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This work proposes a novel sampling approach to mining topic representations at a large
scale while seeking to mitigate bias from sampling, enabling the investigation of widely used
automated coherence metrics via large corpora. Additionally, this article proposes a novel user
study design, an amalgamation of different proxy tasks, to derive a finer insight into the
human decision-making processes. This design subsumes the purpose of simple rating and
outlier-detection user studies. Similar to the sampling approach, the user study conducted is
extensive, comprising 40 study participants split into eight different study groups tasked with
evaluating their respective set of 100 topic representations. Usually, when substantiating the
use of these metrics, human responses are treated as the gold standard. This article further
investigates the reliability of human judgment by flipping the comparison and conducting a
novel extended analysis of human response at the group and individual level against a generic
corpus. The investigation results show a moderate to good correlation between these metrics
and human judgment, especially for generic corpora, and derive further insights into the human
perception of coherence. Analyzing inter-metric correlations across corpora shows moderate to
good correlation among these metrics. As these metrics depend on corpus statistics, this article
further investigates the topical differences between corpora, revealing nuances in applications of
these metrics.
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1. Introduction

Topic modeling is an important tool in the analysis and exploration of text corpora in
terms of their salient topics (Blei, Ng, and Jordan 2003). To evaluate the effectiveness of
topic models, the preponderance of topic modeling literature relies on automated coher-
ence metrics. A key benefit is convenience, allowing researchers to sidestep expensive
and time-consuming user studies. The basis for this reliance is the assumption that the
coherence metrics correlate with human judgment (Mimno et al. 2011a; Lau, Newman,
and Baldwin 2014; Röder, Both, and Hinneburg 2015).

The presumed correlation with human judgment should not be taken for granted.
There are recent studies that challenge the assumption. Doogan and Buntine (2021)
highlight the inconsistencies of automated coherence metrics via correlation analysis
within each metric. Hoyle et al. (2021) claim some disagreement between human judg-
ment and automated coherence metrics.

We postulate that the reasons behind such a mixed picture could be the differences
in the topic samples and underlying corpora-dependent statistics, resulting in localized
“biases” that affect the conclusions reached by respective studies. Given the importance
of these metrics, we seek to conduct an extended analysis of automated coherence
metrics on a larger scale than anything previously attempted. This study includes orders
of magnitude greater than the number of topics typically analyzed, covering three large
corpora, utilizing a comprehensive user study with extensive labels, across most of the
widely used metrics.

There is a strong case for quantity. Given a vocabulary, a combinatorially large
number of possible topics exist. If each topic representation is a vector of its scores
on different metrics, the resulting curse of dimensionality (Bellman and Kalaba 1959)
necessitates a larger sample size. We claim that evaluating thousands of topics might not
be sufficient, and a larger sample size is required to approximate a diverse distribution,
where sampled topics are representative of the corpus and the metrics. We surmise that
the previous practice of using topic models to generate topics could introduce a biased
result in the analysis. Topic models vary in performance, with a lengthy list of models
compiled by Hoyle et al. (2021). There is also emerging debate on the performance
between traditional and neural topic models (Doogan and Buntine 2021). For instance,
Hoyle et al. (2022) find evidence that neural topic models are more inconsistent than
traditional topic models, producing more variant topic sets across different runs. The
stability of a topic in traditional topic models across different runs has been shown
to correlate to its quality (Xing and Paul 2018). Because different topic models have
different characteristics and performances, we propose generating candidate topic rep-
resentations independent of topic models to evaluate the usability of coherence metrics.

1.1 Existing Contributions

We have three contributions in our previous work (Lim and Lauw 2023b). First, we
begin by analyzing the inter-metric correlations (see Section 7). We propose a novel
approach to sample representations of “topics” for the purpose of evaluating auto-
mated coherence metrics (see Section 4.1). Compared with prior works, we sample
these representations free from topic model bias, and in a meaningful and diverse
manner. With evaluations on three large corpora, we reaffirm that selected metrics do
not contradict each other. We also highlight the underestimated effects (see Section 7.1)
of ε = 1e−12, used in the calculation of Normalized Pointwise Mutual Information
(NPMI) (see Section 3.1) to avoid undefined logarithm zero.
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Second, we extend our analysis to investigate inter-corpus correlations (see Sec-
tion 7.2). We examine the understated differences of corpora statistics on the metrics by
comparing the correlations across corpora. While such correlations exist to some degree,
these metrics strongly depend on the evaluation corpus. Thus, any expectation that
these metrics would correlate uniformly with human judgment on all possible corpora
may be misplaced.

Finally, pivotal to any interpretability research, we design and conduct a user study,
which is the keystone of our work (see Section 5). Compared with prior work, its design
is more complex as we seek to benchmark human judgment at a finer granularity
across different random user study groups (see Section 5.1). We analyze the user study
results via a few novel proxy measures, revealing that human judgment is nuanced
and varies between individuals. The metric correlation to human judgment is corpus-
dependent, with the average participant likely to be attuned to the generic corpora (see
Section 6). Accompanying the work, we also released our toolkit to enable convenient
coherence evaluation of topic representations and to advance interpretability research.
Our implementation and releasable resources can be found here.1

1.2 Extended Contributions

In this article, motivated by the results reported in our previous work, we conduct
additional investigations into our previous findings to account for the effect of pos-
sible confounding factors. We also take this opportunity to include extra details and
explanations that further elucidate the findings. Our previous work focuses more on
automated coherence metrics, using human judgment as its benchmark. In contrast, this
article reverses the direction of analysis, placing a heavier interest in human judgment
while using automated coherence metrics as a tool for human judgment analysis.

1.2.1 Investigating Hyperparameter Effects. We notice one of the automated coherence
metrics, CUMass (Mimno et al. 2011b; Röder, Both, and Hinneburg 2015) (defined in
Section 3.1), exhibits an unexpectedly lower correlation with human judgment, com-
pared with other shortlisted automated coherence metrics. As CUMass remains a popular
metric, with recent studies (such as Meng et al. 2022; Zhang et al. 2022) using it as an
evaluation criterion, we believe that further investigation is required to ascertain its
efficacy. As the selected metrics are count-based and reliant on the corpus, different
hyperparameters controlling window size wsz and minimum frequency mf of word
pairs might affect the scores. Deviating from recommended hyperparameter settings,
we evaluate the correlation of automated metrics against human judgment at different
hyperparameter settings, showing the importance of setting a low wsz and mf (see
Section 6.3). Additionally, some metrics might be order-dependent, with the ordering of
vocabulary in the topic representation affecting the scores. CUMass is one of these order-
dependent metrics. We conduct additional analysis to determine the effect of ordering
in these metrics. Our findings from this analysis show that the effect of ordering might
be overstated and unnecessary (see Section 6.4). Using the newfound information,
we update the results of our previous work and further strengthen its findings (see
Section 7).

1 Github repository for our toolkit: https://github.com/PreferredAI/topic-metrics.
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1.2.2 Investigating Human Variability. Among the eight user study groups, one of the
user study groups has low to no correlation with automated coherence metrics. We find
a correlation between user study groups’ inter-rater reliability and their self-reported
English proficiency (see Section 6.1). Included in their responses, we collected our study
participants’ self-rated English proficiency, which we can use as a proxy measure of their
true English proficiency. Via statistical analyses, we show that their reported English
proficiency affects the correlation between automated coherence metrics and human
judgment (see Section 6.2). When we exclude the outlier group, there is a significant
increase in correlation between automated coherence metrics and human judgment.
Beyond reporting correlation scores, we also conduct novel analyses to examine the
human perception of coherence benchmark against computed coherence. In addition
to quantifying surface-level differences (see Section 8.1), we analyze individual par-
ticipants’ responses to derive insights into their perception of coherence, building a
framework to estimate subjectivity between individuals based on corpus statistics (see
Section 8.2). With the framework, we investigate the possible strategies our study partic-
ipants used to complete the task (see Section 8.3) and the effect of our study participants’
subject matter experience (see Section 8.5).

2. Related Work

2.1 Topic Models

There are many approaches for topic modeling (Blei, Ng, and Jordan 2003), from non-
neural based (Hoffman, Blei, and Bach 2010; Zhao, Tan, and Xu 2017), to many other
neural-based methods, via autoencoders (Kingma and Welling 2014) such as Miao, Yu,
and Blunsom (2016), Srivastava and Sutton (2017), Dieng, Ruiz, and Blei (2020), Zhang
and Lauw (2020), and Bianchi et al. (2021), via graph neural networks (Yang et al. 2020;
Shen et al. 2021; Zhang and Lauw 2022), and hierarchical methods (Meng et al. 2020).
A common factor among these works is the usage of automated coherence metrics in
their evaluation of topic representations produced. We select several popular metrics
for evaluation as listed in Section 3. Coherent topic representations allow us to interpret
the topic embeddings and reduces the opacity of models.

2.2 Applications of Topic Models

Topic models are applicable in numerous downstream tasks and play a supporting role
in augmenting other models. Lau, Baldwin, and Cohn (2017) use topic modeling in
neural language modeling. Wang et al. (2019) and Xu et al. (2023) proposed different
topic-guided variational autoencoders for text generation. For abstractive document
summarization, Wang et al. (2020) generate topic embeddings to improve the perfor-
mance of transformer-based models. On stance detection (Mohammad et al. 2016),
Arakelyan, Arora, and Augenstein (2023) use topic sampling and contrastive learning
to achieve state-of-the-art results. On multimodal relation extraction (Zheng et al. 2021;
see Section 2.3), Wu et al. (2023) use multimodal topic features in their framework to
reduce reliance on internal data and exploit external data.

2.3 Relation to Knowledge Graphs

A knowledge graph is defined as a set of Entities E, Relations R, and Facts F, with a fact
being represented as a triple of {head, relation, tail}, where head ∈ E and tail ∈ E (Ji et al.
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2022). Compared with knowledge graphs, the associations within a topic representation
are implicit rather than explicit. For example, WordNet (Miller 1995) is a knowledge
graph that organizes words using their semantic relations (such as synonyms). Between
vocabulary pairs, they may have multiple explicit relations. In topic modeling, when
we consider their relation using corpus statistics, the single implicit relation assumes
multiple explicit relations to varying degrees depending on its context. From the struc-
tured knowledge graphs, we can learn knowledge graph embeddings (Wang et al. 2017),
which can be used in downstream tasks such as knowledge graph completion tasks to
identify missing facts (Bordes et al. 2013). In contrast, we obtain topic embeddings from
corpora that do not have an explicit graph structure but seek to interpret it via topic
representations with the quality of its implicit graph structure measured on automated
coherence metrics.

2.4 Relation to Mechanistic Interpretability

The field of Mechanistic Interpretability attempts to reverse the computations within
models in pursuit of explainability (Olah et al. 2020), with efforts directed towards
transformer-based models (Elhage et al. 2021; Geva et al. 2022; Cunningham et al. 2023;
Bricken et al. 2023). We believe there is potential to apply topic modeling methodolo-
gies and evaluation in this area. In Lim and Lauw (2023a), we proposed an approach
that assigns multiple topic representations to single neurons residing in the multilayer
perceptron layers in decoder-only transformer models. Automated coherence metrics
enable the construction and evaluation of millions of topic representations, optimized
for human coherence, from millions of neurons.

2.5 User Studies in Metric Evaluation

Mimno et al. (2011a) utilize expert annotators to independently label 148 topic repre-
sentations, using another ten expert annotators to evaluate topic representations via
intruder word detection tasks. Röder, Both, and Hinneburg (2015) benchmark topics
against different permutations of metrics with an evaluation set containing 900 topics
with human ratings aggregated from prior studies (Aletras and Stevenson 2013; Lau,
Newman, and Baldwin 2014; Rosner et al. 2014). In Hoyle et al. (2021), a minimum of 15
crowd workers were employed in simple rating and word intrusion tasks evaluating 40
topic-model-generated (Griffiths and Steyvers 2004; Burkhardt and Kramer 2019; Dieng,
Ruiz, and Blei 2020) and 16 synthetic random topics. In Doogan and Buntine (2021),
their largest user study required four subject matter experts to create 3,120 labels across
390 topics generated via topic models (Blei, Ng, and Jordan 2003; Zhao et al. 2017).
In comparison, our study has large quantities in both topic representations and study
participants, annotating 800 unbiasedly sampled topic representations split between 40
user study participants with at least an undergraduate level of education, generating
180K word pairs. Each question has 45 possible combinations of word pairs, with binary
labels denoting coherence relations between word pairs. Our automated experiments
deal with hundreds of thousands of unique topics.

2.6 Linguistics Research

Garimella, Banea, and Mihalcea (2023) use word models with topic-based features to
analyze the relationship between language and demographics. Similar to our work, they
also utilized context windows in text. Beyond the demographic level, we investigate
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the relationship with language at the individual level, specific to the perception of
coherence in topic representations. Bo, Fu, and Lim (2023) extensively analyzed the
relationship between English language proficiency and academic performance, show-
ing that proficiency scores strongly predict academic results. Their study is particularly
relevant as our user study participants are from a similar population in terms of culture,
geography, and education level.

3. Preliminaries

In this section, we define the selected automated coherence metrics that utilize corpus
statistics and describe the corpora we use to obtain the word probabilities.

3.1 Coherence Metrics

We follow the definition styles of Röder, Both, and Hinneburg (2015), where direct
confirmation measure m is a function of a word-pair statistic. Direct coherence metric
is defined as a mean aggregation of m between word pairs Equation (1), where topic
representation t is a k-sized set of words. Let p = |t|·(|t|−1)

2 , representing the number of
word pairs in a topic.

C(t, m) = 1
p
∑
wi∈t

∑
wj∈t
i>j

m(wi, wj) (1)

CNPMI Equation (2) is the mean aggregation of mnlr.

CNPMI(t) = 1
p
∑
wi∈t

∑
wj∈t
i>j

mnlr(wi, wj) (2)

mnlr is defined as the NPMI (Bouma 2009) value between word-pair statistics in a
topic Equation (3). The numerator is the Pointwise Mutual Information (PMI) (Church
and Hanks 1990) between a word-statistic pair. The denominator, a negative logarithm
of the word-statistic pair’s joint probability, normalizes the value’s range to between 1
and −1. The inclusion of ε = 1e−12 is used to avoid undefined logarithm zero when
P(wi, wj) = 0.

mnlr(wi, wj) =
log

P(wi,wj )+ε
P(wi )·P(wj )

− log(P(wi, wj) + ε) (3)

CUCI (Lau, Newman, and Baldwin 2014) is another coherence metric that is similar to
CNPMI. Instead of NPMI, CUCI uses PMI without normalization. Since there is a strong
correlation between PMI and NPMI, we omit CUCI from our analysis.

CUMass is the mean ordinal aggregation of mlc (Mimno et al. 2011a) Equation (4).
Within any given topic, words are ordered based on P(w|topic) in descending order.
The summation notations of Equation (4) reflect the ordering of words.

CUMass(t) = 1
p
∑
wi∈t

∑
wj∈t
i>j

mlc(wi, wj) (4)
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mlc measures the logarithmic conditional probability between ordered word-pair in
a topic, where ε = 1e−12 is used to avoid undefined logarithm zero when P(wi, wj) = 0
Equation (5).

mlc(wi, wj) = log
P(wi, wj) + ε

P(wj)
(5)

CP is the mean ordinal aggregation of Fitelson’s coherence (Fitelson 2003) mf Equa-
tion (6). Similar to CUMass Equation (4), CP also uses the same ordering criteria.

CP(t) = 1
p
∑
wi∈t

∑
wj∈t
i>j

mf (wi, wj) (6)

mf can be interpreted as the degree to which wi supports wj, between ordered word
pairs in a topic Equation (7).

mf (wi, wj) =
P(wi|wj)− P(wi|¬wj)
P(wi|wj) + P(wi|¬wj)

(7)

CV (Equation 8) is the final metric that we are evaluating. CV is defined as an indi-
rect coherence metric, as it uses word-group relations instead of word pair relations
used in aforementioned direct coherence metrics.

CV(t,γ) =

∑
wi∈t scos(v(wi, t,γ), v̄(t,γ))

|t| (8)

Intuitively, it measures the mean cosine similarity Equation (9) between each
word’s feature vector and the topic’s feature vector.

scos(~vi, ~vj) =

∑
~vi · ~vj

||~vi||2 · ||~vj||2
(9)

A topic feature vector v̄ represents the sum of all of its words’ feature vectors
Equation (10).

v̄(t,γ) =
∑
wj∈t

v(wj, t,γ) (10)

A word’s (w) feature vector v is defined as a vector of its NPMI value with the
other words wj from its topic representation t Equation (11).

v(w, t,γ) = {mnlr(w, wj)γ ∀wj ∈ t} (11)

For indirect confirmation measure m̃, instead of directly using word probabilities,
it uses m to create a vector of features v (Aletras and Stevenson 2013) that represent a
word w from the topic t it belongs to, distorted by hyperparameter γ Equation (11). We
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Table 1
Numerical descriptions of the corpora used. Lemmatized variants are similar except for
ArXiv-lemma, with a vocabulary size of 22K.

Corpus #Docs. Mean Doc. Size Vocab. Size
ArXiv 2.09M 75 26K
PubMed 1.07M 1,500 39K
Wiki 5.51M 217 40K

will evaluate γ at 1 and 2, denoted by superscript CγV .2 Subscript 6ε denotes the absence
of epsilon. In this article, 6ε-variants are CγV,6ε and CNPMI,6ε.

3.2 Corpora

We use word co-occurrences statistics obtained from three large corpora: ArXiv,3

PubMed,4 and Wiki.5 Table 1 numerically describes the corpora. We further elaborate
on each corpus:

1. ArXiv. We use the ArXiv abstracts dataset, considering each abstract as a
document. These abstracts mainly constitute research work related to
non-medical science disciplines.

2. PubMed. We use the PubMed Central Open Access Subset that contains
journal articles and preprints related to medical research and
information. We consider each article body as a document, removing
citations within it.

3. Wiki. We use the English-Wikipedia dump of August 2022 processed
using Attardi (2015). We consider the content of the article as a
document. To evaluate for correctness of our toolkit, we use the popular
benchmark Palmetto (Röder, Both, and Hinneburg 2015), which uses a
subset of Wikipedia 2011.

For each corpus, we apply processing steps suggested in Hoyle et al. (2021), retain-
ing up to 40K frequently occurring words.6 Additionally, we generate a lemmatized
(denoted with the suffix -lemma) and unlemmatized variant (original) for further anal-
ysis. Appendix B contains additional information on the shared vocabulary between
corpora.

2 Prior to version 0.1.4 (released 21 September, 2022), Palmetto’s (Röder, Both, and Hinneburg 2015) γwas
set to 2.

3 ArXiv dataset downloaded from https://www.kaggle.com/datasets/Cornell-University/ArXiv.
4 PubMed articles obtained at ncbi.nlm.nih.gov/pmc/tools/openftlist.
5 Wikipedia dumps obtained at dumps.wikimedia.org.
6 We use spaCy (https://spacy.io/) for tokenization, named entity recognition, and lemmatization.
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4. Sampling Topic Representations

Intuitively, if two different metrics are to correlate with human judgment, we would
expect correlations between the scores of these metrics. However, it is claimed in
Doogan and Buntine (2021) that these metrics do not correlate well. There are a few
tested methods to generate topics: from topic models (Aletras and Stevenson 2013;
Lau, Newman, and Baldwin 2014), beam search optimized on coherence (Rosner et al.
2014), and random sampling of words (Hoyle et al. 2021). Considering only optimized
and random (incoherent) topic representations will result in a skewed distribution. In
contrast, we seek to mine topic representations that emulate a balanced distribution for
a meaningful comparison. Furthermore, there is also a desire for uniqueness among
topics, which avoids repetition and is representative of the corpus. We propose a new
non-topic modeling approach to sample topics to evaluate these metrics.

4.1 Approach: Balanced Sampling

The problem of mining topics of k words can be mapped to the classical k-clique listing
problem (Chiba and Nishizeki 1985; Danisch, Balalau, and Sozio 2018). To generate a
meaningful distribution of topic representations, we map the corpus-level information
as a graph, treating each word from its vocabulary set V as a vertex. Each word will
share an edge with every other word. mnlr is used to determine the value of the edges
between two vertices as its normalized range is intuitive, allowing easy identification of
the value ranges for the generation of sub-graphs. Using mlc and mf , on the other hand,
increases the sampling’s complexity as they are order-dependent. As a result, their sub-
graph contains bi-directional edges. Conducting sampling runs using any m, not only
mnlr, might introduce sampling bias, favoring certain topic representations, which our
approach seeks to mitigate. Figure 1 illustrates an overview of our approach.

The initial graph will be a complete graph of |V| vertices, where its k-sized sub-
graph is a topic representation of k words. Combinatorially, there are C|V|k possible
unique topics. It is practically infeasible and unnecessary to list all k-cliques. For a more
tractable approach, we modify the routine from Yuan et al. (2022) (Algorithm 1, 2) to
include the following properties:

1. Sub-graphs of varying quality. This routine seeks to generate smaller
graphs from the original complete graph to cover the spectrum of topic

Figure 1
Illustration of our balanced sampling approach. For each corpus, we generate sub-graphs and
randomly mine k-cliques as detailed in Section 4.1. For evaluation, we mix sampled topics from
different corpora and conduct three evaluations: inter-metric (see Section 7), inter-corpus (see
Section 7.2), and human evaluation (see Section 5).
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Figure 2
The topic representation sampling process. We initially construct a sub-graph via edge
conditions, which we then use to explore vertices in a clique-constrained manner, starting from a
random vertex. The exploration stops once we obtain a k-clique (topic representation). We repeat
the search, stopping the process when it is impossible to construct another k-clique or when we
retrieve enough k-cliques from the sub-graph.

quality. Edges on the graph are eliminated conditionally via their value,
and the remaining edges and connected vertices constitute the new
sub-graph, enabling the creation of three different kinds of sub-graphs:
pos where edge-values are above a given lower-bound, mid where
edge-values are between threshold values, and neg where edges are
below an upper-bound (see Appendix B).

2. Topic extraction. Inspired by Perozzi, Al-Rfou, and Skiena (2014),
instead of iterating through all the neighboring nodes or searching for
the next best node, we randomly select its unexplored neighbor node,
which shares an edge with all explored nodes, to explore. We extract the
explored k-path as our sampled topic.

3. Topic uniqueness. To attain a variety of topics, we remove all edges in a
mined clique, making it impossible to sample a similar topic
representation from the same sub-graph. Figure 2 illustrates this feature.

4. Balanced distribution of topics. For a given corpus, we introduce
additional common topics sampled from different corpora, which differ
in word distribution. We refer to this segment of external topic
representations as ext. Lastly, random segment comprises groups of
random words, included to represent a distribution absent from the
other sampled segments. Table 2 shows the result from this mining
approach. The final distribution would thus be more balanced,
comprising topics of varying scores along the spectrum.

Table 2
The average quantity of topics mined by our balanced sampling approach by segments per
corpus from the five independent sampling runs. Quantities of lemmatized variants are similar
except for ext segment where it has half the numbers.

Corpus neg pos mid random ext Total
ArXiv 66,007 2,120 14,436 10,000 49,777 142,340
PubMed 10,450 3,310 8,218 10,000 61,035 93,013
Wiki 56,903 21,698 35,195 10,000 136,036 259,832
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Algorithm 1 SDegreeList(k, T, C, ~G) . k denotes remaining vertices to be added to T
for v ∈ Permutate(C) do . Randomly pick a vertex v from Candidates C

Ĉ← N+
v ∩ C . Find common vertices in v’s neighbors N+

v and C
if k = 2 ∧ |Ĉ| > 0 then . Base Case: completed, only 2 vertices required

T← T ∪ {v, a random vertex from Ĉ}
remove (ui, vj) from ~G ∀vi, vj ∈ T . Sub-graph reduction
Return T

end if
if |Ĉ| > k− 2 then

T̂← SDegreeList(k− 1, T ∪ {v}, Ĉ, ~G) . Recursive step to explore further
if |T̂| 6= 0 then . Propagate completed result

Return T̂
end if

end if
end for
Return ∅ . Base Case: exploration exhausted

Algorithm 2 Main(G, k, target)
G← PRE-CORE(G, k) . Prune vertices with less than k edges from G
Generate DAG ~G from G . DAG: Directed Acyclic Graph
R← ∅
for v ∈ Permutate(~G) do . Randomly explore ~G

T← SDegreeList(k− 1, {v}, N+
v , ~G) . Enter recursive step

if |T| = k then . It is possible that exploration yields ∅
R← R ∪ {T}

end if
if target = |R| then . Early stop when we extract enough topic representations R

return R
end if

end for

In Algorithm 2, the pre-processing step, PRE-CORE, to reduce complexity remained
unchanged. This step is skippable when the graph is large and dense, such as during neg
sub-graphs generation. Our modification in Algorithm 1 and Algorithm 2 introduces
randomness via permutations and early stopping when Algorithm 1 finds a k-clique and
a desired number of k-cliques found in Algorithm 2. The sub-graph reduction routine is
in Algorithm 1.

4.2 Hyperparameter Threshold Selection

From Table 3, we have three different thresholds for pos. As the lower bound increases
for pos, it becomes increasingly difficult to sample cliques that meet the criteria, with
some sampling runs returning no samples. Sampling for mid is easier, in terms of speed
and quantity sampled, compared to pos as more edges fit the relaxed criteria. For ArXiv
and Wiki, we use bounds (−0.05, 0.15) while for PubMed, we use bounds (0, 0.15).
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Table 3
Hyperparameter threshold for different sub-graphs. Multiple thresholds are indicative of
multiple runs. random and ext are not hyperparameter dependent. When possible, we choose
hyperparameters to control sub-graph density.

ArXiv PubMed Wiki
pos (>) 0.05, 0.1, 0.15
mid (−0.05, 0.15) (0, 0.15) (−0.05, 0.15)
neg (<) −0.2,−0.4 −0.2 −0.1,−0.4

We use a stricter bound for PubMed as relaxing the bounds will result in a sample
similar to a random distribution. While neg seems easier to sample, compared with
pos or mid, it is not always guaranteed to be easier. When we set neg’s upper bound
to −0.4 for PubMed, sampling cliques became challenging. Selected hyperparameter
thresholds should return feasible samples while allowing us to avoid emulating a
random distribution, which we can trivially obtain.

4.3 Optimizing Position-Dependent Scoring

Since our approach (see Section 4.1) does not produce P(w|t), we can locally optimize
the word positions within a topic to obtain the best possible score for position-sensitive
metrics CUMass and CP. This additional step ensures fairness in our evaluation of order-
dependent metrics. We use subscript s to denote alphabetical order and subscript o to
denote optimized positions. In our correlation evaluations, we use topic representation
t of size k = 10, with words w arranged based on P(w|t) in descending order.

Given a set of k words as a topic, we seek to optimize the position-dependent score
(see Algorithm 3). This problem is reducible to a weighted activity selection problem,

Algorithm 3 OptPlacements(~G) . Where ~G is a word-score graph
order← ()
for i ∈ [0, |~G|) do:

best edge score← − inf
best vertex← −1
for v ∈ ~G do

incoming edges score←
∑

n∈~G,v 6=n en,v

outgoing edges score←
∑

n∈~G,v 6=n ev,n

difference← incoming edges score − outgoing edges score
if difference > best edge score then

best edge score← difference
best vertex← v

end if
end for
orderi← best vertex
Remove best vertex and its edges ∈ ~G

end for
return order
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akin to finding a max-weight independent set in an interval graph, and solvable in
polynomial time (Bar-Noy et al. 2001). Consider a word w at the jth position, with index
j starting from 0, its j incoming edges and k− j + 1 outgoing edges representing its rank
in the order. The incoming edges indicate the subset of preceding words to w, while
the outgoing edges indicate the subset of the remaining succeeding words. We define
an activity’s position in the ordering using its preceding and succeeding activities.
Each activity has an equal interval with its weight determined by the difference of
outgoing and incoming edges to all other words scored via m. We can transform the
activities into an interval graph, with |Cl

j| · |Cl
l−j+1| combinatorial number of possible

instances for each word per interval in the schedule. Our transformation will result
in an interval graph of k disjoint graphs. While the number of activities might seem
combinatorially explosive, selecting the first activity only involves k activities. Each
selection will prune multiple branches of possible orderings, resulting in k− j choices
after j selection. Hence, we are only required to select the best activity within each
disjoint graph conditioned on availability (for unselected words).

5. User Study Design

Previous studies measure human judgment through simple evaluation tasks such as rat-
ing the coherence of a topic on a few-point ordinal scale (Mimno et al. 2011a; Aletras and
Stevenson 2013), identifying the intruder word introduced into the topic representation
(Chang et al. 2009), or both (Lau, Newman, and Baldwin 2014; Hoyle et al. 2021). For
word intrusion, outlier detection signals the cohesiveness of the topic representation,
which is similar to rating topics on an ordinal scale. However, for both tasks, qualitative
gaps might exist. In word intrusion, study participants are restricted to just one outlier
per topic, assuming perfect coding, resulting in an exponential drop in scoring. For
simple ratings, topic representations of differing qualities might get the same score as
its ordinal scale is rigid in its score increments.

Additionally, while the decisions between human annotators might be equivalent,
it is not evident if their thought processes are similar. The key reason for this line of
inquiry stems from the observation that everyone is different in some aspects, such as
knowledge, culture, and experiences. Assuming our prior beliefs influence our under-
standing of words, what and how we perceive similarity and coherence might differ
from person to person. For these reasons, we are motivated to design a user study
that combines both word intrusion and topic rating tasks but is differentiated at a finer
granularity such that we can quantify the decision-making process. We instruct study
participants to cluster word groups that indicate coherent and outlier word groups.
We then examine the relationships between automated coherence metrics and different
proxy tasks derived from the user study.

User studies are typically not replicated precisely. While the methodology may be
similar, the participants and questions asked are likely to differ. We designed our study
to encompass multiple groups to investigate replicability. By examining the variation
resulting from the difference in participants and question sets, we hope to ensure some
degree of confidence in the study.

5.1 User Study Definitions

For our study, we recruit eight user study groups U = {U1, . . . , U8}, with five study
participants per group, totaling 40 study participants. Most of our study participants
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Figure 3
Format of questions presented to study participants. Each word is only assigned to the group
when the word is deemed coherent with other words belonging to the group. The topic
displayed in this example was manually curated to serve as a verification question and not
included in the evaluation. Refer to Lim and Lauw (2023b) for actual examples shown.

recruited have completed or are pursuing an undergraduate program from tertiary
institutions where English is the primary language of instruction, requiring sufficient
English competency for admissions (specified in Bo, Fu, and Lim 2023). As such, we
expect our applicants to have adequate competency in English, sufficient to understand
the tasks, and to recognize most, if not all, of the words presented. Before distributing
the study, participants are allocated randomly to only one study group and disallowed
to attempt another set of questions.

For each study group, we prepared eight unique question sets T = {T1, . . . , T8},
each containing 100 10-word topic representations, Ti = {t1,i, . . . , t100,i} and t =
{w0,j,i, . . . , w9,j,i}. For each participant Uu,i ∈ Ui, we present each tj,i ∈ Ti individually
and sorted alphabetically. We ask participants to cluster words in tj,i that they deem
similar to form coherent word groups g, where their response Ru,j,i to tj,i is a set of
unique g. To limit the complexity of the given task, we constrain each word to belong to
one coherent word group. Additionally, when a study participant determines that the
word is unrelated to the given topic representation, it forms its group of one. We format
the response as a Likert matrix grouping coherent words (see Figure 3), mandating
a response for each word wk,j,i ∈ tj,i. Refer to Table 4 for the table of notations and
Appendix A for actual instructions given to the study participants.

5.2 Topic Representation Selection

We construct an initial pool of 1,000 topics. We randomly sampled 400 common topic
representations from Wiki, ArXiv, and PubMed for parity between corpora. To represent
non-scientific topics, we randomly sampled 200 topics from Wiki that do not appear in
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Table 4
Table of notations.

Variable Definition
C Automated coherence measure
U Sets of user study group
T Sets of 100 questions
tj,i jth indexed 10-word topic representations ∈ Ti

wk,j,i kth indexed word in topic representation tj,i

Ru,j,i uth indexed participant in study Ui response to topic representation tj,i

g group of words clustered together ∈ Ru,j,i

P Proxy tasks based on human responses

ArXiv/PubMed. For ArXiv/PubMed exclusive topics, we randomly sampled 200 topic
representations each, with these topics also appearing in Wiki. Since most coherence
evaluations occur in the positive domain of CNPMI, we conduct sampling in a 7:1:1:1
ratio of pos/mid/neg/random segments of the corpus, seeking to emulate a uniform
score distribution. To account for word familiarity, we select lemmatized topics with
words found in 20K most frequently used words, based on Corpus of Contemporary
American English. The 14K most frequently used words, including proper nouns, will
account for 99% of running words (Nation 2006; Beglar 2010), where 99 out of 100
consecutive words in any text will belong to the 14K set. In our manual review of the
topic representations, we do not find any unrecognizable words. However, if there were
difficult words, the study allowed participants to look up the definitions of words.7

We pair each user study group with a set of randomly sampled 100 topics from the
pool without replacement. For topic representations not found in ArXiv or PubMed, we
exclude them during the evaluation of those corpora.

5.3 Proxy Tasks

Representing coherence as word clusters allows us to derive deeper insight into what
we perceive as human judgment. We distill our user study into a few proxy tasks, mea-
suring the correlation (Spearman’s ρ) of the user responses to the automated coherence
metrics.8 We propose three topic-level human coherence measures. Using the density
of human agreement, we define P1 Equation (12) as the mean agreement of Ui on all
possible word pairs on any topic tj,i.

P1(tj,i) = 1
|Ui|

|Ui|∑
u=1

∑
g∈Ru,j,i

|g|(|g| − 1)

|tj,i|(|tj,i| − 1)
(12)

7 See Lim and Lauw (2023b) for topic representations T1 presented to U1.
8 We use Spearman’s ρ instead of Pearson’s r, as we generally obtain a better r (than ρ shown) through

distortion of scores. To ensure parity, we use ρ instead.
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If tj,i have perfect agreement on coherence, we expect P1(tj,i) to have a value of 1, and
for incoherence, a value of 0. Subsequently, we consider the largest selected word group
within tj,i, and define P2 Equation (13) as the mean of this measure among Ui.

P2(tj,i) = 1
|Ui|

|Ui|∑
u=1

max{|g| : g ∈ Ru,j,i} (13)

A value of 1 will suggest that each word in tj,i has no relations to each other, and a value
of |tj,i| suggests perfect agreement on coherence. Lastly, we define P3 Equation (14) as
the mean number of annotated word groups among Ui.

P3(tj,i) = 1
|Ui|

|Ui|∑
u=1

|Ru,j,i| (14)

The interpretation of P3 is the inverse of P2. While these group-wise measures might
seem similar, they measure different nuances of human-annotated data. P1 evaluates the
sizes of multi-word groups, weighted towards larger groups. P2 only accounts for the
maximum word group size, which ignores the properties of the other remaining group.
P3 disregards group sizes to a certain extent and includes single-word “outlier” groups.
We evaluate these measures’ correlation against various C(tj,i).

6. User Study Results

From our previous work (Lim and Lauw 2023b), scores from the proxy tasks correlate
to automated coherence metrics. In Figure 4, the mean results of study groups on the
three proxy tasks indicate correlations between human judgment and some automated
coherence metrics (see Lim and Lauw [2023b] for individual group results). These
results include user study group U3, which exhibits outlier results, prompting us to
investigate the possible reason for the observations (see Section 5). Since most of our
study participants have some science-related background, we are surprised by ArXiv’s
lower correlation scores relative to Wiki in each proxy task. Additionally, ArXiv’s cor-
relation scores have a higher variance when compared to PubMed and Wiki. Lastly, we
also observed a weak correlation between CUmass and the proxy tasks. Corpus hyperpa-
rameters could be a confounding factor, and we examine its effect (see Section 6.3).

6.1 Inter-Rater Reliability (IRR)

Many factors will affect the variation for IRR (Belur et al. 2021). For our user study, we
attempted to mitigate some of these factors. Considering the framing and education
factors, we include a short introductory primer and some example questions. Study
participants will view these materials before starting the user study (Appendix A).
To alleviate fatigue, we allowed the study participants up to a week to work on the
task, pausing and continuing at their own pace. We were not concerned about the
learning effect, as topic representations of various themes exist in our question sets.
Additionally, the correctness of the task is subjective to their personal preference. As
our objective is to poll for their beliefs, with many possible valid answers, reviewing
their responses to enforce consistency between study participants is unnecessary. While
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Figure 4
Bar graph presenting evaluation results of Spearman’s ρ between automated coherence metrics
and density of agreement among study participants (P1). The results visualized are the mean
correlation scores from the 8 study groups with error bars. We omit reporting the lemmatized
version of the corpus as its values are similar to the original. CUMass,s and CP,s omitted as they are
almost identical to their o variant. The strength of correlation scores from using maximum
coherent group size (P2) and coherent group count (P3) are similar to these results (Appendix
Table B1). These results are from Lim and Lauw (2023b).

there are correlations between proxy measures and coherence metrics, it does not imply
that individual study participants have similar responses. IRR allows us to quantify the
difference in responses across different study groups.

6.1.1 Methodology. To measure IRR, we use Krippendorf’s α (Krippendorff 2011), defin-
ing pair-wise rater similarity with two different metrics to measure common answers
between raters: Jaccard distance (Jaccard 1912) and Measuring Agreement on Set-
valued Items (MASI) distance (Passonneau 2006). We treat each wk,j,i ∈ tj,i as a multi-
classification question, comprising other words (in tj,i) and “not related” as categories,
producing Boolean vector representations. When given two sets A and B, Jaccard
distance calculates their intersection over their union, (A ∩ B)/(A ∪ B), while MASI
distance gives fixed scores: 0 for disjoint sets, 1/3 for intersecting sets where neither sets
are a subset of the other, 2/3 when a set is a subset of another, and 1 for identical sets.
Comparing the two metrics, they are equivalent in the cases of disjoint and identical
sets. However, MASI rewards subsets but penalizes other non-empty intersections.

6.1.2 Analysis. From Table 5, except U5 and U7, the ordering of the study groups is sim-
ilar for both metrics. U1 scored the highest for both distance metrics, while U3 scored

Table 5
Individual Krippendorf’s α for each user study using Jaccard and MASI distance.

Groups U1 U2 U3 U4 U5 U6 U7 U8 Mean ᾱ (S.D.)
α (Jaccard) 0.463 0.391 0.323 0.376 0.325 0.366 0.333 0.347 0.366 ± 0.04
α (MASI) 0.372 0.309 0.224 0.284 0.239 0.277 0.237 0.261 0.276 ± 0.05
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the lowest. α (Jaccard) is higher than α (MASI) across the different user study groups.
A completely random study response will have an α (Jaccard) of 0.12 and α (MASI) of
0.092, significantly less than the study’s respective ᾱ, giving us some confidence about
the reliability of the responses.

6.1.3 Discussion. There might be two plausible reasons for the difference in the αmetrics
observed across the different user study groups. When two responses have a non-
empty intersection with neither being a subset of the other, the results suggest that most
intersections of such nature are more than 1/3 of the union of sets. Alternatively, when
either response is a subset of the other, the results also suggest that the subset is likelier
to have more than 2/3 of the elements in the superset. Considering the exponential
number of possible combinations for each topic response, these values show that our
study participants have varied responses but with some overlapping similarities.

6.2 English Proficiency Effect

Even though we recruit from an English-speaking population, there could still be
some variation in writing and reading abilities. Before the study, we asked prospective
applicants to rate their English proficiency using a sliding scale from 0 to 100. Self-
ratings of English proficiency can estimate the study participants’ English competency.
Xu (1991) found that self-rated English Proficiency was the most significant predictor
of the perceived level of academic difficulty for reading tasks. In a study conducted by
Takahashi (2009), students who rated themselves higher also scored better academically.
Our participants would have had some form of standardized English test before being
given admission into a tertiary education program. However, for privacy reasons, we
refrained from asking participants for their academic grades or test scores for English.
As anonymity is guaranteed, reporting self-assessed English proficiency is a reasonable
way to assess their opinion of their abilities relative to their peers, giving us a viable
proxy estimate of their true English proficiency. We reiterate that self-reporting a low
score does not mean they are incompetent in English.

6.2.1 Group Analysis. Figure 5 shows the distribution of participants’ self-rated English
proficiency. The distribution is left-skewed, with many participants rating themselves
proficient in English. From Figure 6, out of all the user groups, U3 seems to buck the
trend, reporting lower to no correlation with the proxy tasks. Its correlation scores
are two to three times the standard deviation less than the mean, a clear outlier. No
participants from U3 self-rate their proficiency score above 80, whereas the rest of the
groups contain multiple participants highly confident in their mastery of English.

6.2.2 Linear Regression Analysis. Using the mean self-rated proficiency scores (see Ta-
ble 6), we conduct a simple linear regression analysis against their respective IRR scores
and the correlation scores of CNPMI from the three different proxy tasks. We select CNPMI
as it has moderate to good correlation with other automated coherence metrics on Wiki
(Lim and Lauw 2023b). For the regression analysis, we set the bias parameter to 0 as we
expect user groups with zero English proficiency to have low IRR and no correlation
to the various proxy tasks. The mean self-rated English proficiency of the group (X) is
assumed to be normally distributed, with the Shapiro-Wilk test (Shapiro and Wilk 1965)
giving a p-value of 81.61%. We analyze the relationship of X with different dependent
variables (Y): IRR and the different correlation scores from the various proxy tasks. From
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Figure 5
This histogram visualizes the self-reported English proficiency of our study participants (exact
values in Table B14). Most of our study participants report high confidence in their English
proficiency, with most user study groups containing some of these individuals. However, study
group U3 is a notable exception, where its participants rated their English proficiency ≤ 80.

Figure 6
Line plot presenting a detailed breakdown of Proxy Task I using Spearman’s ρ of density of
agreement and coherence scores on Wiki corpus. Each line represents a user study group, with
emphasis on U3. The ranking of the study groups based on these scores is similar on ArXiv and
PubMed corpora (Appendix Table B2). CUMass,s and CP,s ommited as they are almost identical to
their o variant. The scores visualized are from Lim and Lauw (2023b), with similar trends for
Proxy Task II and III.

Table 7, the adjusted R2 of the various analyses is very high at 98%, implying a strong
correlation between X and Y with most of the variance explained. The different linear
regression tests report very low p-values, confirming that the effect from X is significant,
suggesting goodness of fit. For validation, we examine the residual normality and
variance homogeneity. We can assume that the residuals are normally distributed, with
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Table 6
Mean self-rated proficiency in English for each user study group.

Groups U1 U2 U3 U4 U5 U6 U7 U8 Mean (S.D.)
Mean self-rated proficiency 93.0 76.4 71.6 87.8 85.4 81.2 84.8 92.2 84.1 ± 7.4

Table 7
Simple linear regression analysis (Y = mX) against different dependent variables Y with X as the
group mean self-rated English proficiency. corri is the correlation score (Spearman’s ρ) of proxy
tasks Pi and CNPMI scores. Values for goodness of fit, residual normality, and homoscedasticity
are p-values for the respective tests.

Y = mX Y

X = self ratings IRR corr1 corr2 corr3

Coefficient m 0.00434 0.00743 0.00732 −0.00745
Adjusted R2 98.6% 98.7% 98.6% 98.7%
Goodness of fit 6.00E-06% 4.59E-06% 5.79E-06% 4.98E-06%
Residual normality 35.6% 56.6% 99.1% 96.0%
Homoscedasticity 41.2% 80.6% 31.3% 54.4%

the Shapiro-Wilk test giving a p-value > 5%. We can similarly assume that the variance
is homogeneous, with the White test (White 1980) giving p-value > 5%.

6.2.3 Discussion on the Effects of English Proficiency. The linear regression analysis (Sec-
tion 6.2.2) shows that group mean self-rated English proficiency (X) has a significant
effect on the correlation scores. As X is assumed to have a normal distribution, it
suggests that our user study simulates drawing correlation studies from an English-
competent population with this effect significant among such a population. Some of
these study groups with higher self-rated English proficiency also contain participants
who rated their proficiency low. Fortunately, averaging responses may have reduced
outlier effects from individual study participants.

6.3 Hyperparameter Search

There are two corpus hyperparameters: window size and minimum frequency. Window
size influences the word pair counts as it determines which neighboring words to count
as occurring together. Minimum frequency is a count threshold that excludes word pairs
with a lower word pair count. Intuitively, window size determines the locality of the
context, that is, sentence, paragraph, or document scope. Minimum frequency regulates
and excludes rare word pairs. As these hyperparameters may affect the results obtained,
it is imperative that we verify their effect.

6.3.1 Analysis. Using our collected responses, we can map human judgment against
various automated coherence scores computed on Wiki at different corpus hyperpa-
rameters. From Figure 7, for all metrics, correlation scores improve or remain consistent
as minimum frequency decreases to 0 and window size decreases to 10. We exclude U3

912



Lim and Lauw Aligning Human and Computational Coherence Evaluations

Figure 7
Visual results of average correlation scores (Spearman’s ρ) on Proxy Task I, the density of
agreement on Wiki-based coherence scores, when corpus hyperparameters are adjusted.
Correlation scores on Cγ=2

V,6ε and CNPMI,6ε are similar to Cγ=1
V,6ε , and thus omitted. Results on Proxy

Task II and III exhibit similar trends as well. Complete Wiki, ArXiv, and PubMed-based results
are in Appendix B. These results exclude outlier group U3. Hyperparameters adjusted are
window size, wsz, to determine counts and minimum frequency of word occurrences. Boolean
document, bd, is where we treat the entire document length as the window size. We highlight
plots that uses the hyperparameters defined in Röder, Both, and Hinneburg (2015).

in the hyperparameter search and we obtained similar hyperparameter search results
in ArXiv and PubMed (see Appendix B).

6.3.2 Further Analysis on Minimum Frequency. When we decrease the minimum fre-
quency, scores of rare-occurring word pairs increase, as we had previously treated
them as non-occurring, increasing the overall score of the topic representation. We focus
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Table 8
This table compares sets of results between coherence metrics differing in minimum frequency
(mf ) with U3 excluded. p-values are from the Wilcoxon signed-rank test, testing if scores
calculated at a lower minimum frequency mf = 10 have a stronger correlation with human
judgment than scores calculated at a higher mf = 100. Results of PubMed are excluded as it is
larger than Wiki. The results with mf = 10 is similar to mf = 0.

Proxy Task I Proxy Task II Proxy Task II

ArXiv mf= 10 mf= 100 p mf= 10 mf= 100 p mf= 10 mf= 100 p

Cγ=1
V,6ε 0.444± 0.080 0.408± 0.085 2% 0.440± 0.088 0.408± 0.092 2% −0.525± 0.066 −0.493± 0.072 1%

Cγ=2
V,6ε 0.423± 0.073 0.364± 0.069 4% 0.416± 0.078 0.365± 0.067 11% −0.511± 0.066 −0.412± 0.069 1%

CNPMI,6ε 0.440± 0.078 0.406± 0.081 2% 0.436± 0.087 0.407± 0.089 2% −0.524± 0.064 −0.491± 0.068 1%
CNPMI 0.434± 0.110 0.439± 0.076 66% 0.434± 0.118 0.439± 0.085 66% −0.507± 0.083 −0.513± 0.065 66%
CP,s 0.432± 0.076 0.341± 0.069 2% 0.424± 0.078 0.341± 0.067 2% −0.522± 0.066 −0.403± 0.074 1%
CP,o 0.432± 0.076 0.342± 0.069 2% 0.424± 0.079 0.341± 0.067 2% −0.522± 0.066 −0.403± 0.074 1%
CUMass,s 0.354± 0.099 0.302± 0.087 2% 0.354± 0.099 0.304± 0.087 2% −0.392± 0.096 −0.315± 0.073 2%
CUMass,o 0.353± 0.084 0.298± 0.075 2% 0.353± 0.087 0.300± 0.075 2% −0.396± 0.076 −0.309± 0.066 1%

Wiki

Cγ=1
V,6ε 0.693± 0.043 0.695± 0.048 71% 0.689± 0.035 0.691± 0.039 66% −0.680± 0.057 −0.683± 0.060 83%

Cγ=2
V,6ε 0.694± 0.044 0.649± 0.061 1% 0.690± 0.036 0.644± 0.052 1% −0.684± 0.057 −0.645± 0.074 2%

CNPMI,6ε 0.690± 0.044 0.693± 0.051 71% 0.687± 0.036 0.689± 0.042 71% −0.678± 0.059 −0.682± 0.065 83%
CNPMI 0.689± 0.036 0.707± 0.041 100% 0.690± 0.026 0.707± 0.030 100% −0.682± 0.051 −0.701± 0.054 100%
CP,s 0.667± 0.039 0.639± 0.055 6% 0.661± 0.034 0.632± 0.046 6% −0.657± 0.056 −0.633± 0.071 4%
CP,o 0.666± 0.039 0.639± 0.055 6% 0.661± 0.034 0.632± 0.046 6% −0.657± 0.056 −0.633± 0.071 4%
CUMass,s 0.566± 0.062 0.462± 0.074 1% 0.559± 0.057 0.457± 0.064 1% −0.590± 0.069 −0.487± 0.077 1%
CUMass,o 0.582± 0.044 0.474± 0.061 1% 0.576± 0.036 0.469± 0.050 1% −0.609± 0.042 −0.499± 0.063 1%

our observations on ArXiv benchmarks (see Table 8), as its corpus size is smaller than
Wiki, with many of the topic representations independently sampled for the user study
from Wiki. An increase in correlation scores indicates a likelihood that the previously
omitted scores are informational. We see an improvement in correlation scores across
most ArXiv-based automated coherence metrics, compared to those based on Wiki.
Since the topic representations selected for the user study comprise common vocabulary
between the corpora, this may positively influence the informativeness of the observed
rare-occurring word pairs. We use the Wilcoxon signed rank test (Wilcoxon 1945) to test
the significance of the difference between pairs of correlation scores between different
automated coherence metrics and human judgment from the same study group.

6.3.3 Discussion. Even though there might be different optimal settings for the various
automated coherence metrics, the difference is marginal and within error bars. The only
exception is CUMass,o where there is a gap between the recommended settings and its op-
timal settings, possibly explaining its weakness in correlation to human judgment and
other automated coherence metrics. The advantage of setting a minimum frequency is
to prevent rare word pairs from skewing the scores. However, this omitted information
may negatively affect the score. Setting this hyperparameter is about deciding which
scenario is likelier. For window sizes, word pair occurrences in close proximity suggest
greater relevance. With larger document sizes, having large window sizes might result
in associating irrelevant word pairs and penalizes frequently occurring word pairs
within the document. For larger corpora, our results demonstrate that it is unnecessary
to set a large minimum frequency or window size.
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6.4 Further Analysis on Word Ordering

By the definitions of CP and CUMass (Section 3.1), different ordering of words might pro-
duce different scores. Our approach (Section 4.1) samples unordered topic represen-
tations, which we then optimize for ordering (Section 4.3). However, our user study
presented these topic representations alphabetically, necessitating further investigation.

6.4.1 Analysis. Table 9a and 9b show the respective mean correlation scores of optimally
ordered and sorted variants of CP and CUMass across different corpora and proxy tasks.
Excluding U3, we compare the pairs of related correlation scores across variants, using
the Wilcoxon signed rank test, to test whether the optimally ordered variant (subscript
o) has a stronger correlation score than the alphabetically sorted variant (subscript s).
Most tests report a high p-value, unable to reject the null hypothesis that the s-variant
has a stronger or similar correlation score to the o-variant. Even for those tests that are
statistically significant, it appears that the difference in magnitude is marginal.

6.4.2 Discussion. From our results, it seems that ordering of words for automated co-
herence metrics does not significantly affect the correlation with human judgment.
Presenting the topic representation alphabetically in our user study is essential from

Table 9
This table compares sets of results between similar corpus-based coherence metrics with U3
excluded. p-values are from the Wilcoxon signed-rank test. Minimum frequency (mf ) in
parenthesis, otherwise mf = 10. Corpus hyperparameter window size = 10. Bolded p-values are
< 5%. The results using mf = 10 are similar to mf = 0.

(a) Comparison of correlation scores on three Proxy Tasks between Corpus-based coherence CP,s and CP,o with p-value
testing if CP,o has a stronger correlation with human judgment than CP,s.

Proxy Task I Proxy Task II Proxy Task III

Corpus (mf ) CP,s CP,o p CP,s CP,o p CP,s CP,o p

ArXiv 0.432± 0.076 0.432± 0.076 84% 0.424± 0.078 0.424± 0.079 84% −0.522± 0.066 −0.522± 0.066 84%
ArXiv-l 0.435± 0.074 0.435± 0.074 50% 0.428± 0.082 0.427± 0.082 67% −0.524± 0.054 −0.524± 0.054 57%
PubMed 0.473± 0.047 0.473± 0.047 91% 0.461± 0.034 0.461± 0.034 84% −0.500± 0.051 −0.500± 0.052 92%
PubMed-l 0.518± 0.043 0.518± 0.043 50% 0.503± 0.038 0.503± 0.037 50% −0.553± 0.051 −0.553± 0.050 28%
Wiki 0.667± 0.039 0.666± 0.039 92% 0.661± 0.034 0.661± 0.034 50% −0.657± 0.056 −0.657± 0.056 72%
Wiki-l 0.675± 0.044 0.675± 0.044 9% 0.671± 0.040 0.672± 0.040 5% −0.664± 0.057 −0.665± 0.058 3%
Wiki (100) 0.639± 0.055 0.639± 0.055 28% 0.632± 0.046 0.632± 0.046 28% −0.633± 0.071 −0.633± 0.071 8%
Wiki-l (100) 0.672± 0.047 0.672± 0.047 2% 0.666± 0.040 0.667± 0.041 4% −0.667± 0.060 −0.668± 0.060 2%

(b) Comparison of correlation scores on three Proxy Tasks between Corpus-based coherence CUMass,s and CUMass,o with
p-value testing if CUMass,o have a stronger correlation with human judgment than CUMass,s.

Proxy Task I Proxy Task II Proxy Task III

Corpus (mf ) CUMass,s CUMass,o p CUMass,s CUMass,o p CUMass,s CUMass,o p

ArXiv 0.354± 0.099 0.353± 0.084 53% 0.354± 0.099 0.353± 0.087 66% −0.392± 0.096 −0.396± 0.076 38%
ArXiv-l 0.338± 0.060 0.368± 0.059 1% 0.335± 0.068 0.367± 0.071 1% −0.392± 0.072 −0.419± 0.060 2%
PubMed 0.382± 0.081 0.387± 0.081 23% 0.367± 0.064 0.374± 0.065 15% −0.398± 0.085 −0.407± 0.086 11%
PubMed-l 0.391± 0.099 0.394± 0.081 53% 0.372± 0.089 0.375± 0.072 53% −0.414± 0.090 −0.419± 0.075 47%
Wiki 0.566± 0.062 0.582± 0.044 19% 0.559± 0.057 0.576± 0.036 19% −0.590± 0.069 −0.609± 0.042 11%
Wiki-l 0.574± 0.049 0.597± 0.040 15% 0.567± 0.044 0.591± 0.032 11% −0.602± 0.059 −0.626± 0.040 15%
Wiki (100) 0.462± 0.074 0.474± 0.061 11% 0.457± 0.064 0.469± 0.050 11% −0.487± 0.077 −0.499± 0.063 11%
Wiki-l (100) 0.536± 0.043 0.559± 0.033 6% 0.529± 0.041 0.554± 0.028 6% −0.569± 0.043 −0.591± 0.032 6%
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Figure 8
Visual breakdown of the three Proxy Tasks, plotting Spearman’s ρ of the density of agreement
across Wiki-based coherence scores, with window size 10 and minimum frequency 0. We also
plot mean and error bars to account inclusion or exclusion of outlier group U3. Proxy Task II and
III have similar results and thus omitted. Wiki-lemma has similar results. The complete tables for
Wiki, ArXiv, and PubMed are in Appendix B.

a user experience perspective, allowing our participants to locate specific words easily
when entering their response. The marginal difference might imply that the benefits of
ordering only applies to a minority of topic representations.

6.5 Notes on User Study Results

In this section, we identified and analyze four different factors: English proficiency,
window size, minimum frequency, and ordering of words. Figure 8 visualizes the
individual group correlation scores against the various automated coherence scores on
Wiki on the newly selected corpus hyperparameters. Excluding U3, the mean correlation
score increases with a reduction in variation. For future experiments, we standardize
corpus hyperparameter settings, unless otherwise specified, to window size = 10 and
minimum frequency = 0, as all of our selected automated coherence metrics seem to
work well in those settings. We recommend setting a low minimum frequency of [0, 100]
and a window size = 10 for large corpora.

7. Automated Metrics Correlation Analysis

Previously, we examined the relation between human and metric. In this section, we
examine the behavior of automated coherence metrics, in relation to each other and
across corpora.

7.1 Examining Inter-Metric Correlations

In our previous work (Lim and Lauw 2023b), we determined that inter-metric cor-
relations exist between automated coherence metrics, identifying how including or
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Figure 9
Heat maps comparing correlations (mean of 5 independently sampled sets of topic
representations) between selected Wiki-based coherence metrics with window size = 10 and
minimum frequency = 0. Error bars omitted as S.D ≤ 0.02. The results on ArXiv and PubMed
are similar.

excluding ε = 1e−12 affects these correlations. Considering the effects of hyperparam-
eters, we re-evaluate the correlation (Pearson’s r9) between different automated metrics
measured on Wiki (see Figure 9), PubMed, and ArXiv (see Appendix B). We expect a
high positive correlation score between metrics if they are both purportedly measuring
for coherence.

7.1.1 Analysis Between Metrics. Our first inter-metric analysis (see Figure 9a) on the better
ε variant uses the entire sampled set of topic representations. We observe that CNPMI
and CP correlate well with other metrics. However, 6ε-variant metrics do not correlate
strongly with CUMass,o. The difference in correlation scores between CNPMI and CUMass
and CNPMI,6ε and CUMass suggests that the weaker correlation is due to the removal of
ε. When ε is removed from CNPMI, edges between word pairs with no occurrence will
have a CNPMI score of 0. This indifference to non-occurring word pairs decreases the
correlation score. This explanation is applicable to CV,6ε as it uses CNPMI,6ε. The removal of
ε is important for CV, as non-occurring word pairs have similar negative NPMI vectors,
resulting in a high CV score that is contradicting.

7.1.2 Analysis Between Metrics on Coherent Subset. Our second inter-metric analysis (see
Figure 9) uses a subset of coherent topic representations with CNPMI > 0. We observe
that CNPMI and CP have similar weaker correlation with CUMass compared to 6ε-variants.
Building on the previous analysis, we can attribute the better correlation scores of
CNPMI and CP to CUMass on incoherent topic representations, suggesting that these met-
rics agree on incoherence. In both analyses (see Table 9), for position-dependent metrics

9 Based on reasons provided in Doogan and Buntine (2021), with the main argument that datasets (scores)
are continuous and have a bi-variate normal distribution.
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CP and CUMass, we observe that their correlation between their position-optimized (sub-
script o) and sorted (subscript s) variants have very high correlation. This high correla-
tion suggests that word positioning in the topic representation might be unimportant
for a larger corpus (see Section 6.4). The CV, CNPMI, CNPMI,6ε, and CP of both analyses
have a similarly strong correlation, albeit stronger with coherent topics.

7.1.3 Discussion. Comparing our updated analyses to Lim and Lauw (2023b), we see an
improvement of inter-metric correlation scores between CUMass and the other metrics
on Wiki, ArXiv, and PubMed. We attribute this improvement to the standardization of
corpus hyperparameters: window size and minimum frequency. Choosing CNPMI, CV,6ε,
or CP for coherence evaluation does not seem to matter as they are highly correlated
with each other and have similar correlation scores with human judgment. CUMass has
a weaker correlation to human judgment and moderately correlates with other metrics.
However, it could be meaningful to use CUMass in conjunction with another metric after
accounting for its sensitivity to corpus hyperparameters.

7.2 Examining Inter-Corpus Correlations

A natural extension after inter-metric comparison is to compare metrics measured on
different corpora. It is a common expectation that research works would use mul-
tiple corpora, with the differences between corpora quantified superficially (such as
in Section 3.2). Between corpora, we can quantify their differences at a topical level,
using common topics evaluated on automated coherence metrics. If the corpora are
thematically similar, we expect a high correlation. Again, using the new corpus hyper-
parameters, we update our findings.

7.2.1 Inter-Corpus Analysis. We posit that variance in scores measured on different cor-
pora lowers correlation scores due to the missing themes within the shared vocabulary
space in either corpus. Using the common topics from the paired corpora, we conduct
a correlation analysis on the scores measured on each corpus per metric. Different from
Lim and Lauw (2023b), where we only include topics evaluated on both corpus pairs,
we seek out all topics present in either corpus that can exist in the other. As such, we
increased the number of topic representations evaluated in each corpus pair. Compared
with Lim and Lauw (2023b), Table 10 shows a wider range of correlations between
each corpus pair on different automated coherence metrics. While these correlation
scores are positive, these correlations do not imply identical statistics in various corpora.
The control analysis in Table 11a shows a strong correlation score. Compared with the
scores found in Table 10, the lower correlation scores confirm the presence of topical
differences between the various corpora.

7.2.2 Lemmatization Evaluation Methodology. While we know how lemmatization affects
topic modeling (Schofield and Mimno 2016), its effect on evaluation is unclear. We
carried out two additional ablations simulating lemmatizing topics for evaluation. We
evaluate these topics on pairs of corpora differing in lemmatization while originat-
ing from the same documents. These corpus pairs would be thematically identical
in knowledge and organization while superficially different in corpus statistics, with
the lemmatized vocabulary having larger counts when compared to the unlemmatized
counterpart. For the first ablation, we shortlist topics containing at least one unlemma-
tized word, where if lemmatized, the word exists in the same unlemmatized corpus. We
compare correlations of the original set of topic representations and its corresponding
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Table 10
Pearson’s r between exact automated coherence metric measured on different corpus pairs. We
fully sample unique topic representations that may exist in both corpora aggregated from the
five different independent samples totaling |T| topics. Corpus hyperparameters are window
size = 10 and minimum frequency = 0. In Lim and Lauw (2023b), the shortlisted topics consists
of common topic representations evaluated on both corpora. Here, we shortlist common topic
representations that are at least present in one but can appear in the other.

Corpus Pairs |T| Cγ=1
V,6ε Cγ=2

V,6ε CNPMI,6ε CNPMI CP,s CP,o CUMass,s CUMass,o

ArXiv PubMed 394K 0.394 0.573 0.562 0.615 0.573 0.574 0.500 0.596
ArXiv Wiki 477K 0.525 0.625 0.608 0.584 0.612 0.612 0.336 0.464
PubMed Wiki 468K 0.537 0.592 0.578 0.628 0.601 0.601 0.572 0.631
ArXiv-l PubMed-l 249K 0.479 0.595 0.575 0.633 0.595 0.596 0.728 0.799
ArXiv-l Wiki-l 279K 0.521 0.641 0.627 0.599 0.606 0.607 0.499 0.629
PubMed-l Wiki-l 252K 0.515 0.643 0.632 0.643 0.576 0.576 0.713 0.756

Table 11
Pearson’s r (mean from 5 independently sampled sets of size |T̄|) of automated coherence metric
measured on different scenarios. Each selected topic representation will have two variants,
producing two sets of scores for each metric. We compare the correlation of the two sets of scores
for the same set of topic representations. Error bars omitted as S.D ≤ 0.01. Corpus
hyperparameters are window size = 10 and minimum frequency = 0.

(a) Comparing correlation scores from selected sets of topic representation measured on both lemmatized and
unlemmatized corpus.
Corpus |T̄| Cγ=1

V,6ε Cγ=2
V,6ε CNPMI,6ε CNPMI CP,s CP,o CUMass,s CUMass,o

ArXiv 80K 0.97 0.98 0.97 0.88 0.94 0.94 0.91 0.92
PubMed 29K 0.97 0.98 0.98 0.95 0.96 0.96 0.95 0.95
Wiki 143K 0.99 0.99 0.99 0.96 0.98 0.98 0.96 0.96

(b) The selected set of unlemmatized topic representations compared to the set of corresponding lemma-
tized variants, with both variants evaluated on the unlemmatized corpus.

Corpus |T̄| Cγ=1
V,6ε Cγ=2

V,6ε CNPMI,6ε CNPMI CP,s CP,o CUMass,s CUMass,o

ArXiv 111K 0.96 0.96 0.96 0.95 0.96 0.96 0.97 0.96
PubMed 60K 0.97 0.98 0.98 0.92 0.94 0.94 0.94 0.94
Wiki 150K 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.97
(c) The selected set of topic representations, measured on the unlemmatized corpus, is compared with its
lemmatized variants, evaluated on the lemmatized corpus.

Corpus |T̄| Cγ=1
V,6ε Cγ=2

V,6ε CNPMI,6ε CNPMI CP,s CP,o CUMass,s CUMass,o

ArXiv 126K 0.95 0.96 0.96 0.91 0.93 0.93 0.90 0.92
PubMed 75K 0.95 0.97 0.96 0.84 0.88 0.88 0.79 0.81
Wiki 245K 0.97 0.97 0.97 0.94 0.96 0.96 0.89 0.93

lemmatized set, with their scores measured on the same unlemmatized corpus. In
the second ablation, we use the same shortlisting process but with lemmatized topics
evaluated on the lemmatized corpus statistics.

7.2.3 Lemmatization Evaluation Analysis. For the first ablation, their scores exhibit a
strong correlation (see Table 11b), suggesting that the difference between lemmatized
and unlemmatized sets of topics is marginal. For the second ablation, our results (see
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Table 11c) show a strong correlation across the various metrics, implying that it is viable
to post-process topics for evaluation.

7.2.4 Discussion. When we compare corpora to human judgment, we indirectly quan-
tify the difference in knowledge representation and organization. Similarly, comparing
between corpora achieves the same goal. In Section 7.2.1, the low to moderate corre-
lation between corpus pairs using the same automated coherence metrics quantifies
the thematic differences between corpora. This result implies that automated coherence
metrics calculated on some corpora might not be able to approximate human judgment.
To evaluate for coherence, we can choose between conducting a user study or using a
different reference corpus, already benchmarked to human judgment. For large corpora,
the impact of text lemmatization is minimal, possibly from the law of averages, where
common words have similar occurrence frequencies in both lemmatized and unlem-
matized corpora. Both lemmatized and unlemmatized corpus statistics report similar
correlations of automated coherence to human judgment.

8. Investigating Human Responses

Our experiments suggest that the Wiki corpus can emulate the average human mental
model of coherence. We can analogize the human mental model as a corpus, each indi-
vidual having a unique mental model. Previously, we benchmarked human-corpus and
inter-corpus coherence relations. In this section, we seek to investigate human-human
coherence relations. Most user studies, including ours, analyze human responses in a
group setting, obtaining an average representation of the group. Regrettably, we claim
that in doing so, we are removing a defining feature of humans, which is their individu-
ality. The question of who is important as different individuals have different knowledge
and perceptions of coherence. Our IRR (see Section 6.1) shows that the responses are
different but still correlate well with Wiki (Figure 8). Given that it is possible to compare
the knowledge representation between corpora (see Section 7.2), we extend the analysis
to individual study participants’ perception of coherence. For these analyses, we reverse
the roles, using Wiki as the benchmark frame of reference and human judgment as the
subject of interest.

8.1 Surface-Level Differences

The user study design allows us to investigate our study participants’ responses, where
we attempt to gain additional insights into their thought processes and how they decide
which words within the topic representation are coherent.

8.1.1 Methodology. To get a sense of the difference in responses, we select four quantifi-
able metrics and visualize their results in Figure 10.

1. Self-rated English proficiency (see Table B14, appeared in Figure 5,
reappears in Figure B14). Study participants rated their English
Proficiency on a slider, ranging from 0 to 100. We use this as a proxy
measure for their true English proficiency, and their group-mean
self-ratings have a strong correlation with IRR and CNPMI on the three
proxy tasks (see Table 7).

920



Lim and Lauw Aligning Human and Computational Coherence Evaluations

Figure 10
Histogram visualization on selected metrics showing that study participants from the same
study group respond differently in each metric. See Appendix Table B14 for the raw data.

2. Total number of outliers (see Table B14). The propensity of deciding
which words are outliers can indicate a difference in the thought
processes of our study participants. The decision of deciding that the
word is not coherent with any word groups is influenced by which
linguistic content they consume. There are possibly many factors
influencing the choice of linguistic content, such as but not limited to
education, culture, interests, and so forth.

3. Total number of coherent groups selected (see Table B14). Similar to
measuring the total number of outliers, this metric is an alternative
difference measure. The definition of what is coherent might differ
between individuals. Assuming similar outlier counts, some may have
stricter criteria for coherence and thus have many smaller coherent
groups. Others may have a loose interpretation of coherence, seeking
global themes and building fewer but larger coherent groups.
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4. Word-edge score agreement within coherent groups (see Table B14).
We measure the percentage of words in our study participants’ chosen
coherent groups that share the group with the word’s highest-scoring
CNPMI paired word, quantifying how frequently our user study
participants group frequently occurring word pairs together. Anchoring
the statistics on Wiki as a reference point, we can observe the differences
between individual study participants.

8.1.2 Analysis and Discussion. From the visualization in Figure 10, within each study
group, the overall responses of its individual study participants are very different.
Additionally, since the agreement will be affected by the change in window sizes, we
focus our examination on two groups, U1 and U3 (Figure 11), as the remaining user
study groups are similar to U1. We observe a trend where word-edge score agreement at
larger window sizes (70, 110, bd) and lower window sizes (10, 40) are very similar. Since
the difference is marginal, it suggests that the grouping of best word pairs is consistent.
However, from our previous results in our hyperparameter search (see Figure 7), we
observe that changing the window size does have a noticeable change in correlation
scores, specifically bd, where the difference in its scores are widest when compared to
other window sizes. As this measurement only accounts for a portion of possible word
pair relations, we have to extend the analysis to include word group relations and to
account for outliers.

Figure 11
Percentage of words in coherent groups where the word’s maximum edge (Wiki CNPMI) is
present, examined across corpus hyperparameter window size (wsz). Other unmentioned study
groups have similar results to U1. The Boolean document, bd, is where we treat the entire
document length as the window size.
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8.2 Consistency Within Individual Responses

In our previous work (Lim and Lauw 2023b), we did a correlation analysis on word
pair scores. However, measuring individual correlations might not be meaningful due
to the binary mode of choice as the user study design enforces tie-breaking. Moreover,
the topic representations consist of ten words, which may provide additional context for
the study participants to work with. Nevertheless, these word pair scores may provide
additional information on how study participants decide which word is an outlier or
belongs to a group.

8.2.1 Methodology. In our previous analyses, multiple study participants’ input mea-
sures one topic. For this analysis, we use multiple topic representations to measure the
perception of coherence. First, for each study participant indexed u from study i, we
find νmax

u,i Equation (15).

νmax
u,i =

|T|⋃
j=1

⋃
g∈Ou,j,i

{max
⋃

wk∈tj,i

{eg0,wk
: g0 6= wk}} (15)

νmax
u,i Equation (15) is the set of maximum word pair edge-weights ew1,w2 (CNPMI) from

the set of outliers Ou,i Equation (16).

Ou,i =

|T|⋃
j=1

{Ou,j,i} (16)

A word is an outlier if it belongs to a word set g consisting of only itself in the study
participant’s response R. Ou,j,i is the set of outliers from Ru,j,i Equation (17).

Ou,j,i =
⋃
{g ∈ Ru,j,i : |g| = 1} (17)

Next, for each study participant indexed u from study i, we find νmin
u,i Equation (18).

νmin
u,i =

⋃
g∈Iu,i

{min
⋃

wk1
∈g,wk2

∈g

{ewk1
,wk2

: wk1 6= wk2}} (18)

νmin
u,i Equation (18) is the set of minimum word pair edge-weights ewk1

,wk2
(CNPMI) from

coherent word groups Iu,i Equation (19).

Iu,i =

|T|⋃
j=1

{Iu,j,i} (19)

We consider coherent word groups as word sets g in the study participant’s response
R with membership greater than 1. Iu,j,i is the set of coherent word groups from Ru,j,i
Equation (20).

Iu,j,i =
⋃
{g ∈ Ru,j,i : |g| > 1} (20)
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Table 12
Individual ambiguity gap results. Mean gap defined as [ν̄min

u,i , ν̄max
u,i ]. Mean gap difference is

defined as ν̄max
u,i − ν̄min

u,i . Values scored using Wiki CNPMI. Noteworthy groups consists of: U1 has
the most domain expertise related to ArXiv, U3 is the outlier study group, and U4 is the polar
opposite of U1, being the most diverse in expertise and experience. See Appendix Table B11 for
complete results.

Groups U1 U2 U3 U4 U5 U6 U7 U8

Mean Group Gap Difference 0.082 0.088 0.111 0.078 0.095 0.087 0.078 0.084

We chose CNPMI as it correlates well with both ε and 6εmetrics (see Section 7). From
the sets of selected word pair edges, we derive two means, ν̄min

u,i and ν̄max
u,i . Considering

that ν̄max
u,i > ν̄min

u,i , we define mean ambiguity gap [ν̄min
u,i , ν̄max

u,i ] to map out a range of
scored word pair edges where there is some level of ambiguity, indicating the degree
of disagreement between the individual participant and corpus statistic. For word pair
edges that lie outside the gaps, study participants align with Wiki on the relatedness
within the word pairs. Below the gap, study participants agree with Wiki that the word
pairs are unrelated, while above the gap, the word pairs are coherent.

8.2.2 Analysis. From the results in Table 12, study group U3 reported the widest group
mean ambiguity gap. Intuitively, a wider gap might imply more uncertainty, explaining
U3’s lower correlation with automated coherence metrics. However, when we examine
other groups, there are also individual study participants with equal or higher differ-
ences in the mean gap. We also examined the correlations of these measurements with
the self-rated English proficiency of individual study participants and found that ν̄max

u,i
significantly correlates, averaging r = 0.55 across the various window sizes. We also
observe that the different study participants have a wide range of scores for νmin

u,i (see
Appendix Table B11 and Figure 12), even within the same group, suggesting differences
in opinions on grouping coherent words.

8.2.3 Discussion. When deciding which words to group, one has to consider many
possible combinations as there are 510 possible answers using the Likert matrix format.
Because our participants cannot process all possibilities, a realistic approach to the task
will consist of entity-to-entity comparisons. These comparisons can be word-to-word,
word-to-group, or group-to-group, with group comparisons reducing the task’s overall
complexity. It is also likely that these comparisons are done linearly and will result in
some local optimum, where no further changes will result in a better response where
its difference is detectable by the participant. Since we have already established that
automated coherence scores correlate to human judgment at topic representations of
size 10, the observations should be extendable to groups of smaller sizes. The ambiguity
gap can quantify the preferences of each individual study participant with respect to the
corpus statistics. Excluding U3, these other study groups have participants with high
and low mean gap differences, evidence that there are outlier opinions in the group.
Since these groups correlate better with automated coherence metrics, these outlier
opinions might be productive within the group as they introduce a statistical gradation
that helps in the coherence evaluation of word pairs.
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Figure 12
Box and whisker visualization of noteworthy study groups (U1, U3, U4). The box plots in light
blue are values from νmax

u,i , and the box plots in light gray are values from νmin
u,i . The boxes denote

the interquartile range with its median notched. This visualization ignores outliers (plotted
points). See Appendix C for the complete figure.

8.3 Investigating Local Optimality

We further analyze the results in a word-to-group setting using swaps inspired by the
classical 2-opt algorithm (Croes 1958). ν̄max

u,i serves as an estimate for the respective study
participant’s coherence tipping point, an intuition that helps them decide to include or
exclude words. If their responses are consistent, we expect a low percentage of swaps
that produce an observable difference from their perspective, suggesting 2-optimality
in their response.

8.3.1 Methodology. A swap consists of transferring a word from one group to another.
After the swap, we score both groups, using CNPMI for this analysis, and determine
whether the sum of the change in scores for both groups is noticeable, where it exceeds
a threshold personalized to each study participant. We use ν̄max

u,i as the threshold to
decide if the benefit is detectable to study participant u in study group j. For a given
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pair of groups g1 and g2, we conduct swaps from g1 to g2, each resulting in ĝ1 and ĝ2
pair. We examine four different kinds of swaps:

1. Cluster-to-cluster. We find coherent group set Iu,j,i, where |Iu,j,i| ≥ 2, that
belongs to the same response to a topic representation Ru,j,i for topic
representation tj,i. We consider all 2-permutations group-wise in Iu,j,i. We
expect |g1|+ |g2| number of swaps for each group pair. We consider the
scenario (C(ĝ1) + C(ĝ2))− (C(g1) + C(g2)) > ν̄max

u,i as an improvement in
finding a better locally optimal solution within a swap. if |ĝ1| = 1,
C(ĝ1) = 0. This swap tests which group is the word better off in.

2. Outlier-to-cluster. We find outlier group set Ou,j,i belonging to response
Ru,j,i for topic representation tj,i. We select combinations of g1 from Ou,j,i
and g2 from Iu,j,i. Since |g1| = 1, there is only one swap between each pair.
After the swap, ĝ1 = ∅, we set C(ĝ1) = 0. Since |ĝ1| = 1, its C(ĝ1) = 0 as
well. Hence, we consider the scenario C(ĝ2)− C(g2) > ν̄max

u,i as an
improvement. This swap tests if we can obtain bigger and better
coherent topic groups by including outliers.

3. Cluster-to-outlier. We conduct swaps of each g1 from Iu,j,i with g2 = ∅.
For each g1, there will be |g1| number of swaps. As |ĝ2| = 1, its C(ĝ2) = 0.
If |ĝ1| = 0, its C(ĝ1) = 0. We consider the scenario C(ĝ1)− C(g1) > ν̄max

u,i as
an improvement. This swap tests if we can obtain a smaller but more
coherent topic by excluding words as outliers.

4. Outlier-to-outlier. As |g1| = 1 and |g2| = 1, let wg be the word from g. We
conduct swaps between permutations of Ou,j,i, where |Ou,j,i| ≥ 2,
resulting in |Ou,j,i|2 number of swaps. As the swap combines two outlier
words, the change is equivalent to its edge score C(ĝ2) > ν̄max

u,i . This swap
tests if we can get better 2-sized coherent groups from outliers. Among
all the different swaps, this swap is the easiest to show improvement as it
only compares the edge.

8.3.2 Analysis. From the results in Figure 13, most swaps do not result in a better overall
state. Since ν̄max

u,i is the threshold, larger ν̄max
u,i are expected to have fewer improving

swaps. We benchmark 15 random sampling runs at three different ν̄max
u,i of 0.10, 0.15,

and 0.20. If we treat the corpus statistics as the oracle, the low rate of better swaps in the
random group, serving as baselines, suggests some difficulty in the task. Comparing the
study participants to their corresponding random baseline with the next higher ν̄max

u,i , we
find that the majority of the participants have a lower rate of improvement in outlier-to-
cluster and outlier-to-outlier swaps. Whereas for cluster-to-cluster and cluster-to-outlier
swaps, fewer participants have a lower rate of improvement than the random baseline.

8.3.3 Discussion. We do not expect study participants to have perfect responses as there
are many possible swaps. A low rate of improving swaps suggests that most study
participants reached some decision local optima on certain kinds of swaps during their
interpretation of the topic representations presented. Naturally, since the user study task
is on grouping words, a low rate of improvement in outlier-to-cluster and outlier-to-
outlier confirms that our participants’ primary focus is on assigning words to a group.
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Figure 13
We examine 2-optimality in individual user study responses, where a swap is an action that
transfers a word from one group to another. We define four kinds of swaps: cluster-to-cluster,
outlier-to-cluster, cluster-to-outlier, and outlier-to-outlier. % better denotes the percentage of
swaps that improve the overall system, where the sum of the change in scores for both groups is
better than threshold ν̄max

u,i tailored to each study participant. For brevity, results of U1, U3, and
U4 are shown (see Appendix B for full statistics). Results that are less than the next larger
random threshold, suggesting better local optimality for that swap, are marked as circles.
Conversely, negative results are marked as crosses.

In contrast, a low rate of improvement in cluster-to-cluster and cluster-to-outlier for
some participants either suggests that they compared clusters and improved on their
initial response or had coherent initial word clusters. Whereas for other participants,
the higher rate on certain swaps suggests that they might not have considered them.
The analysis of local optimality shows the difference in answering style, reinforcing the
case for investigating individual study participants.

8.4 Ambiguity-Based Scoring

xν̂miny Equation (21) estimates the population lower bound threshold for coherent word
groups, averaging across the lowest individual threshold ν̄min

u,i from each study group.

xν̂miny = 1
|U|

|U|∑
i=1

min
|Ui|⋃
u=1

{ν̄min
u,i } (21)

pν̂minq Equation (22) estimates the population upper bound threshold for coherent word
groups, averaging across the highest individual threshold ν̄min

u,i from each study group.

pν̂minq = 1
|U|

|U|∑
i=1

max
|Ui|⋃
u=1

{ν̄min
u,i } (22)
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xν̂maxy Equation (23) estimates the population lower bound threshold for outliers,
averaging across the lowest individual threshold ν̄max

u,i from each study group.

xν̂maxy = 1
|U|

|U|∑
i=1

min
|Ui|⋃
u=1

{ν̄max
u,i } (23)

pν̂maxq Equation (23) estimates the population upper bound threshold for outliers,
averaging across the highest individual threshold ν̄max

u,i from each study group.

pν̂maxq = 1
|U|

|U|∑
i=1

max
|Ui|⋃
u=1

{ν̄max
u,i } (24)

8.4.1 Discussion. From our user study, xν̂miny, pν̂minq, xν̂maxy, and pν̂maxq are 0.005,
0.085, 0.109, and 0.152, respectively. Considering two topic representations with a slight
qualitative difference, quantifiable through some metric, we may be unable to discern
between the two topics. If we could not perceive the minor difference, then perhaps
that difference might not be as meaningful. An ordinal grading system might be able
to highlight the qualitative difference, but determining such a system is challenging.
An alternative approach might involve capping the extremes. Consider two topics that
have a noticeable qualitative difference, with both scoring well above pν̂maxq or well
below xν̂miny. In the case of clearly coherent topics, it is unlikely that we will consider
the lower-scoring topic as incoherent. To ensure robustness, we can examine multiple
different caps and floors. The efficacy of using grades to score topic representations is
an area for future investigation.

8.5 Effect of Individual Expertise

An important factor that influences one’s decision will be their expertise and experience.
Deciding whether to recruit subject matter experts is pivotal and might affect the user
study results. User studies on specific domains necessitate recruiting related experts. In
this section, we investigate the effect of individual expertise on our user study.

8.5.1 Methodology. It is challenging to judge expertise in Wikipedia as it encompasses
a plethora of subjects. However, we can easily classify relevant expertise on domains
commonly found in ArXiv. From our study participants, we identify individuals who
we believe have experience with these domains. Our shortlisting criteria require these
individuals to be graduates with working research experience or pursuing postgraduate
studies in relevant scientific domains. We use public LinkedIn information to ascertain
their experiences at the point of the study. From our pool of 40 study participants,
we identified 12 potential experts. We conduct three different analyses to analyze their
impact on our user study. To determine if the experts identified responded differently,
we analyze their ambiguity gaps using ArXiv corpus statistics, comparing their results
to non-experts’. As different user study groups have different numbers of experts,
we identified the expert-dominant group U1 and compared their responses to other
groups using their responses’ correlation to ArXiv corpus statistics. Lastly, since there
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Figure 14
Scatter plot of ambiguity gap (using ArXiv CNPMI) of every study participant u separated by
expertise status (see Section 8.5). In each study group U, we circle the plot of the member with
the highest ambiguity gap, implying that they have the greatest disagreement with the corpus
statistics within their respective U. See Appendix Table B13 for exact results.

are varying levels of expertise even among experts, we examine the experts in U1 as a
case study.

8.5.2 Analysis of Ambiguity Gap. From Figure 14, of the seven study groups with ex-
perts, we have two experts having the widest ambiguity gap within their respective
study group, implying that they have the greatest disagreement with the ArXiv corpus
statistic. The mean ambiguity gap for experts is 0.141, and the mean ambiguity gap for
non-experts is 0.149. A Mann-Whitney U test (Mann and Whitney 1947), with a null
hypothesis where the ambiguity gap of experts is more than or equal to that of non-
experts, returning a p-value of 0.25, and we are unable to reject the null hypothesis.

8.5.3 Analysis Between Study Groups. Ranking user group U1, a study group with a strong
majority of four experts, with other study groups (see Appendix Table B13), reveals that
U1 has the second highest correlation score (ρ = 0.497), with U5 having only one expert,
scored higher at (ρ = 0.530). However, when we consider U3 with the weakest score
(ρ = 0.065), it implies that not every non-expert study groups’ competency of ArXiv’s
domains approaches that of U1. U4 serves as another case example, with participants
from diverse educational backgrounds, containing undergraduates and graduates, in
both ArXiv and non-ArXiv domains. U4 has the highest correlation score on Wiki corpus
statistic (ρ = 0.75), while being average on ArXiv corpus statistic (ρ = 0.388). U1, on the
other hand, scored similarly well on Wiki corpus (ρ = 0.72).

8.5.4 Case Study of Experts Within Study Groups. Even among experts, there are different
levels of expertise, which we can approximate using education and career. We use U1 as
a case study (see Appendix Table B13), with u2 and u3 having higher levels of expertise
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than u1 and u4. Both u2 and u3 have a similar ambiguity gap with u4 while having a
wider ambiguity gap than u1. This observation indicates that more expertise might not
necessarily lead to better agreement with the corpus. Compared to u5, a non-science
major graduate, all experts in U1 have a lower ambiguity gap.

8.5.5 Discussion on Individual Expertise. From ambiguity gap analysis (8.5.2), within our
pool of study participants, it does not seem that expertise leads to agreement with cor-
pus statistics. From inter-group analysis (8.5.3), recruiting experts appears to be the safer
option, as recruiting non-experts might result in the outlier scenario of U3. However, the
recruited expert may be opinionated on specific areas, resulting in a large ambiguity gap
(case study 8.5.4). We also observe these disagreements between corpora, with ArXiv
and PubMed being more specialized than Wiki. Although recruiting randomly might
entail some risk, we managed to recruit some non-experts who agreed with the corpus
statistics, suggesting that they have comparable contextual knowledge in the subject
areas. Overall, recruiting a mix of experts and non-experts worked out for this user
study.

8.5.6 Discussion on Recruiting Experts. In a perfect user study, we would have chosen
only subject matter experts. However, we realized that the choice lies in our study
participants on whether they wish to partake in our user study rather than us selecting
them. These experts are paid similarly, at the same rate, as the non-experts, and since
they are already well-renumerated in their careers, money is not their primary motiva-
tor. As such, we did encounter many rejections, with time cost as the primary reason.
For this study, recruiting experts requires more effort, but we were more confident in
their quality of response. While recruiting non-experts is easier effort-wise and less
time-consuming, we had concerns that they might not have pre-requisite contextual
knowledge or English proficiency. In hindsight, creating non-monetary value for our
user study participants is an area we could have done better.

9. Final Discussion

We condense our findings and recommendations into three themes.

9.1 Assumptions Challenged

We examine different factors that may affect our evaluation of large corpora. We show
that the previous assumptions of window sizes and minimum frequency are not optimal
for large corpora (see Section 6.3) , and the selection of lemmatization (see Section 7.2.2)
and ordering of words (see Section 6.4) do not seem to affect evaluation. These find-
ings are attributable to the large size of the corpus, resulting in sufficient word co-
occurrences count even in a small window size setting. For this user study, the impact
of experts is unclear (see Section 8.5), with some non-expert-dominated groups having
similar or better correlation than the expert-dominated group. With the increasing ease
of access to knowledge, traditional indicators of expertise might underestimate one’s
knowledge. Alternatively, it could be that only surface-level expertise, and not deep
expertise, is required when discerning topic representation from niche areas.

With a better understanding of these factors, we re-examine our previous findings
(see Section 7). When evaluating topic representations via large corpora, we recommend
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using a low window size of [0,100] and low minimum frequency≤ 10. If the vocabulary
size is not an issue, lemmatization is skippable. On the Wikipedia corpus, since most
corpus-based metrics are correlated, we prefer using CNPMI. When the evaluations are
too close to call, CUMass is a potential tie-breaker. While it is easier to model topics on
small corpora, understanding the behavior of these factors may increase the appeal of
large corpora.

9.2 Agree to Disagree

One substantial part of this article is to show the differences between individual study
participants in their study groups. The reported inter-rater reliability scores quantify the
divergence in responses within each study group (see Section 6.1). We also quantified
some surface-level statistics showing varied overall responses, with English proficiency
having the most significant impact, where groups with better mean proficiency correlate
better with automated coherence metrics (see Section 6.2). In a user study group, at least
some participants should be proficient in English. Diving deeper to analyze individual
differences, we investigate individual responses in two approaches, using corpus statis-
tics as the reference. First, we propose to measure the ambiguity gap that attempts to
identify the range within the metric where the participant disagrees with the corpus
statistics (see Section 8.2). We show that some participants have a wide ambiguity gap,
implying disagreement with the corpora. Second, to decipher the participants’ strategy
for the task, we investigated the 2-optimality of their responses (see Section 8.3), with
results suggesting varying degrees of preferences to the four hypothetical strategies for
the user study task. Interpretation of topic representations can be subjective, with indi-
viduals having differing opinions. However, despite such disagreement and differences
between individual user study participants, the proxy measures employed correlate to
the different automated coherence metrics, especially on the Wikipedia corpus.

9.3 The Quest for Interpretability

This work shows that automated coherence metrics are effective, with Wikipedia as
the benchmark for evaluating human-level coherence (see Section 7). After selecting
appropriate corpus hyperparameters, we find stronger correlation scores. Excluding
outlier group U3, CNPMI and CV have a mean correlation ρ̄ = 0.69, CP at ρ̄ = 0.66,
and CUMass at ρ̄ = 0.58. A key concern about user studies is their reproducibility. We
conduct our user study across several study groups and questions that paint a realistic
picture, obtaining replicable study groups with good correlation scores, such as U4
on CNPMI at ρ = 0.75, and outliers, such as U3 with bad correlation score on CNPMI at
ρ = 0.46. Of the three corpora examined, Wikipedia’s corpus statistics seems to be the
best medium to base these corpus-reliant automated coherence metrics on. Wikipedia’s
size and coverage of diverse subjects might be a reflection, at least in some parts, of our
organization of learned concepts.

Evaluating topic representations utilizing large reference corpora is poised to be the
new requirement, evidenced by the latest approaches using pre-trained embeddings
(Thielmann et al. 2024) and large language model prompts (Stammbach et al. 2023).
While these black-box approaches are promising, we believe automated coherence met-
rics based on corpus statistics will remain relevant in evaluations. Topic representations
can serve as a shared interpretation interface between humans and machines, and their
evaluation may help us to pursue safer and explainable models.
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Ethics Considerations

Before embarking on our user study, we sought and attained prior approval from our
organization’s institutional review board. We manually reviewed all topic representa-
tions in the questions, ensuring the words were not offensive. Our study participants
were paid SGD 15 for the study, a rate slightly higher than the hourly rate paid by
our organization for undergraduates. We strove to ensure the well-being of our study
participants. They were allowed to drop out of the study at any point before completion.
We also allowed study participants to complete the tasks at their own pace and place
of choosing. Privacy-wise, our questions are neither personal nor sensitive, and it is
improbable to de-anonymize our study participants via their responses.

Appendix A. User Study Instructions

Primer on Task

Evaluating the relations between words from a computational lens serves to further the
research and understanding of artificial intelligence linguistic research.

A group of words can be considered coherent if they share a similar theme. For
example, the group “apples banana coconut durian” can be considered coherent as most
people would identify “fruit,” “food,” or “tree” as the common theme or link.

However, some group of words might be more ambiguous and the common theme
might not be as straightforward. For example, “trees ore corn hydrogen” might be
considered incoherent to some, while others might identify the common theme as
“resources.”

Ultimately, it is up to one’s personal preferences and experiences to decide on
whether a group of words are coherent.

Task Instructions

You will be presented with 10 English words. These words belongs to the 20,000 most
frequently used words, so it is unlikely that you will encounter strange words. If you
do encounter words that you have never seen before, you are free to use a dictionary or
search engine (e.g., Google).

You will then be asked to assign each word to groups, where each group contains
words that you think are coherent when grouped together.

Given an example: alcohol athlete breakfast drink eat habit intake meal obesity sleep
Some might divide the words into two groups identifying Group 1 is “alcoholic”-

themed and Group 2 is “healthy”-themed.

Group 1 Group 2 Group 3 Group 4 Not Related
alcohol O
athlete O
breakfast O
drink O
eat O
habit O
intake O
meal O
obesity O
sleep O
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In another example given: atom calcium component material reduction temperature
titanium typical weight yield

Some might group most of the words as “chemistry”-themed.

Group 1 Group 2 Group 3 Group 4 Not Related
atom O
calcium O
component O
material O
reduction O
temperature O
titanium O
typical O
weight O
yield O

If you believe that certain word(s) do not belong in any group, select the “Not
Related” option in the last column. There can be multiple words that are not related
to each other.

For example: animal bed carrot fungible great osmosis paradise star telcommunica-
tion water

Group 1 Group 2 Group 3 Group 4 Not Related
animal O
bed O
carrot O
fungible O
great O
osmosis O
paradise O
star O
telcommunication O
water O

We want to emphasize that there are no right or wrong answers for the tasks, we
wish to capture your beliefs on what you think is “correct.” We understand that at
times, you might encounter words that belong to multiple groups; however to simplify
the tasks, we ask that you be the tiebreaker and assign it to the word-group with the
strongest similarity.

Appendix B. Supplementary Tables

This appendix contains all the additional tables for various results:

1. Table B1 presents the full user study results for all three proxy tasks
across corpora (see Section 6).

2. Table B2 presents the complete breakdown of Proxy Task I by groups
across corpora (see Section 6).
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3. Table B3 describes overlapping vocabularies between corpora (see
Section 3.2).

4. Tables B4, B5, B6 describes mean correlation scores in corpus
hyperparameter search for ArXiv and PubMed respectively (see
Section 6.3).

5. Tables B7, B8, B9 describes correlation scores for individual user study
groups (see Section 6.5).

6. Table B10 describes inter-metric correlation scores in ArXiv and PubMed
(see Section 7.2).

7. Table B11 presents the complete analysis results on the ambiguity gap for
each study participant (see Section 8.2).

8. Table B12 presents the complete statistics on the 2-optimality for each
study participant (see Section 8.3).

9. Table B13 describes data on ambiguity gap for each study participant on
arXiv (see Section 8.5.2).

10. Table B14 describes the raw data used in Figure 10.
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Table B1
Average Spearman’s ρ between automated coherence metrics and respective proxy measure. The
values shown are the mean correlation scores from the 8 study groups with error bars. We omit
reporting the lemmatized version of the corpus as its values are similar to the original. CUMass,s
and CP,s are omitted as they are almost identical to their o variant. Results from Lim and Lauw
(2023b).

(a) Proxy Task I: Density of agreement among study participants.

ArXiv PubMed Wiki
Cγ=1

V,6ε 0.319 ± 0.152 0.516 ± 0.067 0.651 ± 0.099
Cγ=2

V,6ε 0.356 ± 0.146 0.510 ± 0.095 0.652 ± 0.119
CNPMI,6ε 0.366 ± 0.136 0.521 ± 0.064 0.664 ± 0.094
CNPMI 0.304 ± 0.169 0.428 ± 0.111 0.624 ± 0.087
CP,o 0.266 ± 0.178 0.459 ± 0.093 0.634 ± 0.091
CUMass,o 0.243 ± 0.176 0.183 ± 0.161 0.329 ± 0.066

(b) Proxy Task II: Mean of the maximum coherent group between study participants.

ArXiv PubMed Wiki
Cγ=1

V,6ε 0.316 ± 0.159 0.511 ± 0.053 0.643 ± 0.110
Cγ=2

V,6ε 0.355 ± 0.153 0.507 ± 0.080 0.648 ± 0.130
CNPMI,6ε 0.369 ± 0.135 0.517 ± 0.049 0.654 ± 0.104
CNPMI 0.303 ± 0.175 0.421 ± 0.094 0.615 ± 0.090
CP,o 0.260 ± 0.182 0.454 ± 0.081 0.624 ± 0.103
CUMass,o 0.232 ± 0.182 0.170 ± 0.152 0.320 ± 0.060

(c) Proxy Task III: Mean of coherent group counts between study participants. For this task, a
stronger negative score is better as a completely coherent topic gets P3(t) = 1 while an inco-
herent topic gets P3(t) = 10. Hence, this proxy measure is inversely related to the automated
coherence metric, where a larger score indicates coherence.

ArXiv PubMed Wiki
Cγ=1

V,6ε −0.382 ± 0.164 −0.547 ± 0.109 −0.645 ± 0.085
Cγ=2

V,6ε −0.415 ± 0.168 −0.541 ± 0.135 −0.648 ± 0.100
CNPMI,6ε −0.434 ± 0.171 −0.549 ± 0.118 −0.660 ± 0.084
CNPMI −0.342 ± 0.195 −0.453 ± 0.118 −0.627 ± 0.085
CP,o −0.320 ± 0.200 −0.484 ± 0.107 −0.631 ± 0.082
CUMass,o −0.277 ± 0.172 −0.202 ± 0.126 −0.354 ± 0.053
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Table B2
Detailed breakdown of Proxy Task I, values are Spearman’s ρ of density of agreement and
coherence scores. CUMass,s and CP,s are omitted as they are almost identical to their o variant.
These scores are from Lim and Lauw (2023b), with similar trends for Proxy Task II and III.

Groups U1 U2 U3 U4 U5 U6 U7 U8 Mean (S.D.)

ArXiv

Cγ=1
V,6ε 0.464 0.448 −0.021 0.330 0.399 0.437 0.218 0.281 0.319 ± 0.152

Cγ=2
V,6ε 0.503 0.469 0.030 0.281 0.459 0.462 0.344 0.300 0.356 ± 0.146

CNPMI,6ε 0.475 0.426 0.073 0.392 0.516 0.470 0.304 0.270 0.366 ± 0.136
CNPMI 0.368 0.490 −0.110 0.309 0.386 0.394 0.251 0.348 0.304 ± 0.169
CP,o 0.372 0.455 −0.157 0.285 0.355 0.383 0.208 0.231 0.266 ± 0.178
CUMass,o 0.348 0.476 −0.162 0.256 0.309 0.261 0.152 0.305 0.243 ± 0.176

PubMed

Cγ=1
V,6ε 0.609 0.560 0.372 0.550 0.462 0.511 0.526 0.535 0.516 ± 0.067

Cγ=2
V,6ε 0.662 0.622 0.356 0.465 0.415 0.543 0.492 0.521 0.510 ± 0.095

CNPMI,6ε 0.574 0.605 0.396 0.534 0.453 0.498 0.548 0.560 0.521 ± 0.064
CNPMI 0.479 0.447 0.165 0.531 0.442 0.368 0.453 0.537 0.428 ± 0.111
CP,o 0.519 0.511 0.231 0.531 0.482 0.409 0.502 0.488 0.459 ± 0.093
CUMass,o 0.252 0.177 −0.115 0.327 0.280 0.043 0.087 0.417 0.183 ± 0.161

Wiki

Cγ=1
V,6ε 0.692 0.715 0.413 0.758 0.607 0.670 0.692 0.664 0.651 ± 0.099

Cγ=2
V,6ε 0.719 0.739 0.348 0.727 0.631 0.673 0.702 0.678 0.652 ± 0.119

CNPMI,6ε 0.737 0.718 0.445 0.760 0.608 0.670 0.706 0.664 0.664 ± 0.094
CNPMI 0.718 0.679 0.451 0.734 0.556 0.582 0.641 0.630 0.624 ± 0.087
CP,o 0.658 0.695 0.422 0.737 0.585 0.671 0.684 0.621 0.634 ± 0.091
CUMass,o 0.405 0.322 0.226 0.427 0.381 0.272 0.272 0.326 0.329 ± 0.066

Table B3
Quantity of common vocabularies between corpus. Suffix -l. short form for -lemma. Palmetto
was re-constructed using 20K most frequent words excluding stop words.

corpus ArXiv ArXiv-l. PubMed PubMed-l. Wiki Wiki-l.
Total 26,620 22,184 38,829 39,997 40003 40,009
ArXiv – 19,637 13,138 10,527 12,955 10,230
ArXiv-l 19,637 – 9,636 11,015 9,563 10,504
PubMed 13,138 9,636 – 23,328 15,459 12,565
PubMed-l 10,527 11,015 23,328 – 12,637 14,112
Wiki 12,955 9,563 15,459 12,637 – 31,047
Wiki-l 10,230 10,504 12,565 14,112 31,047 –

936



Lim and Lauw Aligning Human and Computational Coherence Evaluations

Table B4
Results of average correlation scores (Spearman’s ρ) on Proxy Task I, the density of agreement on
Wiki-based coherence scores, when corpus hyperparameters are adjusted. Hyperparameters
adjusted are window size, wsz, to determine counts and minimum frequency of word
occurrences. Boolean document, bd, is where we treat the entire document length as the window
size. Underlined values are hyperparameters defined in Röder, Both, and Hinneburg (2015).
Results on Proxy Task II and III exhibit similar trends as well. These results exclude outlier
group U3.
wsz minimum frequency
Cγ=1

V,6ε 0 10 100 400 700 1,100

10 0.690± 0.044 0.689± 0.045 0.693± 0.051 0.691± 0.059 0.684± 0.060 0.680± 0.058
40 0.687± 0.042 0.687± 0.043 0.687± 0.043 0.689± 0.045 0.688± 0.047 0.690± 0.049
70 0.685± 0.043 0.685± 0.042 0.684± 0.043 0.686± 0.044 0.688± 0.045 0.689± 0.045
110 0.682± 0.042 0.682± 0.042 0.682± 0.042 0.682± 0.042 0.683± 0.042 0.686± 0.043
bd 0.587± 0.063 0.587± 0.063 0.558± 0.067 0.412± 0.078 0.335± 0.089 0.274± 0.087
Cγ=2

V,6ε 0 10 100 400 700 1,100

10 0.689± 0.036 0.699± 0.038 0.707± 0.041 0.706± 0.049 0.707± 0.052 0.711± 0.052
40 0.690± 0.034 0.692± 0.034 0.697± 0.034 0.702± 0.037 0.704± 0.038 0.704± 0.039
70 0.690± 0.032 0.690± 0.033 0.693± 0.032 0.697± 0.034 0.699± 0.034 0.702± 0.036
110 0.687± 0.032 0.688± 0.033 0.690± 0.033 0.692± 0.033 0.694± 0.034 0.696± 0.035
bd 0.613± 0.059 0.613± 0.059 0.610± 0.058 0.561± 0.068 0.505± 0.083 0.437± 0.082
CNPMI,6ε 0 10 100 400 700 1,100

10 0.693± 0.043 0.691± 0.045 0.695± 0.048 0.696± 0.057 0.690± 0.058 0.687± 0.059
40 0.689± 0.040 0.689± 0.040 0.689± 0.041 0.692± 0.043 0.691± 0.044 0.693± 0.046
70 0.688± 0.041 0.688± 0.041 0.688± 0.041 0.689± 0.042 0.690± 0.043 0.691± 0.042
110 0.686± 0.040 0.686± 0.040 0.686± 0.040 0.686± 0.040 0.686± 0.040 0.688± 0.042
bd 0.601± 0.064 0.601± 0.064 0.583± 0.064 0.475± 0.078 0.391± 0.086 0.318± 0.079
CNPMI 0 10 100 400 700 1,100

10 0.694± 0.044 0.692± 0.045 0.649± 0.061 0.546± 0.073 0.511± 0.068 0.490± 0.072
40 0.690± 0.041 0.690± 0.040 0.691± 0.042 0.674± 0.047 0.648± 0.045 0.626± 0.058
70 0.688± 0.041 0.689± 0.041 0.690± 0.042 0.685± 0.044 0.675± 0.047 0.667± 0.045
110 0.686± 0.040 0.686± 0.040 0.688± 0.041 0.689± 0.042 0.684± 0.044 0.679± 0.045
bd 0.601± 0.064 0.601± 0.063 0.539± 0.065 0.339± 0.084 0.258± 0.094 0.219± 0.089
CP,o 0 10 100 400 700 1,100

10 0.666± 0.039 0.667± 0.041 0.639± 0.055 0.550± 0.074 0.501± 0.069 0.468± 0.071
40 0.667± 0.042 0.667± 0.042 0.670± 0.043 0.662± 0.043 0.648± 0.042 0.632± 0.060
70 0.665± 0.042 0.665± 0.043 0.667± 0.042 0.669± 0.045 0.664± 0.046 0.659± 0.045
110 0.664± 0.041 0.664± 0.041 0.665± 0.042 0.670± 0.042 0.669± 0.046 0.667± 0.046
bd 0.543± 0.051 0.555± 0.044 0.511± 0.067 0.314± 0.082 0.231± 0.094 0.197± 0.087
CUMass,o 0 10 100 400 700 1,100

10 0.582± 0.044 0.570± 0.045 0.474± 0.061 0.389± 0.085 0.385± 0.084 0.377± 0.081
40 0.556± 0.044 0.555± 0.042 0.547± 0.043 0.501± 0.037 0.467± 0.054 0.424± 0.071
70 0.534± 0.044 0.535± 0.044 0.533± 0.043 0.519± 0.048 0.498± 0.030 0.475± 0.034
110 0.512± 0.045 0.512± 0.044 0.512± 0.045 0.508± 0.042 0.497± 0.045 0.484± 0.043
bd 0.342± 0.056 0.343± 0.058 0.300± 0.053 0.215± 0.091 0.177± 0.092 0.158± 0.085
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Table B5
Results of average correlation scores (Spearman’s ρ) on Proxy Task I, the density of agreement on
ArXiv-based coherence scores, when corpus hyperparameters are adjusted. Hyperparameters
adjusted are window size wsz to register counts and minimum frequency of word occurrences.
For Boolean document bd, we treat the entire document length as the window size. Results on
Proxy Task II and III exhibit similar trends as well. These results exclude outlier group U3.
wsz minimum frequency

Cγ=1
V 0 10 100 400 700 1,100

10 0.440± 0.078 0.434± 0.076 0.406± 0.081 0.391± 0.071 0.369± 0.066 0.352± 0.084
40 0.456± 0.071 0.451± 0.072 0.448± 0.068 0.427± 0.073 0.410± 0.078 0.394± 0.067
70 0.457± 0.076 0.454± 0.075 0.448± 0.070 0.419± 0.080 0.412± 0.086 0.399± 0.079
110 0.457± 0.077 0.452± 0.077 0.429± 0.076 0.406± 0.090 0.382± 0.089 0.368± 0.087
bd 0.437± 0.080 0.421± 0.082 0.368± 0.071 0.334± 0.084 0.282± 0.087 0.241± 0.087

Cγ=2
V 0 10 100 400 700 1,100

10 0.434± 0.110 0.468± 0.095 0.439± 0.076 0.409± 0.083 0.386± 0.060 0.369± 0.078
40 0.430± 0.103 0.442± 0.096 0.465± 0.087 0.442± 0.080 0.429± 0.085 0.414± 0.085
70 0.426± 0.108 0.445± 0.100 0.463± 0.089 0.434± 0.088 0.430± 0.086 0.415± 0.088
110 0.415± 0.102 0.450± 0.096 0.450± 0.083 0.423± 0.094 0.404± 0.095 0.403± 0.085
bd 0.439± 0.107 0.445± 0.100 0.409± 0.092 0.365± 0.095 0.322± 0.080 0.289± 0.081
CNPMI,6 e 0 10 100 400 700 1,100

10 0.444± 0.080 0.438± 0.078 0.408± 0.085 0.391± 0.071 0.374± 0.064 0.352± 0.085
40 0.460± 0.075 0.457± 0.078 0.452± 0.074 0.430± 0.072 0.415± 0.074 0.400± 0.072
70 0.463± 0.080 0.459± 0.078 0.451± 0.075 0.424± 0.081 0.414± 0.085 0.405± 0.079
110 0.463± 0.080 0.456± 0.080 0.436± 0.076 0.411± 0.091 0.385± 0.088 0.377± 0.081
bd 0.442± 0.084 0.427± 0.085 0.376± 0.075 0.337± 0.088 0.288± 0.087 0.247± 0.089
CNPMI 0 10 100 400 700 1,100

10 0.423± 0.073 0.397± 0.082 0.364± 0.069 0.320± 0.086 0.302± 0.077 0.270± 0.103
40 0.423± 0.080 0.416± 0.081 0.366± 0.082 0.350± 0.076 0.344± 0.077 0.331± 0.070
70 0.422± 0.084 0.416± 0.084 0.373± 0.086 0.347± 0.085 0.327± 0.082 0.321± 0.088
110 0.417± 0.086 0.402± 0.089 0.344± 0.085 0.318± 0.091 0.297± 0.090 0.279± 0.088
bd 0.412± 0.089 0.353± 0.090 0.308± 0.072 0.178± 0.081 0.087± 0.070 0.035± 0.117
CP,o 0 10 100 400 700 1,100

10 0.432± 0.076 0.411± 0.076 0.342± 0.069 0.304± 0.079 0.287± 0.083 0.282± 0.097
40 0.434± 0.074 0.432± 0.072 0.382± 0.078 0.341± 0.075 0.331± 0.077 0.315± 0.074
70 0.431± 0.079 0.427± 0.077 0.389± 0.078 0.337± 0.083 0.327± 0.082 0.311± 0.088
110 0.428± 0.077 0.411± 0.083 0.357± 0.082 0.319± 0.091 0.291± 0.094 0.272± 0.092
bd 0.414± 0.092 0.356± 0.084 0.301± 0.072 0.179± 0.093 0.105± 0.069 0.052± 0.121
CUMass,o 0 10 100 400 700 1,100

10 0.353± 0.084 0.341± 0.085 0.298± 0.075 0.275± 0.076 0.272± 0.075 0.250± 0.099
40 0.343± 0.089 0.341± 0.087 0.317± 0.091 0.286± 0.082 0.263± 0.083 0.257± 0.076
70 0.336± 0.092 0.332± 0.090 0.316± 0.096 0.271± 0.094 0.257± 0.089 0.249± 0.089
110 0.328± 0.090 0.315± 0.084 0.270± 0.092 0.248± 0.088 0.230± 0.089 0.219± 0.089
bd 0.335± 0.087 0.301± 0.092 0.248± 0.076 0.101± 0.078 0.023± 0.086 −0.013± 0.132
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Table B6
Results of average correlation scores (Spearman’s ρ) on Proxy Task I, the density of agreement on
PubMed-based coherence scores, when corpus hyperparameters are adjusted. Hyperparameters
adjusted are window size wsz to register counts and minimum frequency of word occurrences.
For Boolean document bd, we treat the entire document length as the window size. Results on
Proxy Task II and III exhibit similar trends as well. These results exclude outlier group U3.
wsz minimum frequency
Cγ=1

V 0 10 100 400 700 1,100

10 0.535± 0.043 0.535± 0.043 0.537± 0.043 0.532± 0.040 0.535± 0.046 0.526± 0.041
40 0.545± 0.046 0.545± 0.046 0.544± 0.047 0.539± 0.047 0.539± 0.048 0.541± 0.045
70 0.546± 0.042 0.546± 0.042 0.544± 0.044 0.543± 0.042 0.542± 0.046 0.540± 0.044
110 0.536± 0.040 0.536± 0.040 0.536± 0.040 0.535± 0.040 0.536± 0.043 0.536± 0.042
bd 0.467± 0.049 0.466± 0.050 0.464± 0.052 0.459± 0.064 0.432± 0.068 0.413± 0.061
Cγ=2

V 0 10 100 400 700 1,100

10 0.553± 0.079 0.553± 0.080 0.556± 0.081 0.565± 0.082 0.558± 0.085 0.559± 0.082
40 0.534± 0.090 0.535± 0.090 0.539± 0.086 0.550± 0.082 0.554± 0.082 0.556± 0.080
70 0.529± 0.084 0.529± 0.084 0.530± 0.085 0.536± 0.085 0.538± 0.084 0.542± 0.080
110 0.528± 0.076 0.528± 0.076 0.529± 0.076 0.528± 0.082 0.531± 0.080 0.531± 0.080
bd 0.499± 0.045 0.499± 0.044 0.502± 0.046 0.509± 0.067 0.501± 0.058 0.480± 0.062
CNPMI,6 e 0 10 100 400 700 1,100

10 0.537± 0.046 0.538± 0.047 0.539± 0.047 0.534± 0.047 0.536± 0.051 0.532± 0.047
40 0.546± 0.056 0.546± 0.056 0.544± 0.056 0.539± 0.056 0.538± 0.057 0.543± 0.050
70 0.547± 0.049 0.547± 0.049 0.545± 0.050 0.543± 0.050 0.542± 0.053 0.542± 0.051
110 0.541± 0.048 0.541± 0.048 0.541± 0.049 0.541± 0.048 0.543± 0.048 0.543± 0.047
bd 0.480± 0.047 0.479± 0.048 0.477± 0.052 0.470± 0.067 0.443± 0.067 0.423± 0.064
CNPMI 0 10 100 400 700 1,100

10 0.468± 0.053 0.469± 0.053 0.465± 0.054 0.464± 0.054 0.448± 0.065 0.441± 0.088
40 0.469± 0.044 0.469± 0.044 0.469± 0.046 0.470± 0.047 0.466± 0.048 0.468± 0.051
70 0.474± 0.038 0.474± 0.038 0.474± 0.038 0.472± 0.036 0.469± 0.034 0.469± 0.035
110 0.474± 0.036 0.474± 0.036 0.475± 0.036 0.477± 0.037 0.473± 0.036 0.470± 0.033
bd 0.431± 0.065 0.431± 0.065 0.424± 0.068 0.361± 0.090 0.325± 0.092 0.304± 0.098
CP,o 0 10 100 400 700 1,100

10 0.473± 0.047 0.472± 0.047 0.470± 0.046 0.457± 0.051 0.448± 0.056 0.437± 0.076
40 0.491± 0.044 0.491± 0.044 0.491± 0.044 0.490± 0.043 0.485± 0.042 0.483± 0.043
70 0.493± 0.038 0.493± 0.038 0.493± 0.038 0.492± 0.038 0.492± 0.037 0.491± 0.036
110 0.490± 0.036 0.490± 0.036 0.490± 0.036 0.491± 0.037 0.490± 0.037 0.488± 0.036
bd 0.428± 0.064 0.427± 0.064 0.425± 0.066 0.376± 0.071 0.346± 0.080 0.320± 0.083
CUMass,o 0 10 100 400 700 1,100

10 0.387± 0.081 0.387± 0.081 0.385± 0.080 0.380± 0.089 0.382± 0.088 0.373± 0.104
40 0.368± 0.087 0.368± 0.087 0.368± 0.088 0.365± 0.085 0.362± 0.083 0.367± 0.090
70 0.355± 0.075 0.355± 0.075 0.355± 0.075 0.354± 0.078 0.352± 0.077 0.352± 0.076
110 0.341± 0.079 0.341± 0.079 0.341± 0.079 0.341± 0.079 0.340± 0.079 0.340± 0.077
bd 0.225± 0.123 0.226± 0.123 0.221± 0.121 0.208± 0.112 0.212± 0.105 0.218± 0.098
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Table B7
A detailed breakdown of the three Proxy Tasks; values are Spearman’s ρ of the density of
agreement and Wiki-based coherence scores, with wsz = 10 and minimum frequency = 0. We
show both means that include and exclude outlier group U3. Wiki-lemma has similar results.

Groups U1 U2 U3 U4 U5 U6 U7 U8 Mean (S.D.)

Proxy Task I - density of agreement Inc. U3 Ex. U3

Cγ=1
V,6ε 0.718 0.713 0.454 0.750 0.607 0.678 0.711 0.656 0.661± 0.088 0.690± 0.044

Cγ=2
V,6ε 0.727 0.727 0.368 0.696 0.629 0.680 0.719 0.648 0.649± 0.112 0.689± 0.036

CNPMI,6ε 0.723 0.716 0.452 0.749 0.611 0.676 0.713 0.660 0.663± 0.089 0.693± 0.043
CNPMI 0.721 0.718 0.460 0.752 0.609 0.681 0.712 0.662 0.664± 0.088 0.694± 0.044
CP,s 0.668 0.691 0.456 0.725 0.595 0.662 0.692 0.633 0.640± 0.079 0.667± 0.039
CP,o 0.668 0.691 0.455 0.724 0.595 0.662 0.691 0.633 0.640± 0.079 0.666± 0.039
CUMass,s 0.654 0.579 0.359 0.653 0.494 0.490 0.538 0.553 0.540± 0.090 0.566± 0.062
CUMass,o 0.631 0.599 0.416 0.642 0.583 0.504 0.548 0.568 0.561± 0.069 0.582± 0.044

Proxy Task II - maximum coherent group size

Cγ=1
V,6ε 0.708 0.698 0.406 0.743 0.624 0.689 0.692 0.652 0.651± 0.099 0.687± 0.036

Cγ=2
V,6ε 0.724 0.711 0.324 0.692 0.652 0.703 0.699 0.650 0.644± 0.123 0.690± 0.026

CNPMI,6ε 0.713 0.700 0.404 0.744 0.628 0.689 0.695 0.655 0.654± 0.100 0.689± 0.035
CNPMI 0.711 0.702 0.409 0.746 0.623 0.693 0.696 0.659 0.655± 0.099 0.690± 0.036
CP,s 0.655 0.671 0.409 0.722 0.605 0.670 0.671 0.632 0.629± 0.089 0.661± 0.034
CP,o 0.655 0.672 0.408 0.722 0.605 0.670 0.671 0.631 0.629± 0.089 0.661± 0.034
CUMass,s 0.650 0.563 0.339 0.628 0.484 0.498 0.549 0.544 0.532± 0.090 0.559± 0.057
CUMass,o 0.621 0.590 0.393 0.620 0.576 0.513 0.556 0.553 0.553± 0.069 0.576± 0.036

Proxy Task III - mean coherent group count

Cγ=1
V,6ε −0.746 −0.661 −0.500 −0.745 −0.565 −0.700 −0.697 −0.635 −0.656± 0.081 −0.678± 0.059

Cγ=2
V,6ε −0.768 −0.676 −0.428 −0.685 −0.604 −0.703 −0.710 −0.625 −0.650± 0.096 −0.682± 0.051

CNPMI,6ε −0.750 −0.663 −0.501 −0.740 −0.572 −0.700 −0.697 −0.638 −0.658± 0.080 −0.680± 0.057
CNPMI −0.749 −0.666 −0.513 −0.749 −0.575 −0.707 −0.700 −0.644 −0.663± 0.078 −0.684± 0.057
CP,s −0.700 −0.640 −0.497 −0.730 −0.555 −0.686 −0.683 −0.605 −0.637± 0.074 −0.657± 0.056
CP,o −0.700 −0.641 −0.498 −0.729 −0.555 −0.686 −0.682 −0.605 −0.637± 0.074 −0.657± 0.056
CUMass,s −0.668 −0.592 −0.418 −0.703 −0.483 −0.533 −0.577 −0.575 −0.569± 0.086 −0.590± 0.069
CUMass,o −0.651 −0.620 −0.456 −0.681 −0.572 −0.567 −0.565 −0.607 −0.590± 0.064 −0.609± 0.042
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Table B8
A detailed breakdown of the three Proxy Tasks; values are Spearman’s ρ of the density of
agreement and ArXiv-based coherence scores, with wsz = 10 and minimum frequency = 0. We
show both means that include and exclude outlier group U3. ArXiv-lemma has similar results.

Groups U1 U2 U3 U4 U5 U6 U7 U8 Mean (S.D.)

Proxy Task I - density of agreement Inc. U3 Ex. U3

Cγ=1
V 0.484 0.429 0.168 0.387 0.584 0.484 0.337 0.374 0.406± 0.116 0.440± 0.078

Cγ=2
V 0.485 0.412 0.263 0.306 0.638 0.497 0.398 0.299 0.412± 0.117 0.434± 0.110

CNPMI,6 e 0.485 0.436 0.183 0.383 0.599 0.481 0.348 0.374 0.411± 0.114 0.444± 0.080
CNPMI 0.497 0.432 0.065 0.388 0.530 0.455 0.314 0.346 0.378± 0.137 0.423± 0.073
CP,s 0.496 0.429 0.067 0.420 0.557 0.455 0.321 0.346 0.386± 0.140 0.432± 0.076
CP,o 0.496 0.429 0.067 0.420 0.557 0.455 0.320 0.346 0.386± 0.140 0.432± 0.076
CUMass,s 0.398 0.546 −0.216 0.306 0.293 0.346 0.205 0.382 0.283± 0.210 0.354± 0.099
CUMass,o 0.402 0.505 −0.165 0.302 0.339 0.349 0.208 0.369 0.289± 0.189 0.353± 0.084

Proxy Task II - maximum coherent group size

Cγ=1
V 0.526 0.390 0.195 0.368 0.549 0.526 0.322 0.374 0.406± 0.114 0.436± 0.087

Cγ=2
V 0.528 0.373 0.280 0.294 0.617 0.540 0.392 0.298 0.415± 0.121 0.434± 0.118

CNPMI,6 e 0.526 0.397 0.211 0.363 0.566 0.522 0.331 0.377 0.412± 0.112 0.440± 0.088
CNPMI 0.531 0.390 0.076 0.356 0.484 0.491 0.313 0.349 0.374± 0.134 0.416± 0.078
CP,s 0.533 0.380 0.086 0.385 0.507 0.493 0.321 0.350 0.382± 0.134 0.424± 0.078
CP,o 0.533 0.380 0.085 0.385 0.507 0.493 0.320 0.350 0.382± 0.134 0.424± 0.079
CUMass,s 0.419 0.536 −0.236 0.275 0.280 0.373 0.216 0.378 0.280± 0.216 0.354± 0.099
CUMass,o 0.414 0.501 −0.170 0.262 0.319 0.376 0.224 0.373 0.287± 0.191 0.353± 0.087

Proxy Task III - mean coherent group count

Cγ=1
V −0.564 −0.605 −0.120 −0.437 −0.600 −0.530 −0.458 −0.474 −0.473± 0.146 −0.524± 0.064

Cγ=2
V −0.546 −0.546 −0.227 −0.365 −0.617 −0.545 −0.528 −0.399 −0.472± 0.121 −0.507± 0.083

CNPMI,6 e −0.562 −0.608 −0.137 −0.434 −0.610 −0.527 −0.466 −0.468 −0.476± 0.142 −0.525± 0.066
CNPMI −0.576 −0.583 −0.051 −0.446 −0.595 −0.485 −0.429 −0.461 −0.453± 0.164 −0.511± 0.066
CP,s −0.578 −0.599 −0.044 −0.476 −0.610 −0.487 −0.440 −0.464 −0.462± 0.170 −0.522± 0.066
CP,o −0.578 −0.599 −0.045 −0.476 −0.610 −0.487 −0.438 −0.464 −0.462± 0.169 −0.522± 0.066
CUMass,s −0.447 −0.568 0.174 −0.336 −0.387 −0.318 −0.248 −0.436 −0.321± 0.208 −0.392± 0.096
CUMass,o −0.443 −0.503 0.128 −0.336 −0.457 −0.323 −0.281 −0.427 −0.330± 0.187 −0.396± 0.076
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Table B9
A detailed breakdown of the three Proxy Tasks; values are Spearman’s ρ of the density of
agreement and PubMed-based coherence scores, with wsz = 10 and minimum frequency = 0. We
show both means that include and exclude outlier group U3. PubMed-lemma has similar results.

Groups U1 U2 U3 U4 U5 U6 U7 U8 Mean (S.D.)

Proxy Task I - density of agreement Inc. U3 Ex. U3

Cγ=1
V 0.554 0.590 0.400 0.542 0.453 0.493 0.543 0.568 0.518± 0.060 0.535± 0.043

Cγ=2
V 0.646 0.650 0.398 0.537 0.409 0.514 0.516 0.595 0.533± 0.090 0.553± 0.079

CNPMI,6 e 0.565 0.600 0.389 0.530 0.453 0.493 0.550 0.569 0.519± 0.065 0.537± 0.046
CNPMI 0.482 0.448 0.163 0.539 0.447 0.372 0.457 0.535 0.430± 0.113 0.468± 0.053
CP,s 0.472 0.480 0.189 0.524 0.461 0.371 0.487 0.517 0.438± 0.104 0.473± 0.047
CP,o 0.472 0.480 0.189 0.524 0.461 0.370 0.485 0.517 0.437± 0.104 0.473± 0.047
CUMass,s 0.401 0.318 0.029 0.498 0.407 0.264 0.310 0.473 0.338± 0.139 0.382± 0.081
CUMass,o 0.436 0.327 0.023 0.487 0.405 0.262 0.312 0.480 0.342± 0.142 0.387± 0.081

Proxy Task II - maximum coherent group size

Cγ=1
V 0.559 0.560 0.433 0.510 0.451 0.511 0.528 0.550 0.513± 0.045 0.524± 0.035

Cγ=2
V 0.651 0.604 0.432 0.498 0.422 0.530 0.524 0.582 0.530± 0.075 0.544± 0.070

CNPMI,6 e 0.569 0.566 0.425 0.498 0.454 0.510 0.537 0.553 0.514± 0.049 0.527± 0.039
CNPMI 0.471 0.447 0.189 0.490 0.457 0.378 0.458 0.496 0.423± 0.095 0.457± 0.036
CP,s 0.463 0.475 0.224 0.477 0.472 0.378 0.483 0.480 0.431± 0.085 0.461± 0.034
CP,o 0.463 0.475 0.224 0.477 0.472 0.378 0.481 0.480 0.431± 0.085 0.461± 0.034
CUMass,s 0.385 0.313 0.050 0.455 0.413 0.265 0.319 0.422 0.328± 0.121 0.367± 0.064
CUMass,o 0.419 0.324 0.042 0.449 0.412 0.262 0.324 0.428 0.333± 0.125 0.374± 0.065

Proxy Task III - mean coherent group count

Cγ=1
V −0.575 −0.689 −0.293 −0.616 −0.461 −0.575 −0.579 −0.573 −0.545± 0.112 −0.581± 0.063

Cγ=2
V −0.642 −0.732 −0.280 −0.593 −0.435 −0.553 −0.591 −0.613 −0.555± 0.130 −0.594± 0.083

CNPMI,6 e −0.590 −0.703 −0.278 −0.610 −0.473 −0.574 −0.589 −0.568 −0.548± 0.118 −0.587± 0.063
CNPMI −0.505 −0.457 −0.175 0.600 −0.422 −0.435 −0.487 −0.556 −0.455± 0.120 −0.495± 0.060
CP,s −0.490 −0.504 −0.179 −0.594 −0.427 −0.444 −0.509 −0.532 −0.460± 0.117 −0.500± 0.051
CP,o −0.490 −0.504 −0.179 −0.594 −0.427 −0.443 −0.508 −0.532 −0.460± 0.117 −0.500± 0.052
CUMass,s −0.444 −0.296 −0.101 −0.527 −0.389 −0.310 −0.326 −0.493 −0.361± 0.127 −0.398± 0.085
CUMass,o −0.479 −0.310 −0.101 −0.513 −0.394 −0.317 −0.324 −0.510 −0.368± 0.129 −0.407± 0.086
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Table B10
Comparing correlations (mean of 5 independently sampled sets of topic representations)
between selected ArXiv and PubMed-based coherence metrics. Error bars omitted as S.D ≤ 0.02.

(a) Correlation scores of metrics measured on ArXiv.

Cγ=1
V,6 e Cγ=2

V,6 e CNPMI,6 e CNPMI CP,s CP,o CUMass,s CUMass,o

Cγ=1
V,6 e – 0.58 0.99 0.43 0.61 0.61 0.14 0.18

Cγ=2
V,6 e 0.58 – 0.65 0.47 0.46 0.46 0.17 0.18

CNPMI,6 e 0.99 0.65 – 0.44 0.60 0.61 0.15 0.18
CNPMI 0.43 0.47 0.44 – 0.97 0.97 0.89 0.90
CP,s 0.61 0.46 0.60 0.97 – 1.00 0.82 0.84
CP,o 0.61 0.46 0.61 0.97 1.00 – 0.82 0.84
CUMass,s 0.14 0.17 0.15 0.89 0.82 0.82 – 0.99
CUMass,o 0.18 0.18 0.18 0.90 0.84 0.84 0.99 –

(b) Correlation scores of metrics on subsection of data used in Table B10a where CNPMI > 0.

Cγ=1
V,6 e Cγ=2

V,6 e CNPMI,6 e CNPMI CP,s CP,o CUMass,s CUMass,o

Cγ=1
V,6 e – 0.89 0.99 0.97 0.98 0.98 0.15 0.22

Cγ=2
V,6 e 0.89 – 0.93 0.90 0.83 0.83 0.02 0.09

CNPMI,6 e 0.99 0.93 – 0.98 0.96 0.96 0.18 0.25
CNPMI 0.97 0.90 0.98 – 0.97 0.97 0.25 0.30
CP,s 0.98 0.83 0.96 0.97 – 1.00 0.19 0.24
CP,o 0.98 0.83 0.96 0.97 1.00 – 0.19 0.24
CUMass,s 0.15 0.02 0.18 0.25 0.19 0.19 – 0.97
CUMass,o 0.22 0.09 0.25 0.30 0.24 0.24 0.97 –

(c) Correlation scores of metrics measured on PubMed.
Cγ=1

V,6 e Cγ=2
V,6 e CNPMI,6 e CNPMI CP,s CP,o CUMass,s CUMass,o

Cγ=1
V,6 e – 0.64 0.98 0.50 0.62 0.62 0.18 0.19

Cγ=2
V,6 e 0.64 – 0.78 0.60 0.56 0.56 0.36 0.37

CNPMI,6 e 0.98 0.78 – 0.54 0.62 0.62 0.20 0.22
CNPMI 0.50 0.60 0.54 – 0.95 0.95 0.92 0.93
CP,s 0.62 0.56 0.62 0.95 – 1.00 0.87 0.87
CP,o 0.62 0.56 0.62 0.95 1.00 – 0.87 0.87
CUMass,s 0.18 0.36 0.20 0.92 0.87 0.87 – 1.00
CUMass,o 0.19 0.37 0.22 0.93 0.87 0.87 1.00 –

(d) Correlation scores of metrics on subsection of data used in Table B10c where CNPMI > 0.
Cγ=1

V,6 e Cγ=2
V,6 e CNPMI,6 e CNPMI CP,s CP,o CUMass,s CUMass,o

Cγ=1
V,6 e – 0.89 0.97 0.94 0.96 0.96 0.47 0.55

Cγ=2
V,6 e 0.89 – 0.97 0.93 0.78 0.78 0.46 0.53

CNPMI,6 e 0.97 0.97 – 0.97 0.90 0.90 0.50 0.58
CNPMI 0.94 0.93 0.97 – 0.94 0.94 0.66 0.73
CP,s 0.96 0.78 0.90 0.94 – 1.00 0.61 0.67
CP,o 0.96 0.78 0.90 0.94 1.00 – 0.61 0.67
CUMass,s 0.47 0.46 0.50 0.66 0.61 0.61 – 0.94
CUMass,o 0.55 0.53 0.58 0.73 0.67 0.67 0.94 –
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Table B11
Individual ambiguity gap results. Quantile gap is defined as [Q1(νmin

u,i ), Q3(νmax
u,i )]. Mean gap

defined as [ν̄min
u,i , ν̄max

u,i ]. Mean gap difference is defined as ν̄max
u,i − ν̄min

u,i . Values scored using Wiki
CNPMI.

User Group Quantile Gap Mean Gap
Group User Gap Gap Difference Mean Group Difference

U1

u1 0.014–0.159 0.074–0.110 0.036

0.082
u2 −0.004–0.194 0.067–0.139 0.072
u3 −0.009–0.171 0.058–0.120 0.062
u4 0.003–0.169 0.056–0.120 0.063
u5 −0.032–0.187 0.011–0.126 0.116

U2

u1 −0.020–0.185 0.046–0.131 0.084

0.088
u2 0.018–0.198 0.090–0.138 0.048
u3 0.003–0.160 0.055–0.115 0.060
u4 0.009–0.185 0.063–0.126 0.063
u5 −0.029–0.213 0.023–0.148 0.125

U3

u1 0.000–0.243 0.054–0.187 0.133

0.111
u2 0.006–0.203 0.080–0.157 0.076
u3 0.018–0.215 0.066–0.159 0.094
u4 −0.001–0.248 0.053–0.181 0.128
u5 −0.001–0.195 0.052–0.149 0.097

U4

u1 −0.035–0.180 0.005–0.124 0.118

0.078
u2 0.031–0.190 0.081–0.139 0.057
u3 −0.003–0.163 0.039–0.116 0.077
u4 −0.071–0.110 −0.031–0.081 0.112
u5 0.014–0.177 0.072–0.127 0.055

U5

u1 0.002–0.209 0.071–0.158 0.087

0.095
u2 0.008–0.201 0.081–0.145 0.063
u3 −0.017–0.191 0.046–0.135 0.089
u4 0.011–0.252 0.078–0.163 0.085
u5 −0.032–0.163 0.020–0.112 0.091

U6

u1 0.015–0.164 0.076–0.125 0.049

0.087
u2 −0.055–0.199 −0.015–0.154 0.169
u3 −0.018–0.169 0.025–0.125 0.100
u4 0.017–0.174 0.085–0.133 0.049
u5 −0.017–0.150 0.023–0.114 0.091

U7

u1 −0.013–0.198 0.048–0.135 0.088

0.078
u2 −0.013–0.154 0.032–0.103 0.072
u3 0.014–0.168 0.079–0.123 0.044
u4 −0.062–0.198 −0.017–0.120 0.137
u5 −0.015–0.146 0.034–0.106 0.071

U8

u1 −0.054–0.160 −0.004–0.118 0.122

0.084
u2 −0.048–0.130 −0.007–0.090 0.097
u3 0.030–0.209 0.109–0.151 0.042
u4 −0.030–0.210 0.033–0.143 0.110
u5 −0.002–0.170 0.069–0.125 0.056
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Table B12
We examine 2-optimality in individual user study responses, where a swap is an action that
transfers a word from one group to another. We define four kinds of swaps: cluster-to-cluster,
outlier-to-cluster, cluster-to-outlier, and outlier-to-outlier. % better denotes the percentage of
swaps that improve the overall system, where the sum of the change in scores for both groups is
better than the selected threshold. We use ν̄max

u,i as the threshold tailored to each study
participant.

Type of Swaps: clus.→ clus. out.→ clus. clus.→ out. out.→ out. Total Swaps
Group User Num. % better Num. % better Num. % better Num. % better Num. % better

U1

u1 979 1.4% 302 0.0% 799 1.3% 426 3.8% 2,506 1.6%
u2 339 0.9% 245 0.0% 576 0.2% 1,403 8.9% 2,563 5.0%
u3 359 0.6% 279 0.4% 722 0.3% 733 8.2% 2,093 3.1%
u4 516 0.4% 262 0.0% 702 0.6% 846 8.7% 2,326 3.4%
u5 943 0.5% 109 0.0% 948 0.2% 22 18.2% 2,022 0.5%

U2

u1 460 1.5% 390 0.5% 690 0.6% 740 8.2% 2,280 3.2%
u2 833 1.0% 515 0.0% 642 0.2% 898 9.9% 2,888 3.4%
u3 706 1.1% 409 0.2% 735 0.5% 557 6.8% 2,407 2.1%
u4 1,390 1.2% 361 0.0% 849 0.7% 134 6.7% 2,734 1.1%
u5 1,012 0.2% 265 0.0% 863 0.1% 92 9.8% 2,232 0.5%

U3

u1 1,436 0.2% 234 0.0% 900 0.3% 33 15.2% 2,603 0.4%
u2 441 0.7% 439 0.0% 660 0.3% 673 7.4% 2,213 2.5%
u3 1,651 0.7% 294 0.0% 885 0.5% 85 5.9% 2,915 0.7%
u4 1,528 0.4% 145 0.0% 937 0.3% 26 19.2% 2,636 0.5%
u5 1,074 0.6% 203 0.0% 873 0.5% 217 8.8% 2,367 1.2%

U4

u1 521 1.0% 219 0.0% 850 0.2% 222 10.8% 1,812 1.7%
u2 546 1.1% 432 0.2% 572 1.2% 1,208 8.2% 2,758 4.1%
u3 1,383 2.0% 222 0.0% 905 2.1% 60 8.3% 2,570 2.0%
u4 359 3.3% 92 0.0% 929 1.0% 90 5.6% 1,470 1.8%
u5 881 1.9% 378 0.0% 731 1.5% 581 6.5% 2,571 2.6%

U5

u1 1,440 0.6% 357 0.0% 853 0.5% 139 6.5% 2,789 0.8%
u2 1,088 1.2% 476 0.0% 736 1.4% 453 8.6% 2,753 2.3%
u3 1,501 0.9% 170 0.0% 889 0.6% 204 5.4% 2,764 1.0%
u4 1,824 0.4% 351 0.0% 875 0.3% 70 7.1% 3,120 0.5%
u5 627 1.1% 213 0.0% 850 0.6% 249 3.2% 1,939 1.0%

U6

u1 1,018 1.1% 480 0.0% 742 0.5% 436 7.8% 2,676 1.8%
u2 804 0.1% 63 0.0% 963 0.0% 4 0.0% 1,834 0.1%
u3 1,335 1.0% 241 0.4% 894 1.0% 71 8.5% 2,541 1.2%
u4 506 0.6% 428 0.2% 556 0.5% 1,382 10.2% 2,872 5.2%
u5 568 1.8% 270 0.0% 782 0.5% 537 5.8% 2,157 2.1%

U7

u1 1,219 1.0% 419 0.0% 802 0.2% 246 5.3% 2,686 1.0%
u2 964 1.0% 338 0.0% 818 1.5% 256 5.1% 2,376 1.5%
u3 876 1.4% 551 0.2% 683 1.3% 668 6.0% 2,778 2.2%
u4 851 0.4% 46 0.0% 973 0.4% 8 12.5% 1,878 0.4%
u5 1,294 1.2% 271 0.0% 865 1.5% 178 6.7% 2,608 1.6%

U8

u1 321 0.0% 180 0.0% 749 0.1% 730 7.7% 1,980 2.9%
u2 710 1.4% 140 0.0% 930 1.0% 52 5.8% 1,832 1.2%
u3 765 0.5% 549 0.0% 556 0.4% 1,274 8.2% 3,144 3.5%
u4 1,324 1.1% 181 0.6% 885 0.8% 168 2.4% 2,558 1.0%
u5 1,240 0.9% 378 0.3% 792 0.9% 365 4.1% 2,775 1.2%
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Table B13
Ambiguity gap (using ArXiv CNPMI) of each study participant u in study group U (see
Section 8.2), and correlation between density of U’s response (P1) to CNPMI (see Section 5.3).
Bolded values indicate that we classify u as having some expertise with domains commonly
found in ArXiv. Underlined values indicate that u has the largest ambiguity gap within U,
implying that they have the greatest disagreement with the corpus statistics.

u1 u2 u3 u4 u5 Corr(P1, CNPMI)

U1 0.102 0.155 0.168 0.160 0.192 0.497
U2 0.113 0.078 0.113 0.114 0.154 0.432
U3 0.167 0.177 0.141 0.181 0.167 0.065
U4 0.207 0.137 0.185 0.245 0.137 0.388
U5 0.142 0.162 0.156 0.149 0.217 0.530
U6 0.097 0.187 0.149 0.086 0.089 0.455
U7 0.131 0.144 0.111 0.237 0.146 0.314
U8 0.149 0.134 0.095 0.110 0.071 0.346

Table B14
We select four quantifiable metrics to describe individual study participant’s responses. We
observe that each study participant responded differently, in some manner, when compared
with other study participants within the same study group. Figure 10 visualizes these results.
(a) Self-rated English Proficiency. (b) Total number of outliers selected.

u1 u2 u3 u4 u5 u1 u2 u3 u4 u5

U1 100 80 85 100 100 U1 201 424 278 298 52
U2 60 90 90 70 72 U2 310 358 265 151 137
U3 75 78 80 60 65 U3 100 340 115 63 127
U4 100 80 89 100 70 U4 150 428 95 71 269
U5 50 95 90 92 100 U5 147 264 111 125 150
U6 100 81 100 85 40 U6 258 37 106 444 218
U7 65 95 90 94 80 U7 198 182 317 27 135
U8 96 100 85 80 100 U8 251 70 444 115 208

(c) Total number of coherent groups selected. (d) Percentage of words in coherent groups where its
maximum edge (Wiki CNPMI) is present.

u1 u2 u3 u4 u5 u1 u2 u3 u4 u5

U1 208 116 136 148 200 U1 63.8% 74.7% 78.1% 71.7% 67.1%
U2 154 199 185 260 214 U2 69.0% 57.8% 65.9% 50.8% 61.3%
U3 257 154 283 261 215 U3 52.2% 70.6% 44.1% 48.0% 57.2%
U4 159 155 251 138 199 U4 74.6% 57.5% 52.6% 83.7% 59.5%
U5 265 230 256 305 169 U5 51.1% 52.0% 49.4% 46.5% 71.8%
U6 224 183 247 149 162 U6 57.5% 68.1% 51.9% 65.5% 73.4%
U7 244 212 211 187 243 U7 45.9% 55.3% 54.2% 66.6% 52.7%
U8 125 178 187 239 241 U8 81.0% 74.1% 49.8% 54.1% 54.4%
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Appendix C. Supplementary Figure

Figure C1
Box and whisker visualization of the distribution reported in Table B11. The box plots in light
blue are values from νmax

u,i , and the box plots in light gray are values from νmin
u,i . The boxes denote

the interquartile range with its median notched. This visualization ignores outliers (plotted
points).
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