a form-independent
meaning understanding than consistent correct examples, because it is less likely that incorrect
information was inferred independently. The large differences between consistent correct and
consistent incorrect in this plot thus indicate that—likely—some of the consistent correct
examples were correct independently. As in the previous plots, upper-bound consistency based
on the individual sense accuracies is given by horizontal lines. The dotted line indicates the id
baseline (two runs in English).

in a certain form during training. For instance, information about Italian companies
likely occurs more often in Italian text than in Swedish text and vice versa. If acquired
meanings transcended the form they were acquired in, this should not matter: Once
acquired, a fact should be accessible in any language mastered by the model. Thus,
if a model scores comparatively better in the language that is related to the informa-
tion requested, this points to a form-dependent question understanding. To test this
hypothesis we exploit the controlled structure of the WRITERS and COMPANIES datasets.
Both datasets comprise five subsets of equal size (see Table 1). Each subset contains
facts that can be considered somewhat specific to one of our test languages, establishing
two conditions of matching or mismatching prompt language and target information.
Accordingly, we investigate whether prompting the model in the information-specific
language yields higher accuracy compared to prompting it in another language.

In Figure 8, we plot (i) the absolute difference between the accuracy of the model
when prompted in the language matching the data subset (e.g., asked about Dutch
writers in Dutch) and the overall average accuracy for all languages on that subset,
and (ii) the absolute difference between the accuracy of the model when prompted
on mismatched subsets (e.g., asked about non-Dutch writers in Dutch) and the overall
average for all languages for that same group of subsets. With the exception of Italian on
the WRITERS task, the model is always comparatively (and sometimes absolutely) better
on the language-matched subsets (plain blue bars) than on the mismatched subsets
(hatched turquoise bars). For example, when prompting the model in Dutch on the
Dutch WRITERS subset, accuracy is almost 4% higher compared to the average accuracy
for this subset across prompts (including nl). A two-sided t-test between the deviations
from the mean for cases with matching versus mismatching information and prompt
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Figure 8
Language-dependent knowledge for the SIMPLE FACTS dataset. Error bars indicate 95%
confidence intervals. For each language, we compute how its accuracy when asked about
information matching that language compares to its accuracy when asked about information not
matching that language (e.g., asking about Dutch writers in Dutch vs in Swedish), compared to
the overall averages for those groups. Generally, the model has higher accuracy when the
prompt language and requested information pertain to the same country (plain bars) than when
it is asked about non-matching information (hatched bars).

languages is highly significant (p = 0.001). While this analysis covers only two datasets,
the results provide direct, positive evidence for a form-dependent task understanding.

8. Related Work

In this work, we considered LLMs as explanatory models of meaning. Here, we discuss
work related to the various aspects of our study. In particular, we discuss studies that
have used LMs as explanatory models of language or language processing (§ 8.1);
work that explicitly discusses form and meaning in LLMs (§ 8.2); and studies that have
involved (multilingual) consistency in LLM evaluation protocols (§ 8.3).

8.1 LLMs as Explanatory Models

Despite the many differences between biological and artificial neural networks, the lat-
ter have been extensively investigated as explanatory models to further our understand-
ing of human cognition, primarily in the domains of vision and natural language. In the
field of natural language processing, these endeavors have spanned a large range of
phenomena and questions. As some understanding of how neural networks behave or
what they represent is a prerequisite for using them as explanatory models, such studies
often interweave various interpretability methods with (psycho)linguistic theory. Here,
we focus specifically on studies that use (modern) LMs and make an explicit attempt to
reconnect their findings with human processing, linguistics, or cognition.14

14 There also exists quite some literature that aims to directly draw connections between the representations
in neural networks and in the human brain. We consider that beyond the scope of this article, and will
not further discuss it.
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Nested Hierarchical Processing. One subject elaborately explored in linguistically inspired
studies of LMs is their ability to process hierarchical structure in language. Starting from
the work of Linzen, Dupoux, and Goldberg in 2016, a wave of studies have considered
long-distance subject-verb agreement as a proxy for this ability (e.g., Gulordava et al.
2018; Giulianelli et al. 2018). The most clear-cut example of using subject-verb agree-
ment in LLMs in an explanatory fashion is the series presented by Lakretz et al. (2019,
2021) and Baroni (2023), who used a psycholinguistic experiment to assess whether a
mechanism for processing nested dependencies they found in LMs may be deployed by
humans as well.

Inflectional Morphology. Another topic that has long been used as a testing ground for
answering questions about linguistic generalization in humans and the viability of
neural networks as models of cognition is inflectional morphology. The amount of
literature on this topic is too vast to discuss in detail in this work; for a concise summary,
we refer to the related work section of Dankers et al. (2021).

Processing Difficulty. Lastly, starting from Elman (1990), there is a long tradition of trying
to link the performance of—mostly recurrent—neural networks to human processing
difficulty (Christiansen and Chater 1999; Frank and Bod 2011; Futrell and Levy 2017,
i.a.). Several such studies have considered surprisal (i.e., predictive difficulty) to study
hypotheses regarding the role of retrieval and prediction in defining human processing
difficulty. Among others, Wilcox et al. (2020), Van Schijndel and Linzen (2021), and
Huang et al. (2023) show that surprisal in neural networks often differs strongly from
human reading-time data, and that predictive difficulty is thus likely insufficient to
explain processing difficulty. In a similar vein, several others have considered how
LMs process garden path sentences (e.g., Ulmer, Hupkes, and Bruni 2019; Van Schijndel
and Linzen 2018, 2021; Arehalli, Dillon, and Linzen 2022)—in psycholinguistics often
studied to investigate if humans maintain multiple parses at once. Ryu and Lewis
(2021), and recently Timkey and Linzen (2023), focus more on the retrieval side, and
show positive results concerning the similarity of attention head behavior with effects
observed in human experiments.

8.2 Form and Meaning in LLMs

Currently, the degree to which LLMs can and do have meaning-based, rather than
mere form-based, knowledge and understanding is widely debated (e.g., Mitchell and
Krakauer 2023; Raji et al. 2021). To begin with, there is no agreement in the community
on whether LLMs can in principle learn meaning from text. While some argue that mean-
ing cannot be learned from form alone (e.g., Bender and Koller 2020) others disagree or
argue that the training signal for some LLMs goes beyond form (e.g., Piantadosi and Hill
2022; Mollo and Millière 2023; Pavlick 2023; Mandelkern and Linzen 2023). Importantly,
current NLU benchmarks do not provide the means to disentangle the roles of form
and meaning (e.g., Heineman 2023). If a model achieves a high score on a benchmark, it
is not clear whether the model relies on specific lexical patterns or general principles
when performing the task (e.g., Ray Choudhury, Rogers, and Augenstein 2022). In
some cases, LLMs have been found to exploit spurious statistical patterns or rely on
information memorized from the training, rather than a flexible and generalizable task
understanding (e.g., Geva, Goldberg, and Berant 2019; McCoy, Pavlick, and Linzen
2019; McKenna et al. 2023). Adversarial datasets (e.g., Nie et al. 2020) are designed
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precisely to expose such shortcut learning behaviors (for an overview of shortcut
learning, see Du et al. 2023). Despite this uncertainty, it is common to construct “un-
derstanding” benchmarks without considering this question. Instead, “understanding”
is typically reduced to generalization across many different tasks (e.g., Wang et al. 2018,
2019; Hendrycks et al. 2021). An evaluation of consistency can also be considered a
generalization evaluation.15 However, by evaluating a model across different senses
with the same meaning (i.e., different versions of the same task) rather than different
meanings (i.e., different tasks), it is possible to uncover form dependencies that stand in
contrast to a human-like task understanding.

8.3 Consistency in LLMs

Various studies have shown that inconsistencies are common in LLMs (and have
suggested methods for improving consistency, which is not our focus). To begin
with, investigations of model robustness have revealed that even minor (meaning-
preserving) perturbations of the model input can strongly affect the generated out-
put (e.g., Chakraborty, Kulkarni, and Li 2023; Weber, Bruni, and Hupkes 2023; Wang
et al. 2023; Mizrahi et al. 2023; Podkorytov, Biś, and Liu 2021). Other than that, studies
are mostly concerned with self-consistency in natural language inference (NLI) (e.g.,
Minervini and Riedel 2018; Wang, Sun, and Xing 2019; Li et al. 2019; Hosseini et al. 2021)
and question answering (e.g., Kassner and Schütze 2020; Alberti et al. 2019; Mitchell
et al. 2022; Chen, Choi, and Durrett 2021; Elazar et al. 2021; Kassner et al. 2021; Asai and
Hajishirzi 2020; Hosseini et al. 2021). For example, Kassner et al. (2021) created a dataset
of sentence pairs that are subject to certain constraints (e.g., if X is a dog is true, X has a
tail must also be true). Their evaluation of Macaw (Tafjord and Clark 2021), a fine-tuned
T5 model, revealed significant inconsistencies in the model’s beliefs. In the same vein,
various GPT models fail to generalize from statements of the form “A is B” to “B is
A” (Berglund et al. 2023). More similar to our work, Elazar et al. (2021) studied whether
factual knowledge in masked LMs is invariant to paraphrasing. To this end, they created
PARAREL, a dataset containing cloze-style English paraphrases (e.g., Homeland originally
aired on [MASK], Homeland premiered on [MASK]), which was, for example, recently used
to reveal inconsistencies across various LLaMA (Touvron et al. 2023) and Atlas (Izacard
et al. 2023) models (Hagström et al. 2023). In the studies mentioned here, consistency is
either evaluated against a network of logical relationships between beliefs or by gener-
ating different forms of the same meaning through paraphrasing. BECEL (Jang, Kwon,
and Lukasiewicz 2022) is a benchmark for evaluating these two types of consistency
(logical and semantic) across various tasks. For each task, the benchmark provides an al-
ternative version (e.g., for semantic consistency the inputs are paraphrased) to compare
the model’s answers across task instances. This benchmark has recently been used to
evaluate ChatGPT, showing that it is more consistent for negations than other LLMs, but
still likely to generate different responses to paraphrases of the same meaning (Jang and
Lukasiewicz 2023). Except for Jang and Lukasiewicz (2023) and our own preliminary
work (Ohmer, Bruni, and Hupkes 2023), consistency usually relies on different forms of
the same meaning that are generated externally from the model. We focus on true self -
consistency, where alternative senses are generated by the model under investigation,

15 See Appendix I for a GenBench eval card (Hupkes et al. 2023) that classifies our work in the context of
generalization research.
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to ensure that the model—if it can assign meaning—should assign the same meaning to
the original and the derived sense.

Multilingual Consistency. Given that we generate different forms through translation,
our approach is related to multilingual model evaluation. Multilingual benchmarks are
usually generated from existing benchmarks through expert translations (for a more
expansive overview, we refer to Hupkes et al. 2023, Appendix D). Prominent examples
include PAWS-X (Yang et al. 2019), XCOPA (Ponti et al. 2020), and XNLI (Conneau
et al. 2018). Furthermore, multilingual tasks have been combined to form multilingual
multitask benchmarks (e.g., Hu et al. 2020; Ruder et al. 2021; Liang et al. 2020). All
of these benchmarks reveal language-dependent differences in performance for cur-
rent multilingual LLMs, which indicates that the models’ responses to the original
and the translated task versions are not perfectly consistent. Recently, Qi, Fernández,
and Bisazza (2023) combined consistency and multilingual evaluation by introducing
a ranking-based consistency metric for evaluating knowledge consistency across lan-
guages independently from accuracy. They found that consistency correlates strongly
with the sub-word vocabulary overlap between two languages, suggesting that knowl-
edge transfer between languages relies on shallow features rather than a true under-
standing. In contrast to existing multilingual evaluation approaches, we aim to evaluate
self-consistency by detecting language-dependent changes in model responses, relying
on the model’s own translations.

9. General Discussion

In this article, we proposed a paradigm to investigate whether LLMs acquire form-
independent notions of meaning, with the larger aim of assessing the viability of using
them as explanatory models to better understand the concept of meaning. In this last
section, we summarize the key aspects of our approach and the main findings from
our experiments (§ 9.1), discuss the separation of form and meaning in humans versus
LLMs in light of our findings (§ 9.2), and revisit the discussion on using LLMs as ex-
planatory models of meaning, specifically considering the role of multisense consistency
therein (§ 9.3).

9.1 Summary

Motivated by the successes of LLMs as explanatory models of form, we are interested
in their potential as explanatory models of meaning. Our analysis takes inspiration from
philosophy of language. Based on Frege’s distinction between sense and reference, we
propose a paradigm to study if LLMs, trained on only forms, possess form-independent
notions of meaning. Specifically, we evaluate the self-consistency of a model across
different meaning-preserving forms (senses), generated by the model itself. The main
idea underpinning this paradigm is that if a model’s understanding extends beyond
form, it should produce consistent responses to different senses that express the same
meaning—provided it understands the equivalency between these different senses.

Using this paradigm, we investigated the form-dependency of natural language
understanding in GPT-3.5, a state-of-the-art language model. We conducted experi-
ments with a novel benchmark with simple factual questions and different NLU bench-
marks. The former provides unambiguous evidence of form dependency, while the
latter speak to the extent of this form dependency across various NLU tasks. We de-
tected inconsistencies for all tasks, across all generated senses, both in paraphrases and
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translations. Our analyses control for explanations other than a form-dependent under-
standing: Inconsistencies are neither due to inherent stochasticity, nor due to changes
in meaning in the sense-generation process. They also help us better understand the
nature of the model’s inconsistencies, by showing that the model is inconsistent in
task interpretation and execution and that the inconsistencies are more pronounced in
incorrect examples than in correct examples. These findings indicate that the model
infers its responses separately for each sense and highlight the limitations of current
LMs in capturing the true nature of meaning.

9.2 Form and Meaning in Humans versus LLMs

Form-independent meaning is critical to human understanding. Many tasks that we
encounter share a common abstract structure. In solving familiar and novel tasks we can
exploit this structure by accessing the same knowledge, reasoning process, or skill (e.g.,
Tenenbaum et al. 2011; Barsalou 2005; Gentner and Hoyos 2017). Furthermore, neuro-
logical evidence supports that the brain maintains abstract task representations which
are used in generalization (e.g., Liu et al. 2019; McKenzie et al. 2014; Badre and Nee 2018;
Vaidya et al. 2021). In our implementation, different forms of the same task correspond
to different languages or paraphrases. Also for this specific instance, there is evidence
for a form-independent understanding in humans. Studies with bilinguals and second-
language learners collectively support the view that lexical-level representations (form)
are independent whereas semantic-level representations (meaning) are shared (Kroll
and De Groot 1997; Hernandez, Li, and Macwhinney 2005; Francis 2009). The mul-
tilingual inconsistencies observed in our experiments with ChatGPT suggest that the
model does not possess such form-independent semantic-level representations. Further
evidence for a form-dependent task understanding in LLMs comes from multilingual
consistency evaluations with model-external translations. While these experiments do
not guarantee that the different translations are meaning-equivalent according to the
model, they still indicate that LLM responses seem to be largely driven by the lexical
form of the input (Qi, Fernández, and Bisazza 2023).

To different degrees, both translations and paraphrases preserve the meaning of
the original expression. In our work, we tested both translating and paraphrasing as
sense-generation methods. However, translation equivalents and synonyms are treated
differently in human cognition. For example, monolingual and bilingual children accept
two names for the same object—violating the mutual exclusivity assumption—if the
two names come from distinct languages but not if they come from the same language
(Au and Glusman 1990). In particular, it seems that translation-equivalents have a closer
cognitive status than within-language synonyms (Francis 2009). The model’s consis-
tency for translations versus paraphrases stands in contrast to the empirical evidence
that changes in language have a more similar cognitive role than changes in wording. If
anything, consistency tends to be higher for English paraphrases than translations (see
for example Table 9). In conclusion, LLMs do not seem to separate between form and
meaning in the way humans do.

It is important to keep in mind that looking up a fact with an LLM is not as
straightforward as looking up a fact in an encyclopedia. Our experiments show that
LLM responses to factual questions may vary between different representational forms
of the same input, even if the model judges these forms to be meaning-equivalent. LLMs
might (at least partially) lack an anchor for the linguistic forms they encounter, which
humans naturally find in the physical world and social interactions (Bisk et al. 2020).
Their responses, especially to factual questions, should thus be considered with caution

1532



Ohmer, Bruno, and Hupkes From Form(s) to Meaning

and users should be aware that other knowledge sources are more reliable. Chang and
Bergen (2023) suggest that many weaknesses of LLMs, including form-dependencies,
can be framed as under- and over-generalization errors. When a model is sensitive
to small, meaning-preserving changes to the input, when recalling facts, this can be
considered an under-generalization of the underlying factual knowledge. The model
may compensate for this failure by over-generalizing other patterns, thus falling back
on certain heuristics to generate an answer. In general, it is important to keep in mind
that LLMs and humans are shaped by different pressures when making a comparison.
For example, while LLM accuracy is strongly influenced by the probability of the task to
be performed, the probability of the target output, and the probability of the provided
input, humans are likely better at generalizing their task understanding across such
variations (McCoy et al. 2023).

9.3 LLMs as Explanatory Models of Meaning: The Role of Multisense Consistency

What are the consequences of our findings for the role of LLMs as explanatory models of
semantic understanding in humans? Up until now, the discussion has largely revolved
around their capacity to represent symbolic structure and to capture the nature of
language use, including communicative intent and grounding in the world. While there
are a priori arguments that LLMs fail on both these fronts, let us consider some argu-
ments in favor of such capacities. Concerning symbolic structure, arguments come, for
example, from interpretability studies that identified dedicated neurons for encoding
specific knowledge (Dai et al. 2022), concepts (Geva et al. 2021), or skills (Wang et al.
2022) in transformer-based LMs. Concerning perceptual grounding, it has been argued
that important aspects of meaning are captured by the role a certain concept plays,
that is, how it relates to other concepts within a representational framework, rather
than being defined by an external referent (Piantadosi and Hill 2022). When studying
the internal representations of LLMs, the organization of concepts—measured through
similarity relationships—indeed seems to match the ground-truth organization of per-
ceptual concepts such as colors (Abdou et al. 2021) or spatial relations (Patel and Pavlick
2022). The lack of self-consistency revealed by our findings opens up a new dimension
to be considered when making such arguments. For example, it is not only relevant
whether LLMs can encode symbolic structure and whether they encode concepts in line
with a human-like conceptual structure, but also whether these encodings are consistent
across senses. In other words, to establish a strong correspondence between LLM and
human concept encodings, these encodings should bear resemblance across different
senses.

With that, we believe that measuring multisense consistency could be a useful
addition to the toolkit used to evaluate the extent to which models can understand nat-
ural language. The method can be used to assess generalization ability beyond specific
forms. It offers affordability and applicability to different evaluation tasks, while also
mitigating the risk of evaluating on data that the model has already encountered during
training. As such, multisense evaluation could serve as a complement to performance-
based model evaluation. Reporting consistency next to standard evaluation metrics like
accuracy, BLEU, or F1-scores will make model evaluation more meaningful in providing
an estimate of how well the model understands a given task beyond its specific form.
Our paradigm can be cheaply and easily expanded to include more languages, tasks,
models, and notions of “sense”. Our choice to generate senses through translation is
well-suited for evaluating current and future models, given the growing trend towards
multilingual models with increasingly proficient translation abilities. Nevertheless,
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numerous other multisense evaluations are conceivable. For instance, senses could be
generated through various word- and sentence-level perturbations (e.g., Wang et al.
2021), across accents or dialects, or across different modalities. Last but not least, cal-
culating consistency for various tasks may help disentangle “unfounded” language-
specific differences (forming the focus of our analysis) from differences related to
cultural bias. Therefore, we encourage other researchers to treat multisense consistency
as an integral part of benchmarking.

The consistency evaluation is only interesting if the model does not master the task
on each sense, in which case its responses are trivially consistent. Although it is usually
impressive when a model achieves high scores on a benchmark that was challenging
for the previous model generation, the community rarely concludes that this model
has mastered the skill this benchmark is supposedly testing. As a result, benchmarks
are usually replaced by more challenging successors when this happens. Thus, we
think it is likely that challenging benchmarks, which can be used for a non-trivial
consistency evaluation, will continue to be available. Still, it is important to mention
that consistency should be evaluated in experiments where the main source of potential
inconsistencies is form-dependency. Model mistakes and inconsistencies should not be
enforced on purpose, for example through ambiguous instructions. Further analyses,
such as controlling the quality of the generated senses or calculating the proportions of
consistent correct versus incorrect responses (see § 7), can help to rule out alternative
explanations.

Crucially, multisense consistency experiments can primarily provide negative evi-
dence. After all, even if an LLM is perfectly self-consistent, it could be mastering each
form independently without relying on a shared meaning. With that, our method can
be grouped together with other methods probing for human-level understanding that,
when successfully passed, provoke thought about what “human-level understanding”
means, rather than providing a proof for it (e.g., Biever 2023; Johnson-Laird and Ragni
2023).

A. Simple Facts Datasets

We use five different datasets to test for factual knowledge. To facilitate the dataset cura-
tion, we focused on facts that are usually presented in a table format and can be queried
with the same template question regardless of the exact datapoint. At the same time, we
tried to cover different domains of factual knowledge, including arithmetics, science,
sports, economy, and literature. Note that these datasets are not intended to serve as
full-fledged benchmarks of factual knowledge but rather as a proof-of-principle. In the
following, these datasets are described in detail. We describe only the base data. The
corresponding instructions are given in Table 1 in the main text. The csv files for each
dataset can be found in our repository.

Arithmetics

The ARITHMETICS dataset tests for the sum of two numbers. The two numbers are sam-
pled randomly between 1 and 1,000 and, to make the questions more different between
languages, we chose to spell out the numbers in words. We wrote functions to map
numerals to spelled-out numbers in all the languages we consider (see our repository).
The function for English was used to generate the original dataset once the integers
were sampled. The functions for the other languages were used to evaluate whether the
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model correctly translated the English (spelled-out) numbers when generating other
senses. The model, in turn, is asked to reply in numerical form, such that the answers
can easily be validated. For instance, one datapoint could be d = ( five hundred seventy-
three, twenty-seven ) and the corresponding set of correct answers would be Ad = {600}.
We sample 500 pairs of numbers, giving us a total of 500 datapoints.

Elements

The ELEMENTS dataset tests for the atomic number of chemical elements. Each datapoint
consists of a chemical element (denoted by its element symbol), as well as its position on
the periodic table (given by period and group). For example, Helium, which is in period
1 and group 18, is given by d = (He, 1, 18). The dataset is used for two different tasks. In
the FROM-ELEMENT subtask, the atomic number of an element has to be determined
from its chemical symbol. In the FROM-POSITION subtask, the atomic number of an
element has to be determined from its position in the periodic table. Hence, in both
cases, the set of correct answers for the above datapoint is Ad = {2}. The model is
instructed to reply with the correct number allowing for easy evaluation against the
ground truth. We ignore the f-block of the periodic table, resulting in a total of 90
datapoints (per subtask).

Olympics

The OLYMPICS dataset tests for the names of Olympic medallists. It is used for two
subtasks. The 100M subtask asks for the medallists in the 100m competition (Sum-
mer Olympics). The DOWNHILL subtask asks for the medallists in the downhill compe-
tition (Winter Olympics). Information on the medallists for these competitions can be
found on various sites on the Internet, for example, https://olympics.com/en/news
/olympics-100-metres-winners-list-men-women-gold-medals-champions (100m)
and https://en.wikipedia.org/wiki/List of Olympic medalists in alpine skiing

(downhill). The templates have to be adapted, depending on whether the model is
asked about the men’s or the women’s competition. Taken together, each datapoint
consists of the competition (100m or downhill), the year of the games, the subgroup
(men or women), and the type of medal (gold, silver, bronze). For example, one
datapoint is d = ( 100m, 1968, men, gold ). Athletes are often called by their nicknames.
We ensure that the set of correct answers contains the nickname as well as the real
name(s). For example, the set of correct answers for the datapoint above is Ad = { Jim
Hines, James Hines, James Ray Hines}. Each year in which Summer Olympics or Winter
Olympics were held generates 6 datapoints (3 types of medals, men and women). We
consider games until 2022 and remove ambiguous cases, resulting in a total of 148
datapoints for 100M and 117 datapoints for DOWNHILL.

Writers

The WRITERS dataset tests for the year of birth of well-known writers. Thus, each data-
point is a writer and the set of correct answers contains their year of birth, for example,
d = ( Friedich Schiller ) and Ad = {1759}. We tried to generate a dataset structure such
that writers are sampled equally from the languages we consider. That is, one fifth of
the data are English-language writers, one fifth are German-language writers, and so
forth. However, we did not ensure that all countries in which these languages
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are spoken are taken into account. Lists of writers for the five languages were
taken from Wikipedia:

• English (American authors only): https://de.wikipedia.org/wiki
/Liste amerikanischer Schriftsteller

• German: https://en.wikipedia.org/wiki/List of German-language
authors

• Italian: https://en.wikipedia.org/wiki/List_of_Italian_writers

• Dutch: https://en.wikipedia.org/wiki/List_of_Dutch-language_writers

• Swedish: https://en.wikipedia.org/wiki/List of Swedish-language

writers

The list of Swedish-language writers had 186 entries and was the shortest. Therefore,
we randomly sampled 186 writers from each of the lists (without replacement) and used
those 186× 5 = 930 datapoints to compose the dataset.

Companies

The COMPANIES dataset tests for the headquarters locations of different companies.
Similar to WRITERS, we try to cover five different countries (US, Germany, Italy, Nether-
lands, Sweden), such that each of the languages we work with is the dominant language
in one of them. Each datapoint consists of a company, for example, d = ( Volvo AB ), and
the set of correct answers contains all relevant variations in the city name, for example,
Ad = {Gothenburg, Göteborg, Gotemburgo, Gotenburg}. We took the 100 largest companies
for each of these countries from different lists on the Internet:

• US: https://en.wikipedia.org/wiki/List of largest companies in the
United States by revenue

• Germany: https://de.wikipedia.org/wiki/Liste_der_gr

• Italy: https://www.value.today/headquarters/italy

• Netherlands: https://www.value.today/headquarters/netherlands

• Sweden: https://www.stockblogs.se/sveriges-storsta-foretag/

If possible, we extracted both company and headquarters location from these lists.
When no location was given, we searched for it online. In total, the dataset contains
100× 5 datapoints.

B. Sense Generation Prompts

Simple Facts

For all SIMPLE FACTS datasets, except ARITHMETICS, only the task instructions (cor-
responding to the templates in Table 1) need to be translated, since the input data
does not change between languages. The prompt for translating is “Please translate the
following text into [LANGUAGE]:\n[TEXT]”. The prompt for paraphrasing is “Please
paraphrase the following text:\n[TEXT]”. The ARITHMETICS input data consists of
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spelled-out numbers, which have to be translated as well. In the case of paraphrasing,
these spelled-out numbers are not paraphrased but remain in their original version. In
the case of translation, the model is instructed to translate each number separately using
the translation prompt above.

Benchmark Data

We use the model to generate alternative senses, treating the task instruction and the
input data separately. The prompt for translating is “Please translate the following
text into [LANGUAGE]:\n[TEXT]”. [LANGUAGE] is replaced by the target language
and [TEXT] by the instruction (for translating instructions) or each datapoint from
the benchmark (for translating input data). For Belebele, it was necessary to explicitly
instruct the model to translate everything without answering the question. The prompt
for paraphrasing differs depending on whether task instructions or input data are
paraphrased. The prompt for paraphrasing the task instruction is “Please paraphrase
the following text:\n[TEXT]”. The prompt for paraphrasing the input data from the
benchmarks is task-specific to help preserve the structure of the original task prompt:

• PAWS: “Please paraphrase the following two sentences (separately). Reply only
with the paraphrased text and do not add any additional comments: \n[TEXT].”

• XNLI: “Please paraphrase the following premise and hypothesis (separately).
Reply only with the paraphrased text and do not add any additional comments:
\n[TEXT].”

• COPA: Please paraphrase the following premise and two alternatives
(separately). Reply only with the paraphrased text and do not add any additional
comments: \n[TEXT].”

• Belebele: “Please paraphrase the following text passage, question, and
multiple-choice answer options (separately). Make sure to paraphrase everything,
including the passage, and reply only with the paraphrased text and do not add
any additional comments:\n[TEXT].”

C. Task Instructions and Alternative Senses

Simple Facts

Table 5 shows the original English (en) task instructions for the SIMPLE FACTS datasets as
well as the model’s paraphrases (enP) and translations (deT, itT, nlT, svT) thereof. Native
speakers of the corresponding languages judged the paraphrases and translations to be
mostly accurate, although they tend to stay very close to the English original. In some
cases, this tendency leads to some formal mistakes. For example, the Dutch instruc-
tion for ARITHMETICS is “Wat is [NUMBER1] plus [NUMBER2]? Antwoord alstublieft
alleen met het juiste nummer [...]”), where “Hoeveel is [NUMBER1] plus [NUMBER2]?
Antwoord alstublieft alleen met het juiste getal [...]” would be more correct. In addition,
there is a grammatical mistake in the Swedish translation for ELEMENTS, where the
definitive article of “the atomic number” should be expressed by a suffix on the noun
“atomnummer”, resulting in “atomnumret”.
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Table 5
SIMPLE FACTS task instructions.

Task Language Instruction

ARITHMETICS
en What is [NUMBER1] plus [NUMBER2]? Please reply with only the cor-

rect number (in numerical form) and no additional words.

enP What is the sum of [NUMBER1] and [NUMBER2]? Please respond with
only the correct numerical answer and no extra words.

deT Was ist [NUMBER1] plus [NUMBER2]? Bitte antworten Sie nur mit der
korrekten Zahl (in numerischer Form) und ohne zusätzliche Wörter.

itT Quanto fa [NUMBER1] più [NUMBER2]? Si prega di rispondere solo con
il numero corretto (in forma numerica) e senza parole aggiuntive.

nlT Wat is [NUMBER1] plus [NUMBER2]? Antwoord alstublieft alleen met
het juiste nummer (in numerieke vorm) en geen extra woorden.

svT Vad är [NUMBER1] plus [NUMBER2]? Vänligen svara endast med det
korrekta numret (i numerisk form) och inga ytterligare ord.

ELEMENTS-
FROM-
ELEMENT

en What is the atomic number of the chemical element [ELEMENT]? Please
reply with the number only and do not use any additional words.

enP Please provide the atomic number of the chemical element [ELEMENT]
using only the number and no extra words.

deT Was ist die Ordnungszahl des chemischen Elements [ELEMENT]? Bitte
antworten Sie nur mit der Zahl und verwenden Sie keine zusätzlichen
Wörter.

itT Qual è il numero atomico dell’elemento chimico [ELEMENT]? Si prega di
rispondere solo con il numero e di non utilizzare altre parole aggiuntive.

nlT Wat is het atoomnummer van het chemisch element [ELEMENT]?
Antwoord alstublieft alleen met het nummer en gebruik geen extra wo-
orden.

svT Vad är det atomnummer för grundämnet [ELEMENT]? Vänligen svara
endast med numret och använd inga ytterligare ord.

ELEMENTS-
FROM-
POSITION

en What is the atomic number of the chemical element in period [PERIOD]
and group [GROUP]? Please reply with the number only and do not use
any additional words.

enP Please provide the atomic number of the element in period [PERIOD] and
group [GROUP]. Respond with only the number and no extra words.

deT ”Was ist die Ordnungszahl des chemischen Elements in Periode [PE-
RIOD] und Gruppe [GROUP]? Bitte antworten Sie nur mit der Zahl und
verwenden Sie keine zusätzlichen Wörter.

itT Qual è il numero atomico dell’elemento chimico nel periodo [PERIOD] e
nel gruppo [GROUP]. Si prega di rispondere solo con il numero e di non
utilizzare altre parole aggiuntive.

nlT Wat is het atoomnummer van het chemisch element in periode [PERIOD]
en groep [GROUP]. Antwoord alstublieft alleen met het nummer en
gebruik geen extra woorden.

svT Vad är det atomnummer för det kemiska elementet i period [PERIOD]
och grupp [GROUP]. Vänligen svara endast med numret och använd
inga ytterligare ord.

OLYMPICS-
100M

en Who won the [MEDAL] medal in the [GENDER] 100 meters at the
[YEAR] Summer Olympics? Please reply with the name only and do not
use any additional words.

enP Please provide the name of the athlete who won the [MEDAL] medal in
the [GENDER] 100 meters at the [YEAR] Summer Olympics, using only
the name and no extra words.

deT Wer hat die [MEDAL]-Medaille im [GENDER]-100-Meter-Lauf bei den
Olympischen Sommerspielen [YEAR] gewonnen? Bitte antworten Sie
nur mit dem Namen und verwenden Sie keine zusätzlichen Wörter.
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Table 5
Continued.

Task Language Instruction
itT Chi ha vinto la medaglia [MEDAL] nei 100 metri [GENDER] alle Olimpiadi

estive del [YEAR]? Si prega di rispondere solo con il nome e di non utiliz-
zare altre parole aggiuntive.

nlT Wie heeft de [MEDAL] medaille gewonnen op de 100 meter voor [GEN-
DER] tijdens de Zomerspelen van [YEAR]? Antwoord alstublieft alleen met
de naam en gebruik geen extra woorden.

svT Vem vann [MEDAL] medaljen i [GENDER] 100 meter vid sommar-OS
[YEAR]? Vänligen svara med namnet endast och använd inga ytterligare
ord.

OLYMPICS-
DOWNHILL

en Who won the [MEDAL] medal in the [GENDER] downhill competition at
the [YEAR] Winter Olympics? Please reply with the name only and do not
use any additional words.

enP Please provide the name of the athlete who won the [MEDAL] medal in the
[GENDER] downhill competition at the [YEAR] Winter Olympics, without
using any extra words.

deT Wer hat die [MEDAL]-Medaille im [GENDER]-Abfahrtsrennen bei den
Olympischen Winterspielen [YEAR] gewonnen? Bitte anworten Sie nur mit
dem Namen und verwenden Sie keine zusätzlichen Wörter.

itT Chi ha vinto la medaglia [MEDAL] nella gara di discesa libera [GENDER]
alle Olimpiadi invernali del [YEAR]? Per favore, rispondi solo con il nome
e non utilizzare altre parole aggiuntive.

nlT Wie heeft de [MEDAL] medaille gewonnen in de [GENDER] afdaling wed-
strijd op de [YEAR] Olympische Winterspelen? Antwoord alstublieft alleen
met de naam en gebruik geen extra woorden.

svT Vem vann [MEDAL] medaljen i [GENDER] störtloppstävling vid vinter-OS
[YEAR]? Vänligen svara med namnet endast och använd inga ytterligare
ord.

WRITERS
en In what year was the writer [AUTHOR] born? Please reply with the correct

year only and do not use any additional words.
enP What is the birth year of the author [AUTHOR]? Please respond with only

the correct year and avoid using extra words.
deT In welchem Jahr wurde der Schriftsteller / die Schriftstellerin [AUTHOR]

geboren? Bitte antworten Sie nur mit dem korrekten Jahr und verwenden
Sie keine zusätzlichen Wörter.

itT In che anno è nato lo scrittore / è nata la scrittrice [AUTHOR]? Per favore,
rispondi solo con l’anno corretto e non utilizzare altre parole aggiuntive.

nlT In welk jaar is de schrijver [AUTHOR] geboren? Uw antwoord mo et alleen
bestaan uit het juiste jaartal.

svT I vilket år föddes författaren [AUTHOR]? Ditt svar ska bara bestå av det
korrekta året.

COMPANIES
en In what city does [COMPANY] have its headquarters? Please reply only

with the name of the city and no additional words.
enP Where is the headquarters of [COMPANY] located? Please respond with

only the city name, without any extra words.
deT In welcher Stadt hat [COMPANY] seinen Hauptsitz? Bitte antworten Sie

nur mit dem Namen der Stadt und ohne zusätzliche Wörter.
itT In quale città ha sede [COMPANY]? Si prega di rispondere solo con il nome

della città e senza parole aggiuntive.
nlT In welke stad heeft [COMPANY] zijn hoofdkantoor? Antwoord alstublieft

alleen met de naam van de stad en geen extra woorden.
svT I vilken stad har [COMPANY] sitt huvudkontor? Vänligen svara endast

med stadens namn och inga ytterligare ord.
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Benchmark Data

Table 6 lists the original English (en) task instructions for the benchmark datasets as
well as the model’s paraphrases (enP) and translations (deT, itT, nlT, svT) thereof. Native
speakers of the corresponding languages judged the paraphrases and translations to
be generally accurate but some sentences contained minor mistakes or aspects that the
native speakers would have translated differently. Points that were mentioned are that
(1) the model translates “premise” to “presupposto” in Italian (COPA and XNLI) even
though “premessa” is more appropriate and (2) the repeated use of “noch” in the Dutch
XNLI instruction is incorrect and the correct sentence should end with something like
“als de premisse de hypothese noch impliceert nog tegenspreekt”.

Table 6
Benchmark data task instructions.
Task Language Instruction

PAWS
en Do the following two sentences have the same meaning?

Sentence 1: “[SENTENCE1]”
Sentence 2: “[SENTENCE2]”
Please reply with a single word, either “yes” or “no”.

enP Are the meanings of the following two sentences the same?
Sentence 1: “[SENTENCE1]”
Sentence 2: “[SENTENCE2]”
Please respond with either “yes” or “no”.

deT Haben die folgenden beiden Sätze die gleiche Bedeutung?
Satz 1: “[SENTENCE1]”
Satz 2: “[SENTENCE2]”
Bitte antworten Sie mit einem einzigen Wort, entweder “ja” oder “nein”.

itT Le seguenti due frasi hanno lo stesso significato?
Frase 1: “[SENTENCE1]”
Frase 2: “[SENTENCE2]”
Rispondi con una sola parola, “sı̀” o “no”.

nlT Hebben de volgende twee zinnen dezelfde betekenis?
Zin 1: “[SENTENCE1]”
Zin 2: “[SENTENCE2]”
Antwoord alstublieft met één woord, ofwel “ja” ofwel “nee”.

svT Har de följande två meningarna samma betydelse?
Mening 1: “[SENTENCE1]”
Mening 2: “[SENTENCE2]”
Svara med ett enda ord, antingen “ja” eller “nej”.

XNLI
en Given the following premise and hypothesis, please identify whether the premise

entails the hypothesis, contradicts the hypothesis, or neither of the two.
Premise: “[PREMISE]”
Hypothesis: “[HYPOTHESIS]”
Please reply with a single word: “entailment” if the premise entails the hypothe-
sis, “contradiction” if the premise contradicts the hypothesis, and “neutral” if the
premise neither entails nor contradicts the hypothesis.

enP Please determine if the premise and hypothesis are related.
Premise: “[PREMISE]”
Hypothesis: “[HYPOTHESIS]”
If the premise supports the hypothesis, indicate “entailment”. If the premise con-
tradicts the hypothesis, indicate “contradiction”. If there is no clear relationship
between the two, indicate “neutral”.

deT Angesichts der folgenden Prämisse und Hypothese, bitte identifizieren Sie, ob die
Prämisse die Hypothese impliziert, der Hypothese widerspricht oder weder das
eine noch das andere.
Prämisse: “[PREMISE]”
Hypothese: “[HYPOTHESIS]”
Bitte antworten Sie mit einem einzigen Wort: “Implikation”, wenn die Prämisse die
Hypothese impliziert, “Widerspruch”, wenn die Prämisse der Hypothese wider-
spricht, und “neutral”, wenn die Prämisse weder die Hypothese impliziert noch
ihr widerspricht.
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Table 6
Continued.
Task Language Instruction

itT Dato il seguente presupposto e ipotesi, per favore identifica se il presupposto im-
plica l’ipotesi, contraddice l’ipotesi o né implica né contraddice l’ipotesi.
Presupposto: “[PREMISE]”
Ipotesi: “[HYPOTHESIS]”
Per favore rispondi con una sola parola: “implicazione” se il presupposto implica
l’ipotesi, “contraddizione” se il presupposto contraddice l’ipotesi e “neutrale” se il
presupposto né implica né contraddice l’ipotesi.

nlT Gegeven de volgende premisse en hypothese, identificeer alstublieft of de premisse
de hypothese impliceert, de hypothese tegenspreekt, of geen van beide.
Premisse: “[PREMISE]”
Hypothesis: “[HYPOTHESIS]”
Antwoord alstublieft met één woord: “implicatie” als de premisse de hypothese
impliceert, “tegenspraak” als de premisse de hypothese tegenspreekt, en “neutraal”
als de premisse noch de hypothese impliceert noch tegenspreekt.

svT Givet följande premiss och hypotes, vänligen ange om premissen innebär hypote-
sen, motsäger hypotesen eller varken innebär eller motsäger hypotesen.
Premiss: “[PREMISE]”
Hypotes: “[HYPOTHESIS]”
Vänligen svara med ett enda ord: “innebär” om premissen innebär hypotesen,
“motsäger” om premissen motsäger hypotesen och “neutral” om premissen varken
innebär eller motsäger hypotesen.

COPA
en Given the following premise, which of the two alternatives is more plausible?

Premise: “[PREMISE]”
Alternative 1: “[CHOICE1]”
Alternative 2: “[CHOICE2]”
Please answer with a single word: “Alternative-1” if alternative 1 is more plausible
and “Alternative-2” if alternative 2 is more plausible.

enP Based on the provided premise, which of the two options is more likely?
Premise: “[PREMISE]”
Option 1: “[CHOICE1]”
Option 2: “[CHOICE2]”
Please respond with either “Option-1” if option 1 is more likely, or “Option-2” if
option 2 is more likely.

deT Angesichts der folgenden Prämisse, welche der beiden Alternativen ist plausibler?
Prämisse: “[PREMISE]”
Alternative 1: “[CHOICE1]”
Alternative 2: “[CHOICE2]”
Bitte antworten Sie mit einem einzigen Wort: “Alternative-1”, wenn Alternative 1
plausibler ist, und “Alternative-2”, wenn Alternative 2 plausibler ist.

itT Dato il seguente presupposto, quale delle due alternative è più plausibile?
Presupposto: “[PREMISE]”
Alternativa 1: “[CHOICE1]”
Alternativa 2: “[CHOICE2]”
Per favore, rispondi con una sola parola: “Alternativa-1” se l’alternativa 1 è più
plausibile e “Alternativa-2” se l’alternativa 2 è più plausibile.

nlT Gegeven de volgende premisse, welke van de twee alternatieven is waarschijnli-
jker?
Premisse: “[PREMISE]”
Alternatief 1: “[CHOICE1]”
Alternatief 2: “[CHOICE2]”
Antwoord alstublieft met één woord: “Alternatief-1” als alternatief 1 waarschijnli-
jker is en “Alternatief-2” als alternatief 2 waarschijnlijker is.

svT Givet följande premiss, vilket av de två alternativen är mer troligt?
Premiss: “[PREMISE]”
Alternativ 1: “[CHOICE1]”
Alternativ 2: “[CHOICE2]”
Svara med ett enda ord: “Alternativ-1” om alternativ 1 är mer troligt och
“Alternativ-2” om alternativ 2 är mer troligt.
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Table 6
Continued.
Task Language Instruction

BELEBELE
en [PASSAGE]

[QUESTION]

Option A: [ANSWER1]
Option B: [ANSWER2]
Option C: [ANSWER3]
Option D: [ANSWER4]

Please reply with “A”, “B”, “C”, or “D” to indicate the correct answer. Your reply
should be a single letter and should not contain any additional words.

enP [PASSAGE]

[QUESTION]

A) [ANSWER1]
B) [ANSWER2]
C) [ANSWER3]
D) [ANSWER4]

Please respond with the letter corresponding to the correct answer choice. Your
response should be a single letter and should not include any extra words.

deT [PASSAGE]

[QUESTION]

Option A: [ANSWER1]
Option B: [ANSWER2]
Option C: [ANSWER3]
Option D: [ANSWER4]

Antworten Sie bitte mit “A”, “B”, “C”, oder “D”, um die richtige Antwort anzugeben.
Ihre Antwort sollte nur ein einzelner Buchstabe sein und keine zusätzlichen Wörter
enthalten.

itT PASSAGE]

[QUESTION]

Opzione A: [ANSWER1]
Opzione B: [ANSWER2]
Opzione C: [ANSWER3]
Opzione D: [ANSWER4]

Rispondi con “A”, “B”, “C” o “D” per indicare la risposta corretta. La tua risposta
deve essere una singola lettera e non deve contenere parole aggiuntive.

nlT [PASSAGE]

[QUESTION]

Optie A: [ANSWER1]
Optie B: [ANSWER2]
Optie C: [ANSWER3]
Optie D: [ANSWER4]

Antwoord alstublieft met “A”, “B”, “C” of “D” om het juiste antwoord aan te
geven. Uw antwoord moet uit één letter bestaan en mag geen extra woorden
bevatten.

svT [PASSAGE]

[QUESTION]

Alternativ A: [ANSWER1]
Alternativ B: [ANSWER2]
Alternativ C: [ANSWER3]
Alternativ D: [ANSWER4]

Vänligen svara med “A”, “B”, “C”, eller “D” för att ange det korrekta svaret.
Ditt svar ska vara en enda bokstav och får inte innehålla några ytterligare ord.
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D. Accuracy Scores

Simple Facts

Table 7
Accuracy (%) on the simple fact datasets, with 95% confidence intervals.

arithmetics elements olympics writers companies total
– elem pos 100m downhill – – avg

en 99.4±1.0 100.0±nan 37.8±10.0 55.4±8.1 37.6±9.4 76.2±2.9 78.2±3.8 73.5
enP 98.6±1.4 100.0±nan 42.2±10.0 54.1±8.1 31.6±9.4 76.2±2.8 76.0±3.8 72.2
deT 45.2±4.6 98.9±5.6 40.0±10.0 50.7±8.1 35.0±9.4 76.8±2.8 75.4±3.8 68.7
itT 44.0±4.4 100.0±nan 36.7±10.0 51.4±8.1 35.0±9.4 75.3±2.9 73.6±4.0 67.4
nlT 42.4±4.4 100.0±nan 36.7±10.0 52.0±8.1 35.0±8.5 76.8±2.9 73.2±4.2 67.7
svT 19.2±3.6 100.0±nan 41.1±11.1 50.7±8.1 33.3±8.5 74.3±2.9 71.8±4.0 65.0

Benchmark Data

Table 8
Accuracy (%) on the benchmark datasets, with 95% confidence intervals.

paws xnli copa belebele avg

en 75.6±1.9 43.7±1.4 84.4±3.4 85.9±2.3 72.4
enP 67.6±2.1 53.5±1.4 82.2±3.4 – –
deT 64.3±2.1 50.0±1.4 85.6±3.2 81.2±2.7 70.3
itT 75.1±2.0 56.4±1.4 86.6±3.2 81.0±2.7 74.8
nlT 71.9±2.0 50.9±1.4 83.4±3.4 79.0±2.7 71.3
svT 55.9±2.2 47.0±1.4 89.2±2.8 79.1±2.8 67.8

E. Accuracy Based on Containment versus Exact Match

On the SIMPLE FACTS datasets, the model is instructed to reply with the correct entity
(and no additional words), which we then use to quantify consistency. Hence, it is
important that the model actually follows that instruction across all senses. Otherwise,
it could be that the model replies with “Friedrich Schiller was born in 1759” when
prompted for a writer in English but “1759” when prompted in German. While a failure
to follow the instruction in one language but not the other could be considered an
unwanted inconsistency, the meaning of both answers is arguably the same, and we
would like to differentiate between both cases.

If the model replies correctly but not in one word, the response contains the right
answer but does not exactly match it. Figure 9 shows the distribution of the difference
in accuracy based on containment versus exact match. The scores for COMPANIES
and WRITERS are calculated separately for each language-specific subgroup of samples
(i.e., US companies, German companies, . . . ) to obtain more detailed information. In
most cases, the “containment” score is not at all or only slightly higher than the exact
match score. The only exception occurs for Dutch companies when prompted with

1543



Computational Linguistics Volume 50, Number 4

Figure 9
Containment score minus exact match score across tasks and senses.

enP, with a 7% difference in accuracy. This mismatch arises because the model—while
otherwise replying with only the city name—always responds with a full sentence when
the correct answer is “The Hague” (e.g., “The headquarters of Shell PLC is located in The
Hague.”). Thus, except for this curious case, inconsistencies can largely not be attributed
to a failure to express a response in the correct form.

F. Consistency Scores

Simple Facts

Table 9
Consistency (%) on the simple fact datasets.

arithmetics elements olympics writers companies total
– elem position 100m downhill – – avg

id 100.0 100.0 91.1 90.5 88.9 87.1 97.4 92.8
enP 99.0 100.0 77.8 82.4 61.5 82.7 91.2 86.0
deT 45.0 98.9 71.1 80.4 76.9 81.2 89.4 81.7
itT 44.2 100.0 70.0 75.7 70.1 81.2 86.4 79.8
nlT 42.2 100.0 67.8 83.8 64.1 79.1 88.8 79.8
svT 19.4 100.0 70.0 83.8 59.8 77.3 84.8 76.2

Benchmark Data

Table 10
Consistency (%) on the benchmark datasets.

paws xnli copa belebele avg

id 95.2 96.0 96.8 97.1 96.3
enP 76.5 56.3 85.2 – –
deT 74.7 51.2 88.8 84.7 74.8
itT 82.2 57.5 85.8 85.1 77.6
nlT 82.4 73.1 91.0 85.8 83.1
svT 67.9 82.8 86.0 83.3 80.0
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G. Examples of Inconsistent Responses

Table 11
Examples of inconsistencies for SIMPLE FACTS. We report the first ten inconsistent samples per
dataset and sense.
Task Senses Examples

ARITHMETICS
(en | en) –

(en | enP) (540 | 340), (1770 | 1778), (237 | Two hundred thirty-seven.), (1173 |One thousand one
hundred seventy-three), (1013 | One thousand thirteen.)

(en | deT) (778 | 678), (618 | 1008), (926 | 526), (115 | 915), (924 | 524), (1535 | 1035), (1693 | 1689),
(1437 | 1337), (1151 | 1248), (1248 | 1448)

(en | itT) (778 | 678), (858 | 788), (1471 | 1437), (926 | 836), (924 | 923), (577 | 577 + 300 = 877),
(1535 | 1335), (1693 | 1683), (1437 | 1497), (1151 | 1051)

(en | nlT) (778 | 678), (965 | 865), (858 | 958), (926 | 726), (115 | 109), (1535 | 935), (1693 | 1689),
(1437 | 1338), (1151 | 846), (1248 | 848)

(en | svT) (778 | 784 + 94 = 878), (965 | 929), (858 | 792), (1471 | 1465), (926 | 733 + 163 = 896),
(1277 | 1170), (1304 | 645), (924 | 923), (577 | 577 + 300 = 877), (1535 | 825)

ELEMENTS- (en | en) –

FROM- (en | enP) –

ELEMENT (en | deT) (114 | 9)

(en | itT) –

(en | nlT) –

(en | svT) –

ELEMENTS-
FROM-POSITION

(en | en) (22 | 20), (13 | 31), (17 | 107), (107 | 104), (106 | 46), (86 | 14), (33 | 51), (17 | 53)

(en | enP) (16 | 8), (19 | 37), (36 | 26), (28 | 39), (13 | 31), (23 | 55), (22 | 38), (45 | 46), (33 | 51),
(16 | 34)

(en | deT) (12 | 4), (16 | 8), (19 | 11), (35 | 17), (36 | 26), (28 | 39), (48 | 30), (33 | 15), (38 | 12),
(22 | 23)

(en | itT) (2 | 1), (12 | 4), (13 | 5), (7 | 15), (16 | 8), (35 | 23), (28 | 35), (28 | 40), (48 | 40), (13 | 31)

(en | nlT) (12 | 4), (13 | 5), (16 | 8), (21 | 13), (35 | 23), (28 | 39), (28 | 40), (48 | 40), (33 | 15), (38 | 12)

(en | svT) (2 | 1), (13 | 5), (16 | 8), (17 | 9), (21 | 23), (36 | 26), (28 | 39), (28 | 40), (48 | 40), (13 | 31)

OLYMPICS-100M
(en | en) (Charley Paddock | Harold Abrahams), (Arthur Jonath | Eddie Tolan), (Lloyd

LaBeach | Herbert McKenley), (Lloyd LaBeach | Herbert McKenley), (Herb
McKenley | Hector Hogan), (Ben Johnson | Calvin Smith), (Kim Collins | Justin
Gatlin), (Ethel Smith | Elizabeth Robinson), (Shirley Strickland | Marjorie Jackson),
(Shirley Strickland |Marlene Mathews)

(en, enP) (Francis Lane | Frank Lane), (Fay Moulton | Frank Jarvis), (Nathaniel Cartmell |
Reggie Walker), (Nate Cartmell | Reggie Walker), (Arthur Porritt | Percy Williams),
(Arthur Jonath | Percy Williams), (Barney Ewell | Herb McKenley), (Lloyd LaBeach
| Herb McKenley), (Lloyd LaBeach | Herb McKenley), (Herb McKenley | Hector
Hogan)

(en | deT) (Francis Lane | Frank Lane), (Nate Cartmell | Reggie Walker), (Arthur Porritt |Arthur
Jonath), (Arthur Porritt | Arthur Jonath), (Arthur Jonath | Eddie Tolan), (Arthur
Jonath | Eddie Tolan), (Arthur Jonath | Ralph Metcalfe), (Lloyd LaBeach | Barney
Ewell), (Lloyd LaBeach | Herb McKenley), (Enrique Figuerola | Bob Hayes)

(en | itT) (Fay Moulton | Frank Castle), (Nathaniel Cartmell |Reginald Walker), (Nate Cartmell
| Reginald Walker), (Charley Paddock | Harold Abrahams.), (Arthur Porritt | Percy
Williams.), (Arthur Porritt | Arthur Jonath), (Arthur Jonath | Eddie Tolan.), (Arthur
Jonath | Eddie Tolan.), (Arthur Jonath | Ralph Metcalfe.), (Lloyd LaBeach | Barney
Ewell.)

(en | nlT) (Fay Moulton | Frank Waller), (Arthur Porritt | Arthur Jonath), (Arthur Porritt |
Arthur Jonath), (Lloyd LaBeach | Barney Ewell), (Lloyd LaBeach | Herb McKenley),
(Herb McKenley | Thane Baker.), (Enrique Figuerola | Edwin Roberts.), (Valeriy
Borzov | Valeri Borzov), (Ben Johnson | Calvin Smith.), (Ato Boldon | Maurice
Greene)

(en | svT) (Francis Lane | Frank Lane), (Ralph Craig | Donald Lippincott), (Arthur Porritt |
Arthur Jonath), (Lloyd LaBeach | Barney Ewell.), (Lloyd LaBeach | Herb McKenley),
(Valeriy Borzov | Valeri Borzov), (Ben Johnson | Calvin Smith.), (Linford Christie |
Carl Lewis), (Ato Boldon |Maurice Greene.), (Kim Collins | Asafa Powell)
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Table 11
Continued.

Task Senses Examples

OLYMPICS-
DOWNHILL

(en | en) (Egon Zimmermann | Guy Périllat), (Franz Klammer | Bernhard Russi), (Franck
Piccard | Franz Heinzer), (Didier Défago |Didier Defago), (Beat Feuz |Kjetil Jansrud),
(Hedy Schlunegger | Trude Beiser-Jochum), (Andrea Mead-Lawrence | Trude Beiser-
Jochum), (Trude Beiser-Jochum |Hanni Wenzel), (Christl Haas |Christine Goitschel),
(Brigitte Oertli | Vreni Schneider)

(en | enP) (Zeno Colò |Andreas Molterer), (Christian Pravda |Anton Sailer), (Christian Pravda
| Andreas), (Guy Périllat | Jean Vuarnet.), (Egon Zimmermann | Jean-Claude Killy),
(Bernhard | Franz Klammer), (Leonhard Stock | Bill Johnson), (Anton Steiner | Bill
Johnson), (Franck Piccard | Kjetil André Aamodt), (Hans Knauss | Hermann Maier.)

(en | deT) (Egon Zimmermann | Guy Périllat), (Bernhard | Bernhard Russi), (Anton Steiner |
Peter Müller), (Franz | Franz Heinzer), (Hermann Maier | Lasse Kjus), (Hans Knauss
| Hermann Maier), (Antoine Dénériaz |Michael Walchhofer), (Kjetil André Aamodt
| Michael Walchhofer), (Bode Miller | Aksel Lund Svindal), (Kjetil Jansrud | Aksel
Lund Svindal)

(en | itT) (Egon Zimmermann | Jean-Claude Killy.), (Egon Zimmermann | Guy Périllat.),
(Bernhard | Bernhard Russi.), (Leonhard Stock | Peter Wirnsberger.), (Franz | Franz
Heinzer.), (Tommy Moe | Markus Wasmeier.), (Hans Knauss | Lasse Kjus.), (Fritz
Strobl | Lasse Kjus.), (Antoine Dénériaz |Michael Walchhofer.), (Kjetil André Aamodt
|Michael Walchhofer.)

(en | nlT) (Zeno Colò | Andrea Mead-Lawrence), (Egon Zimmermann | Guy Périllat), (Egon
Zimmermann | Guy Périllat), (Bernhard | Bernhard Russi), (Leonhard Stock | Peter
Müller), (Leonhard Stock | Peter Müller), (Franz | Franz Heinzer), (Franz Heinzer |
Franck Piccard), (Franck Piccard | Franz Heinzer), (Tommy Moe | Patrick Ortlieb)

(en | svT) (Egon Zimmermann | Guy Périllat), (Egon Zimmermann | Guy Périllat.), (Bernhard
| Bernhard Russi), (Anton Steiner | Bill Johnson), (Franz | Franz Heinzer.), (Franck
Piccard | Franz Heinzer), (Tommy Moe | Markus), (Hermann Maier | Lasse Kjus.),
(Hans Knauss | Lasse Kjus.), (Antoine Dénériaz | Fritz Strobl.)

WRITERS
(en | en) (1978 | 1977), (1903 | 1912), (1911 | 1901), (1965 | 1968), (1982 | 1984), (1975 | 1980),

(1962 | 1939), (1880 | 1891), (1930 | 1936), (1851 | 1871)

(en | enP) (1952 | 1944), (1978 | 1977), (1940 | 1925), (1992 | I’m sorry, but I don’t have access
to personal information about individuals unless it has been shared with me in the
course of our conversation.), (1903 | 1912), (1945 | 1939), (1956 | 1961), (1935 | 1923),
(1955 | 1949)

(en | deT) (1952 | 1949), (1978 | 1977), (1932 | 1941), (1955 | 1953), (1903 | 1922), (1943 | 1956),
(1940 | 1939), (1956 | 1961), (1935 | 1923), (1911 | 1901), (1965 | 1962)

(en | itT) (1992 | 1985), (1929 | 1932), (1903 | 1921), (1945 | 1935), (1940 | 1943), (1956 | 1961),
(1935 | 1923), (1965 | 1962), (1982 | 1986), (1975 | 1969)

(en | nlT) (1978 | 1977), (1940 | 1910), (1992 | 1987), (1903 | 1922), (1945 | 1950), (1941 | 1935),
(1940 | Het juiste jaartal van de geboorte van schrijver Jeannette Howard Foster is
niet beschikbaar.), (1980 | Ik heb geen informatie over een schrijver genaamd Eric
San Juan.), (1956 | 1961), (1935 | 1923)

(en | svT) (1943 | 1938), (1941 | 1932), (1952 | 1949), (1978 | 1976), (1932 | Bob McGrath föddes
år 1932.), (1992 | Jag beklagar, men jag har ingen information om författaren Zach
Hughes och när han föddes.), (1903 | 1921), (1890 | 1871), (1963 | Jag beklagar, men
jag kan inte hitta information om författaren Susan Wrights födelseår.), (1943 | 1956)

COMPANIES
(en | en) (Dear user, the headquarters of Ford Motor Company is located in Dearborn. | Dear

user, Ford Motor Company has its headquarters in Dearborn.), (Mayfield Village |
Cleveland), (Berlin |Munich), (Frankfurt |Mannheim), (Milan | Genoa), (Rome |Mi-
lan), (Rome |Milan), (Hilversum | Amsterdam), (Hoofddorp | Hague), (Apeldoorn |
Heerenveen)

(en | enP) (Issaquah | Seattle), (North Chicago | Chicago), (Fort Worth | Dallas), (Cologne
| Frankfurt), (Stuttgart | Munich), (Salzgitter | Salzgitter AG is headquartered in
Salzgitter.), (Jena | Oberkochen), (Nuremberg | Frankfurt), (San Donato Milanese |
Milan), (Bergamo | Stezzano)

(en | deT) (Issaquah | Seattle), (Dear user, the headquarters of Ford Motor Company is located
in Dearborn. | Dear user, Ford Motor Company has its headquarters in Dearborn.),
(Purchase |New York City), (Kenilworth |New York), (Mayfield Village |Cleveland),
(Fort Worth | Dallas), (Cologne | Frankfurt), (Selm | Lünen), (Munich | Ehningen),
(Stuttgart | Ismaning)
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Table 11
Continued.

Task Senses Examples

(en | itT) (Irving | Houston), (Chesterbrook | Philadelphia), (Issaquah | Seattle), (Dublin |
Dublino), (Bloomfield | Philadelphia), (Dear user, the headquarters of Ford Motor
Company is located in Dearborn. |Detroit), (Purchase |New York City.), (White Plains
| New York.), (Chicago | Seattle), (North Chicago | Chicago.)

(en | nlT) (Minnetonka |Minneapolis), (Issaquah | Seattle), (Dear user, the headquarters of Ford
Motor Company is located in Dearborn. | Dear user, Ford Motor Company heeft zijn
hoofdkantoor in Dearborn.), (Deerfield | De stad waar Walgreens Boots Alliance Inc.
zijn hoofdkantoor heeft, is Deerfield.), (Purchase | New York City), (White Plains
| New York City), (Mayfield Village | Cleveland), (Fort Worth | Dallas), (Cologne |
Frankfurt), (Selm | Lünen)

(en | svT) (Minnetonka | Minneapolis.), (Dear user, the headquarters of Ford Motor Company
is located in Dearborn. | Dear user, Ford Motor Company’s headquarters is located
in Dearborn.), (Chicago | San Francisco.), (Purchase | New York.), (White Plains |
Hamilton), (Austin | San Francisco.), (Fremont | Toronto), (North Chicago | Chicago),
(Stamford | St. Louis), (Mayfield Village | Cleveland.)

H. Accuracy Scores for Ablation Experiments

Table 12
Accuracy scores for the ablation experiments. We consider ablations in which we
translate/paraphrase only the instruction (columns I) or only the input data (columns X).

paws xnli copa belebele
I X I X I X I X

en 75.6 43.7 84.4 85.9
enP 71.8 69.7 54.2 44.5 88.2 80.6 87.4 –
deT 62.5 78.7 49.2 38.0 88.0 82.6 86.2 80.0
itT 72.8 76.8 57.2 38.4 91.0 81.8 86.0 78.0
nlT 68.7 78.9 48.1 36.8 86.4 84.8 85.0 79.2
svT 59.1 76.1 48.3 37.1 93.0 81.4 85.6 79.8
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I. Genbench Evaluation Card

Our work uses generalization across senses to assess task understanding in LLMs. In
Figure 10, we provide the GenBench eval card (Hupkes et al. 2023) of our experiments.

Figure 10
Our experiments assess cross-lingual generalization for natural corpora, in pretrained LLMs, to
assess LLM task understanding.
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