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Large language models (LLMs) are capable of successfully performing many language processing
tasks zero-shot (without training data). If zero-shot LLMs can also reliably classify and explain
social phenomena like persuasiveness and political ideology, then LLMs could augment the
computational social science (CSS) pipeline in important ways. This work provides a road map
for using LLMs as CSS tools. Towards this end, we contribute a set of prompting best practices
and an extensive evaluation pipeline to measure the zero-shot performance of 13 language models
on 25 representative English CSS benchmarks. On taxonomic labeling tasks (classification),
LLMs fail to outperform the best fine-tuned models but still achieve fair levels of agreement with
humans. On free-form coding tasks (generation), LLMs produce explanations that often exceed
the quality of crowdworkers’ gold references. We conclude that the performance of today’s LLMs
can augment the CSS research pipeline in two ways: (1) serving as zero-shot data annotators
on human annotation teams, and (2) bootstrapping challenging creative generation tasks (e.g.,
explaining the underlying attributes of a text). In summary, LLMs are posed to meaningfully
participate in social science analysis in partnership with humans.

1. Introduction

The most surprising scientific changes tend to arrive, not from accumulated facts and
discoveries, but from the invention of new tools and methodologies that trigger “paradigm
shifts” (Kuhn 1962).

Computational social science (CSS) (Lazer et al. 2020) was born from the immense
growth of human data traces on the Web and the rapid acceleration of computational
resources for processing this data. These developments allowed researchers to study
language and behavior at an unprecedented scale (Lazer et al. 2009), with both global
and fine-grained observations (Golder and Macy 2014). From the early days of content
dictionaries (Stone, Dunphy, and Smith 1966), statistical text analysis facilitated CSS
research by providing structure to non-numeric data. Now, large language models
(LLMs) may be poised to change the CSS landscape by providing such capabilities
without custom training data.

The goal of this work is to assess the degree to which LLMs can transform CSS.
Solid computational approaches are needed to help analyze textual data and to under-
stand a variety of social phenomena across academic disciplines. Current CSS method-
ologies typically use supervised text classification and generation in order to scale up
manual labeling efforts to unseen texts (also called coding in the social sciences). Reli-
able supervised methods typically demand an extensive amount of human-annotated
training data. Alternatively, unsupervised methods can run “for free,” but the resulting
output can be uninterpretable. In the status quo, data resources constrain the theories
and subjects CSS can be applied to.

LLMs have the potential to remove these constraints. Recent LLMs have demon-
strated the striking ability to reliably classify text, summarize documents, answer ques-
tions, and generate interpretable explanations in a variety of domains, even exceeding
human performance without the need for supervision (Bang et al. 2023; Qin et al. 2023;
Zhuo et al. 2023; Goyal, Li, and Durrett 2022). If LLMs can similarly provide reliable la-
bels and summary codes through zero-shot prompting, CSS research can be broadened
to a wider range of hypotheses than current tools and data resources support. Zero-
shot viability in this space is our primary research question. To effectively harness the
power of LLMs, behavioral researchers should understand the pros and cons of different
modeling decisions (model-selection), as well as how these decisions intersect with their
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fields of specialization (domain-utility) and downstream use-cases (functionality). By
evaluating LLMs on an extensive suite of CSS tasks, this work provides researchers a
roadmap with answers to the following research questions:

• (RQ1) Viability: Are LLMs able to augment the human annotation
pipeline? Can they match or exceed the reliability of human annotation?

• (RQ2) Model-Selection: How do different aspects of LLMs (e.g., model
size, pretraining) affect their performances on CSS tasks?

• (RQ3) Domain-Utility: Are zero-shot LLMs specially adapted for better
results in some fields of science rather than others?

• (RQ4) Functionality: Are zero-shot LLMs equipped to assist with
labeling tasks (classification) or summary-explanatory tasks (generation),
or both?

The research pipeline in Figure 1 allows us to answer these questions. First, we
survey the social science literature to understand where LLMs could serve as analytical
tools (Section 2). Then we operationalize each use-case with a set of representative tasks
(Section 3). Specifically, classification and parsing methods can help researchers code
for linguistic, psychological, and cultural categories (Section 3.1–Section 3.3) while gen-
erative models can explain underlying constructs (e.g., figurative language, emotional
reactions, hate speech, and misinformation), and restructure text according to estab-
lished theories like cognitive behavioral therapy (Section 3.4). With a final evaluation
suite of 24 tasks, we test the zero-shot performance of 13 language models with differing
architectures, sizes, pre-training, and fine-tuning paradigms (Section 5, Section 6). This
allows us to suggest actionable steps for social scientists interested in co-opting LLMs
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Figure 1
We assess the potential of LLMs as multi-purpose tools for CSS. We identify core subject areas in
prior CSS work and select 24 diverse and representative tasks from across these fields (top).
Then, we segment tasks into distinct discourse types and evaluate both open and closed-source
LLMs across this benchmark using zero-shot prompting (bottom).
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for research (Section 7). Specifically, we suggest a blended supervised-unsupervised
scheme for human–AI partnered labeling and content analysis.

Concretely, our analysis reveals that, except in minority cases, prompted LLMs do
not match or exceed the performance of carefully fine-tuned classifiers, and the best
LLM performance is often too low to entirely replace human annotation. However,
LLMs can achieve fair levels of agreement with humans on labeling tasks (RQ1). These
results are not limited to a subset of academic fields, but rather span the social sciences
across a range of conversation, utterance, and document-level classification tasks (RQ2).
Furthermore, the benefits of LLMs are compounded as models scale up (RQ3). This
suggests that LLMs can augment the annotation process through iterative joint-labeling,
significantly speeding up and improving text analysis in the social sciences.

Importantly, some LLMs can also generate informative explanations for social sci-
ence constructs. Leading models can achieve parity with the quality of dataset refer-
ences, and can even exceed them in terms of relevance, coherence, faithfulness, and
fluency. Humans prefer model outputs 50% of the time, suggesting that human–AI
collaboration will extend beyond labeling tasks to the joint coding of new constructs,
analyses, and summaries.

2. An Overview of CSS

Following Lazer et al. (2020), we define computational social science as the develop-
ment and application of computational methods to the scientific analysis of behavioral
and linguistic data. Critically, CSS centers around the scientific method, forming and
testing broad and objective hypotheses, while similar efforts in the Digital Humanities
focus more on the subjectivity and particularity of events, dialogues, cultures, laws,
value-systems, and human activities (Dobson 2019).

This section surveys the current needs of researchers in both the computational
social sciences and digital humanities. We choose to merge our discussion under the
banner of CSS, since solid computational approaches are needed to help analyze textual
data and to understand a variety of sociobehavioral phenomena across both scientific
and humanistic disciplines. We focus primarily on the most tractable text classification,
structured parsing, summarization, and natural language generation tasks for CSS.
Some other techniques like aggregate mining of massive datasets or topic modeling
may be largely outside the scope of transformer-based language models, which have a
fixed processing window size and quadratic space complexity.

The following subsections outline how computational methods can support specific
fields of inquiry regarding how people think (psychology; Section 2.5), communicate (lin-
guistics; Section 2.3), establish governance and value-systems (political science, economics;
Section 2.4), collectively operate (sociology; Section 2.6), and create culture (literature,
anthropology; Section 2.2) across time (history; Section 2.1).

2.1 History

Historians study events, or transitions between states (Box-Steffensmeier and Jones
2004; Abbott 1990), like the onset of a war. Event extraction is a parsing task from
unstructured text to more regular data structures which capture the location, time,
cause, and participants in the event (Xiang and Wang 2019). This task, which is central
to a growing number of computational studies on history (Lai et al. 2021; Sprugnoli and
Tonelli 2019), can be broken into (1) event detection and (2) event argument extraction,
which we benchmark in Section 3.3.1 and Section 3.3.2, respectively. Historians also
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work to understand the influence of events on historical shifts in discourse (DiMaggio,
Nag, and Blei 2013) and meaning (Hamilton, Leskovec, and Jurafsky 2016a). We further
discuss NLP for discourse and semantic change in Section 2.4 and Section 2.3.

2.2 Literature

Literary studies are closely tied to the analysis of themes (Jockers and Mimno 2013),
settings (Piper, So, and Bamman 2021), and narratives (Sap et al. 2022; Saldias and Roy
2020; Boyd, Blackburn, and Pennebaker 2020). Settings can be identified using named
entity recognition (Brooke, Hammond, and Baldwin 2016) and toponym resolution
(DeLozier et al. 2016), which are already demonstrably solved by prompted models
like GPT 3.5 Turbo (Qin et al. 2023). Themes are typically the subject of topic modeling,
which is outside the scope of LLMs. Instead we focus on NLP for narrative analysis.
NLP systems can be used to parse narratives into chains (Chambers and Jurafsky 2008)
with agents (Coll Ardanuy et al. 2020; Vala et al. 2015), their relationships (Labatut and
Bost 2019; Iyyer et al. 2016; Srivastava, Chaturvedi, and Mitchell 2016), and the events
(Sims, Park, and Bamman 2019) they participate in. We cover social role labeling and
event extraction methods in Section 3.3.4 and Section 3.3.2, respectively. Researchers
can also study agents in terms of their power dynamics (Sap et al. 2017) and emotions
(Brahman and Chaturvedi 2020), which we benchmark in Section 3.2.4 and Section 3.1.2.
Figurative language (Kesarwani et al. 2017) and humor classification (Davies 2017) are
two other relevant tasks for the study of literary devices, and we evaluate these tasks in
Section 3.1.3 and Section 3.1.5.

2.3 Linguistics

Computational sociolinguists use computational tools to measure the interactions be-
tween society and language, including the stylistic and structural features that dis-
tinguish speakers (Nguyen et al. 2016). Language variation is closely related to social
identity (Bucholtz and Hall 2005), from group membership (Del Tredici and Fernández
2017), geographical region (Purschke and Hovy 2019), and social class (Preoţiuc-Pietro,
Lampos, and Aletras 2015; Del Tredici and Fernández 2017) to personal attributes like
age and gender (Bamman, Eisenstein, and Schnoebelen 2014). In Section 3.1.1 and
Section 3.1.10, we use LLMs to identify the structural features of English dialects, which
linguists can use to classify and systematically study dialects, measure different feature
densities in different population strata, and study the onset and diffusion of language
change (Kershaw, Rowe, and Stacey 2016; Eisenstein et al. 2014; Ryskina et al. 2020;
Kulkarni et al. 2015; Hamilton, Leskovec, and Jurafsky 2016b; Carlo, Bianchi, and
Palmonari 2019; Zhu and Jurgens 2021b; Schlechtweg et al. 2020).

2.4 Political Science

Political scientists study how political actors move agendas (Grimmer 2010) by per-
suasively framing their discourse “to promote a particular problem definition, causal
interpretation, moral evaluation, and/or treatment recommendation” (Entman 1993).
These agendas cohere within ideologies. Computational social scientists have advanced
political science through the detection of political leaning, ideology, belief, and stance
(Ahmed and Xing 2010; Baly et al. 2020; Bamman and Smith 2015; Iyyer et al. 2014;
Johnson, Lee, and Goldwasser 2017; Preoţiuc-Pietro et al. 2017; Luo, Card, and Jurafsky
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2020a; Stefanov et al. 2020), as well as issue (Iyengar 1990) and entity framing (van den
Berg et al. 2020). Applications for persuasion, framing, ideology, and stance detection
in the social sciences are numerous. Analysts can uncover fringe issue topics (Bail 2014)
and frames (Ziems and Yang 2021; Mendelsohn, Budak, and Jurgens 2021; Demszky
et al. 2019; Field et al. 2018), with applications to public opinion (Bhatia 2017; Garg
et al. 2018; Kozlowski, Taddy, and Evans 2019; Abul-Fottouh and Fetner 2018), voting
behavior (Black et al. 2011), policy change (Flores 2017), social movements (Nelson 2021;
Sech et al. 2020; Rogers, Kovaleva, and Rumshisky 2019; Tufekci and Wilson 2012),
and international relations (King and Lowe 2003). We benchmark ideology detection
in Section 3.1.6 and Section 3.3.3, stance detection in Section 3.1.9, and entity framing
in Section 3.3.4. Furthermore, understanding the discourse structure and persuasive
elements of political speech can help social scientists measure political impact (Altikriti
2016; Hashim and Safwat 2015). We benchmark persuasion strategy and discourse acts
classification in Section 3.1.8 and Section 3.2.1.

2.5 Psychology

As the science of mind and behavior, psychology intersects all other adjacent social
sciences in this section. For example, an individual’s personality, or their stable patterns
of thought and behavior across time, will correlate with their political leaning (Gerber
et al. 2010), social status (Anderson et al. 2001), and linguistic expression (Pennebaker
and King 1999). The most influential personality modeling benchmark, MyPersonality
(Kosinski, Stillwell, and Graepel 2013), is no longer available, but in this work, we
evaluate on a representative set of psychological factors downstream of personality. For
example, differences in personality and cognitive processing can impact what people
find funny (Martin and Ford 2018) or persuasive (Hirsh, Kang, and Bodenhausen
2012). These psychological factors then exert influence over a range of social interac-
tions. Humor and politeness (Brown and Levinson 1987) are correlated with subjective
impressions of psychological distance between speakers (Trope and Liberman 2010),
while persuasive techniques bind agents in social commitments, with applications in
the science of management and organizations. We evaluate on humor, persuasion, and
politeness classification in Section 3.1.5, Section 3.1.8, and Section 3.2.6, respectively.
We also consider LLMs as tools for counseling, mental health, and positive psychology
in text-based interactions. Specifically, we evaluate on empathy detection in online mental
health platforms (Sharma et al. 2020) in Section 3.2.2, emotional aspect-based summarization
in Section 3.4.1, and a positive reframing style-transfer task (Ziems et al. 2022) based on
cognitive behavioral therapy in Section 3.4.5.

2.6 Sociology

Sociologists want to understand the structure of society and how people live collectively
in social groups (Wardhaugh and Fuller 2021; Keuschnigg, Lovsjö, and Hedström 2018).
By tracing the diffusion and recombination of linguistic, political, and psychological
content between actors in a community across time, sociologists can begin to under-
stand social processes at both the micro and macro scale. At the micro scale, there is
the computational sociology of power (Danescu-Niculescu-Mizil et al. 2012; Bramsen
et al. 2011; Prabhakaran, Reid, and Rambow 2014; Prabhakaran, Rambow, and Diab
2012) and social roles (Welser et al. 2011; Fazeen, Dantu, and Guturu 2011; Zhang, Tang,
and Li 2007; Yang, Wen, and Rosé 2015; Maki et al. 2017). LLMs can assist sociological
research by predicting power relations (Section 3.2.4) and unhealthy conversations
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(Section 3.2.5). At the macro scale, there are computational analyses of social norms
and conventions (Centola et al. 2018; Bicchieri 2005), information diffusion (Leskovec,
Backstrom, and Kleinberg 2009; Tan, Lee, and Pang 2014; Vosoughi, Roy, and Aral 2018;
Cheng et al. 2016), emotional contagion (Bail 2016), collective behaviors (Barberá et al.
2015), and social movements (Nelson 2021, 2015). Again, LLMs can detect constructs
like emotion (Section 3.1.2) and the speech of hateful social groups (Section 3.1.4).
Furthermore, social movements rely on the diffusion of norms and idiomatic slogans,
which carry meaning through figurative language that LLMs can decode (Section 3.1.3).

3. Representative CSS Task Selection

While not exhaustive, our task selection is designed to provide a representative survey
of the CSS needs in Section 2. This will allow us to answer Research Questions 1–4,
which are pertinent to social science researchers. Thus our work is distinct and comple-
mentary to BIG-Bench (Srivastava et al. 2023) and other efforts to benchmark the logical,
physical, and social reasoning capabilities of LLMs. Our attention is more carefully
focused on the affordances of LLMs for social science.1 Our tasks are field-specific and
come with the field-specific challenges of expert taxonomies, large label spaces, tempo-
ral grounding, and domain-specific parsing schemes (see Section 7.6).

To help answer RQ3 and RQ4, we organize this section according to our division
of tasks into functional categories based on the unit of text analysis: 10 utterance-
level classification tasks (Section 3.1), 6 conversation-level tasks (Section 3.2), and 4
document-level tasks for the analysis of media (Section 3.3). In addition to these 20
classification tasks, we evaluate 5 generation tasks in Section 3.4 for explaining social
science constructs and applying psychological theories to restructure text.

3.1 Utterance-Level Classification

An utterance is a unit of communication produced by a single speaker to convey a single
subject, which may span multiple sentences (Bakhtin 2010). CSS researchers can use
utterance data to study linguistic phenomena like the syntax of dialect, the semantics of
figurative language, or the pragmatics of humor. Utterance-level analysis also reflects
human states like emotion and communicative intent, or stable traits like stance and
ideology (Evans and Aceves 2016). We evaluate LLMs on utterance classification tasks
for dialect, hate speech, figurative language, emotion, humor, misinformation, ideology,
persuasion, semantic change, and stance classification.

3.1.1 Dialect Features. Linguistic feature detection is critical to the study of dialects
(Eisenstein, Smith, and Xing 2011) and ideolects (Zhu and Jurgens 2021a), with nu-
merous applications in sociolinguistics, education, and the sociology of class and
community membership (see Section 2.3). These features can be used to study the soci-
olinguistics of language change (Kulkarni et al. 2015; Hamilton, Leskovec, and Jurafsky
2016b) or the linguistic biases in educational assessments (Craig and Washington 2002)
and online moderation (Sap et al. 2019). The utterance is an appropriate level of analysis

1 To elaborate, BIG-Bench, among its 200 tasks, has some overlap in figurative language, humor, emotion,
empathy, and toxicity detection, but it does not cover dialect, discourse relations, character tropes, event
detection, ideology, misinformation, persuasion, politeness, power relations, semantic change, or stance.
BIG-Bench covers few document-level analyses and no conversation-level analysis. We are the first to run
extensive experiments to understand patterns of LLM performance on tasks critical to social scientists.
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here because syntactic and morphological features are all defined on subtrees of the
sentence node (Ziems et al. 2023; Eisenstein et al. 2023).

We evaluate on the Indian English dialect feature detection task of Demszky et al.
(2021) because this is one of the only available datasets to be hand-labeled by a domain
expert. Additionally, Indian English is the most widely spoken low-resource variety
of English, so the domain is representative. The task is to map utterances to a set of
22 grammatical features—namely, a lack of inversion in wh-questions, the omission of
copula be, or features related to tense and aspect like the habitual progressive—found
in Indian varieties of English. For example, the sentence “Two years I stayed alone”
exemplifies Preposition Omission.

3.1.2 Emotions. Emotion detection, the cornerstone of affective computing (Picard 2000),
is highly relevant to psychology and political science, among other disciplines, since
stable emotional patterns in part define an individual’s personality, and targeted emo-
tions outline the political stances she has. Additional application domains for the task
include emotional contagion (Bail 2016) and human factors behind economic markets
(Bollen, Mao, and Zeng 2011; Nguyen and Shirai 2015).

Expert-labeled emotion detection datasets are not common. We evaluate emotion
detection with weakly labeled Twitter data from Saravia et al. (2018), who use Plutchik’s
8 emotional categories: anger, anticipation, disgust, fear, joy, sadness, surprise, and trust. For
example, the following sentence would express fear:

I started the steroids on Saturday and I had some really bad side effects, like my eyes
started feeling weird.

Plutchik’s model is one of the three most recognized discrete emotion models, and it is
also used in our later Emotion Summarization Task (Section 3.4.1).

3.1.3 Figurative Language. Figurative expressions are where the speaker meaning differs
from the utterance’s literal meaning. Recognizing figurative language is a first step in
understanding literary content (Jacobs and Kinder 2018) and political texts (Huguet
Cabot et al. 2020), detecting hate speech (Lemmens, Markov, and Daelemans 2021), and
identifying mental health self-disclosure (Iyer et al. 2019).

We use the FLUTE (Chakrabarty et al. 2022) benchmark because it is, at this time, the
most comprehensive, with examples from many prior datasets (Chakrabarty et al. 2021;
Srivastava et al. 2023; Stowe, Utama, and Gurevych 2022). FLUTE contains 9k premise
sentences, each paired to a hypothesis with figurative language:

premise: I said, work independently and come up with some plans.

hypothesis: I said, put your heads together and come up with some plans.

The classification task is to recognize whether the figurative sentence contains
(1) sarcasm (Joshi, Bhattacharyya, and Carman 2017), (2) simile (Niculae and Danescu-
Niculescu-Mizil 2014), (3) metaphor (Gao et al. 2018), or (4) an idiom (Jochim et al. 2018).
In the above example, the hypothesis contains the idiom “put your heads together.”

3.1.4 Hate Speech. Hate speech is language that disparages a person or group on the
basis of protected characteristics like race. Beyond the societal importance of detecting
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and mitigating hate speech, this is a category of language that is salient to many social
scientists. By not only detecting, but also systematically understanding hate speech, po-
litical scientists can track the rise of hateful ideologies, and sociologists can understand
how these hateful ideas diffuse through a network and influence social movements.

Thus we evaluate on the more nuanced task of fine-grained hate speech taxonomy
classification from Latent Hatred (ElSherief et al. 2021). This task requires models to
infer a subtle social taxonomy from the coded or indirect speech of U.S. hate groups.
Utterances should be classified with one of six domain-specific categories: incitement to
violence, inferiority language, irony, stereotypes and misinformation, threatening and intimi-
dation language, and white grievance. For example, the following sentence contains white
grievance: “jewish harvard professor noel ignatiev wants to abolish the white race.”

3.1.5 Humor. Humor is a rhetorical (Markiewicz 1974) and literary device (Kuipers 2009)
that modulates social distance and trust (Sherman 1988; Graham 1995; Kim, Lee, and
Wong 2016). However, different audiences may perceive the same joke differently. In the
study of sociocultural variation, communication, and bonding, humor detection will be
of prime interest to sociologists and social psychologists, as well as to literary theorists
and historians. Computational social scientists have effectively detected punchlines
(Mihalcea and Strapparava 2005; Ofer and Shahaf 2022) and predicted audience laugh-
ter (Chen and Soo 2018), demonstrating the computational tractability of the domain.

Our evaluation uses a popular dataset from Weller and Seppi (2019) to focus on
binary humor detection across a wide range of joke sources, from Reddit’s r/Jokes, a
Pun of The Day Web site, and a set of short jokes from Kaggle, summing to ∼16K jokes.

3.1.6 Ideology. A speaker’s subtle decisions in word choice and diction can betray their
beliefs and the political environment to which they belong (Jelveh, Kogut, and Naidu
2014). While political scientists care most about identifying the underlying ideologies
and partisan organizations behind these actors (Section 2.4), sociolinguists can study
the correlation between language and social factors.

We evaluate ideology detection on the Ideological Books Corpus (Gross et al. 2013)
from Iyyer et al. (2014), which contains 2,025 liberal sentences, 1,701 conservative sen-
tences, and 600 neutral sentences. The corpus was designed to disentangle a speaker’s
overall partisanship from the particular ideological beliefs that are reflected in an indi-
vidual utterance. Thus labels reflect perceived ideology according to annotators and not
the speaker’s ground truth partisan affiliation. For example, one sentence associated
with a strongly conservative ideology is: “the feminist movement, with its mockery of mar-
riage and demands for absolute sexual freedom. . . was a frontal assault on the meritocracy and
the traditional family.”

3.1.7 Misinformation. Misinformation is both a political and social concern as it can
jeopardize democratic elections, public health, and economic markets. The effort to
combat misinformation is multi-disciplinary (Lazer et al. 2018), and it depends on
reliable misinformation detection tools.

We evaluate on the Misinfo Reaction Frames corpus (Gabriel et al. 2022), a dataset of
25k news headlines with fact checked labels for the accuracy of the related news articles
about COVID-19, climate change, or cancer. Models perform binary misinformation
classification on news article headlines alone, which the authors found was a tractable
task for fine-tuned models. For example, an article with the headline “White House Ousts
Top Climate Change Official” is marked as likely to contain misinformation.
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3.1.8 Persuasion. Persuasion is the art of changing or reinforcing the beliefs of others.
Understanding persuasive strategies is central to behavioral economics and the psy-
chology of advertising and propaganda (Martino et al. 2020). Utterances are a natural
unit for the analysis of individual persuasive strategies, which may be combined in
dialogue for an overall persuasive effect (c.f. Section 3.2.3).

While multi-modal persuasion detection tasks exist, we focus on the popular text-
based persuasion dataset, Random Acts of Pizza (RAOP; Althoff, Danescu-Niculescu-
Mizil, and Jurafsky 2014), where Reddit users attempt to convince community members
to give them free food. This dataset was labeled by Yang et al. (2019a) with a fine-grained
persuasive strategy taxonomy based on Cialdini (2003) that includes Evidence, Impact,
Politeness, Reciprocity, Scarcity, and Emotion. The task objective is to classify utterance-
level RAOP requests according to this 6-class taxonomy. An example of an Evidence
sentence is “There is a Pizza Hut and a Dominos near me,” since it provides concrete facts
relevant to the request. An example of Scarcity is “I haven’t had a meal in two days.”

3.1.9 Stance. Although stance detection can be formalized in different ways, the most
common task design is for models to determine whether a text’s author is in favor
of a target view, against the target, or neither. With this formulation, sociologists can
understand consensus and disagreement in social groups, psychologists can measure
interpersonal attachments, network scientists can build signed social graphs, political
scientists can track the views of a voter base or the policies of candidates, historians
can plot shifting opinions, and digital humanities researchers can quickly summarize
narratives via character intentions and goals.

We evaluate stance detection on the earliest and most established SemEval-2016
Stance Dataset (Mohammad et al. 2016), which contains 1,250 tweets and their asso-
ciated stance towards six topics: atheism, climate change, the feminist movement, Hillary
Clinton, Donald Trump, and the legalization of abortion. Stance is given as favor, against, or
none. For zero-shot experiments, we use the test set where the target is Donald Trump
for all evaluations. An example tweet against Donald Trump is as follows:

@realDonaldTrump needs to learn when to stop talking. You are making it worse
Donald. . . so much worse.

3.1.10 Semantic Change. In addition to its more stable features, researchers can plot the
change of language over time for a fixed community. Semantic change detection can
serve as a proxy measure for the spread and change of culture (Kirby, Dowman, and
Griffiths 2007), both on the Internet (Eisenstein 2012; Eisenstein et al. 2014) and in
historical archives (Mihalcea and Nastase 2012; Kim et al. 2014; Kulkarni et al. 2015;
Rudolph and Blei 2018).2

We evaluate LLMs as binary word-sense discriminators using the popular Tem-
poral Word-in-Context benchmark (TempoWiC; Pilehvar and Camacho-Collados 2019).
TempoWiC measures the core capability of drawing discrete boundaries between word-
level semantics. Given two sentences with the same lexeme, the task is binary classifica-
tion with positive indicating both sentences use the same sense of the word and negative
indicating different senses of the word. For example, consider the different senses of the
word “impostor” in the following texts.

2 Additional works in this area can be found under the 3rd Workshop on Computational Approaches to
Historical Language Change. https://www.aclweb.org/portal/content/3rd-workshop
-computational-approaches-historical-language-change.
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text1: Having a rough start to my doctorate program in both the student and teacher
roles and feel down and ashamed. I spoke to faculty and know how to move forward,
but while they believe in me I find it hard to believe in myself. How do you fight
impostor syndrome @AcademicChatter

text2: laughed so hard running from impostor friend around the lab table that I gave
myself an headache lmao what a good day

A perfect classifier for this task can be used to cluster all usage of a surface-form into
sense groups using pairwise comparison.

3.2 Conversation-Level Classification

Conversations are multi-party exchanges of utterances. They are critical units for analy-
sis in the social sciences (Hutchby and Wooffitt 2008; Silverman 1998; Sacks 1992), since
they richly reflect social relationships (Evans and Aceves 2016)—a key factor that was
missing in utterance-level analysis. Sociological frameworks like ethnomethodology
(Garfinkel 2016) focus particularly on conversations. The tasks in this section are drawn
largely from the ConvoKit toolkit of Chang et al. (2020).

3.2.1 Discourse Acts. Discourse acts are the building blocks of conversations and are
thus relevant to conversation analysis in sociology, genre analysis in literature, prag-
matics, and ethnographic studies of speech communities (see Paltridge and Burton for
example). Some popular discourse act taxonomies like DAMSL (Stolcke et al. 2000) and
DiAML (Bunt et al. 2010) can have as many as 40 categories, tailored to spoken commu-
nication. We use Zhang, Culbertson, and Paritosh’s (2017) simpler and more focused
9-class taxonomy since it was designed to cover online text conversations—the focus
of CSS research. The taxonomy includes questions, answers, elaborations, announcements,
appreciation, agreements, disagreements, negative reactions, and humor.

We evaluate on the Coarse Discourse Sequence Corpus (Zhang, Culbertson, and
Paritosh 2017). The model input is a comment from a Reddit thread, along with the
utterance to which the comment is responding. For example,

[userABC]: So i went thinking to myself this fine day ḧey lets check out Levetihanänd
then i found out that this DLC does not appear in my Origin store...

[userXYZ]: Did you go into ME3 game and access d̈ownloadable content?̈

The expected output is the category from the above 9-class taxonomy which best de-
scribes the comment’s speech act: Question in the above example. Since Announcements
and Negative reactions have fewer than 10 examples total in the dataset, they are omitted
from our evaluation along with the catch-all Other category.

3.2.2 Empathy. Since the early days of Internet access, users have looked to Internet com-
munities for support (Preece 1998). Thus Web communities can provide CSS researchers
with empathetic communication data in naturalistic settings (Pfeil and Zaphiris 2007;
Sharma et al. 2020). By better understanding community-specific affordances (Zhou
and Jurgens 2020) and the most common triggers for empathetic responses (Buechel
et al. 2018; Omitaomu et al. 2022), CSS can reciprocally inform the design of empathetic
communities (Coulton et al. 2014; Taylor et al. 2019), as well as community-specific tools
like counseling dialogue systems (Sharma et al. 2021; Ma et al. 2020).
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Understanding is the first step towards building more effective online mental health
resources, and this motivates our evaluation on the TalkLife dataset of Sharma et al.
(2020), a clinically motivated empathy detection dataset. The paper’s EPITOME mea-
sures empathy using a multi-stage labeling scheme. First, a listener communicates an
Emotional Reaction to describe how the seeker’s disclosure makes the listener feel. Then
the listener offers an Interpretation of the emotions the seeker is experiencing. Finally,
the listener moves into Exploration, or the pursuit of further information to better under-
stand the seeker’s situation. Clinical psychologists labeled the listener’s effectiveness at
each stage of a listener’s top-level reply. Here we focus on Exploration, as prior work
has shown open-questions to be especially effective for peer-support (Shah et al. 2022).
Given a seeker’s post and a top-level listener’s reply, we classify whether the listener
offered: Strong Exploration (specific questions about the seekers situation), Weak Explo-
ration (general questions), or No Exploration. Consider the example conversation:

Seeker: I spent today either staring blankly at a computer screen or my phone. Was too
hurt to do anything today, really.

Response: I wish I even had the will to play games. For me it’s excessive daydreaming.

The above response is an example of No exploration.

3.2.3 Persuasion. In Section 3.2.3, we considered utterance-level analysis of fine-grained
persuasive strategies. However, social scientists are also interested in the overall persua-
sive effect that one speaker has on another through sequences of rhetorical strategies in
dialogue (Shaikh et al. 2020). Persuasive outcomes are particularly important for the
political science of successful campaigns (Murphy and Shleifer 2004) and the sociology
of idea propagation and social movements (Stewart, Smith, and Denton Jr 2012).

We evaluate our persuasion prediction task on the Winning Arguments Corpus
(Tan et al. 2016), which contains 3,051 conversations from r/ChangeMyView in which the
persuader tries to convince the persuadee to change their mind. Models receive as input
the reply thread (starting from a top-level comment) and perform binary prediction on
whether the persuadee awarded the persuader a “delta” for a successful argument: If
you were the original poster, would this reply convince you? Consider this example of
an unsuccessful argument by UserA below:

[UserA]: “Right on red”, when it’s allowed, is primarily because you’re going from the
innermost lane TO the intersecting innermost lane. . . this part of the state is infamous
for a**hat drivers blocking people from turning, changing lanes, etc. . . could you
imagine the chaos? :D

[UserB]: Er, the image I posted, I found on Google images. It may triple the number of
lanes to be concerned about, but one of them shouldn’t usually be a problem if people
stay in their lanes. And the other two, you still have to look in the same direction.”

3.2.4 Power and Status. Sociologists, political scientists, and online communities re-
searchers are interested in understanding hierarchical organizations, social roles, and
power relationships. Power is related to control of the conversation (Prabhakaran, Reid,
and Rambow 2014) and power dynamics shape both behavior and communication.
Specifically, text analysis can uncover power relationships in the degree to which one
speaker accommodates to the linguistic style of another (Danescu-Niculescu-Mizil et al.
2012). We anticipate that this task is tractable for LLMs.
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We evaluate on the Wikipedia Talk Pages dataset from Danescu-Niculescu-Mizil
et al. (2012). Conversations are drawn from the debate forums regarding Wikipedia edit
histories, and power is a binary label describing whether or not the Wikipedia editor is
an administrator. All models are given an editor’s entire comment history from the Talk
Pages, and the objective is binary classification. In the following example, EditorA uses
a high degree of politeness and hedging langauge, which indicates that he is not in a
position of power:

[EditorA]: That’s odd. Somehow, I came across one of that user’s edits, though I believe
it was on recent changes. As you can see, most of the older edits are vandalism, but I
guess due to the time that wouldn’t warrant much of a block. I don’t know how I
happened to come across that since it’s so old.

[EditorA]: That could be the case. I’ve seen a few of those tonight.

3.2.5 Toxicity Prediction. Toxicity is a major area of social research in online communi-
ties, as online disinhibition (Suler 2005) makes antisocial behavior especially prevalent
(Cheng, Danescu-Niculescu-Mizil, and Leskovec 2015). Predictive models can be used
to understand the early signs of later toxicity (Cheng et al. 2017) for downstream causal
analysis on the evolution of toxicity (Mathew et al. 2020) and the effectiveness of inter-
vention methods (Kwak, Blackburn, and Han 2015). Even without interpretable fea-
tures, a predictive system can serve causal methods as a propensity score.

Using the Conversations Gone Awry corpus (Zhang et al. 2018), we investigate
whether LLMs can predict future toxicity from early cues. As context, the model takes
the first two messages in a conversation between Wikipedia users. The model should
make a binary prediction whether or not the Wikipedia conversation will contain toxic
language at any later stage. For example:

[UserA]: I have removed recent edition of pappe to the lead though Pappe view might
notable currently without attribution and proper context of other views it WP:NPOV
violation.

[UserB]: In fact, Pappe is already mentioned twice in the proper place.

The conversation above contains overt confrontation that will later devolve into toxicity.

3.2.6 Politeness. Before overt toxicity is evident in a community, researchers can measure
its health and stability according to members’ adherence to politeness norms. Polite
members can help communities grow and retain other valuable members (Burke and
Kraut 2008), while rampant impoliteness in a community can foreshadow impending
toxicity (Andersson and Pearson 1999). Text-based politeness measures also reflect other
societal factors that we explore in this work, like gender bias (Herring 1994; Ortu
et al. 2016, Section 3.1.4), power inequality (Danescu-Niculescu-Mizil et al. 2013, Sec-
tion 3.2.4), and persuasion (Shaikh et al. 2020, Section 3.1.8).

We evaluate on the Stanford Politeness Corpus (Danescu-Niculescu-Mizil et al.
2013). The dataset is foundational in the computational study of politeness and its
relation to other social dynamics. The corpus contains requests made by one Wikipedia
contributor to another. For example,

I am looking for help improving the dermatology content on Wikipedia. Would you be
willing to help, or do you have any friends interested...
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Each request is classified into one of three categories, Polite, Neutral, or Impolite, accord-
ing to Amazon Mechanical Turk annotators’ interpretation of workplace norms (the
example above is Polite). High zero-shot performance on this task will strongly indicate
a model’s broader ability to recognize conversational social norms.

3.3 Document-Level Classification

Documents provide a complementary view for social science. Like conversations, doc-
uments can encode sequences of ideas or temporal events, as well as interpersonal
relationships not present in isolated utterances. Unlike the dyadic communication of
a conversation, a document can be analyzed under a unified narrative (Piper, So, and
Bamman 2021). Thus, for our purposes, a document is a collection of utterances that
form a single narrative. Our document-level classification tasks cluster around media,
which has been the subject of content analysis in the social sciences since the time of
Max Weber in 1910. In this section, we focus on computational tools for content anal-
ysis (Berelson 1952) to code media documents for their underlying ideological content
(Section 3.3.3), the events they portray (Section 3.3.1, Section 3.3.2), as well as the agents
involved and the specific roles or character tropes they exhibit (Section 3.3.4).

3.3.1 Event Detection. Following a massive effort to digitize critical documents, social
scientists depend on event extraction to automatically code and organize these docu-
ments into smaller and more manageable units for analysis. Events are the “building
blocks” from which historians construct theories about the past (Sprugnoli and Tonelli
2019); they are the backbone of narrative structure (Chambers and Jurafsky 2008). Event
detection is the first step in the event extraction pipeline. Hippocorpus (Sap et al. 2020b)
is a resource of 6,854 stories that were collected from crowdworkers and tagged for
sentence-level events (Sap et al. 2022). Events can be further classified into minor or
major events, as well as expected or unexpected. We evaluate on the simplest task:
binary event classification at the sentence level. For example:

A: Four months ago, I had a big family reunion.
B: We haven’t had one in over 20 years.
C: This was a very exciting event.
D: I saw my Grandma who said I looked great as ever.

The above lines A and D denote new events.

3.3.2 Event Argument Extraction. Where event detection was concerned with identifying
event triggers, event argument extraction is the task of filling out an event template
according to a predefined ontology, identifying all related concepts like participants in
the event, and parsing their roles. Historians, political scientists, and sociologists can use
such tools to extract arguments from sociopolitical events in the news and historical text
documents, and to understand social movements (Hürriyetoğlu et al. 2021). Economists
can use event argument extraction to measure socioeconomic indicators like the unem-
ployment rate, market volatility, and economic policy uncertainty (Min and Zhao 2019).
Event argument extraction is also a key feature of narrative analysis (Sims, Park, and
Bamman 2019), as well as in the wider domains of legal studies (Shen et al. 2020), public
health (Jenhani, Gouider, and Said 2016), and policy.

WikiEvents (Li, Ji, and Han 2021) is a document-level event extraction bench-
mark for news articles that were linked from English Wikipedia articles. WikiEvents
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uses DARPA’s KAIROS ontology with 67 event types in a three-level hierarchy. For
example, the Movement.Transportation event has the agentless Motion subcategory
and an agentive Bringing subcategory. Both include a Passenger, Vehicle, Origin,
and Destination argument, but only the agentive Bringing has a Transporter agent.
KAIROS’s event argument ontology is richer and more versatile than the commonly
used ACE ontology, which only has 33 types of events. An example of this task is to
take the following document

The Taliban <tgr>killed <tgr>more than 100 members of the Afghan security forces
inside a military compound in central Maidan Wardak province on Monda...

and produce the following structured output

{’Victim’: ’members’, ’Place’: ’undefined’, ’Killer’: ’The Taliban’,

↪→ ’MedicalIssue’: ’undefined’}

3.3.3 Ideology. CSS is extremely useful for understanding and quantifying real and
perceived political differences. For a variety of specific phenomena (Amber et al. 2013;
Baly et al. 2018; Roy and Goldwasser 2020; Luo, Card, and Jurafsky 2020b; Ziems and
Yang 2021), this takes the form of gathering articles from across the political spectrum,
processing each one further for a phenomenon of interest, and evaluating the relative
differences for the articles from different ideological groups. The first step in such stud-
ies is to separate articles according to the overarching political ideology they represent.

We evaluate ideology detection on the Article Bias Corpus from Baly et al. (2020),
which collects a set of articles from media sources covering the United States of America
and labels them according to Left, Right, and Centrist political bias. Unlike the task
of utterance-level ideology prediction (Section 3.1.6), this task provides an entire news
article as context. This tests the ability of the model to understand the relationship that
a sequence of stances taken across an entire article might have with political leaning. For
example, one Left-leaning article in this dataset contains the strongly indicative phrase:
“it was hard not to think about the insularity and cossetting the super-wealthy enjoy,” and then
goes on to talk at length about former LA Clippers owner Donald Sterling. In other
articles, political views are more diffuse and less starkly concentrated into particular
phrases or slogans. Still, each article must be classified into exactly one of the three
ideological categories above.

3.3.4 Roles and Tropes. Social roles are defined by expectations for behavior, based on
social interaction patterns (Yang et al. 2019b). Similarly, personas are simplified models
of personality (Grudin 2006), like a trope that a character identifies within a movie. The
ability to infer social roles and personas from text has immediate applications in the
psychology of personality, the sociology of group dynamics, and the study of agents
in literature and film. These insights can help us understand stereotypical biases and
representational harms in media (Blodgett et al. 2020). Downstream applications also
include narrative psychology (Murray et al. 2015), economics, political polarization, and
mental health (Piper, So, and Bamman 2021).

Others have considered character role labeling for narratives (Jahan, Mittal, and
Finlayson 2021) and news media (Gomez-Zara, Boon, and Birnbaum 2018). We evaluate
this task with the CMU Movie Corpus dataset from Bamman, O’Connor, and Smith
(2013) as it was extended and modified by Chu, Vijayaraghavan, and Roy (2018) to in-
clude character trope labels and IMBD character quotes. The character trope classification
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task involves identifying from a character’s quotes alone which of 72 movie tropes that
character’s identity best fits (e.g., the coward or the casanova). The following example
quotations are from an absent-minded professor:

Now, THIS makes any fabric instantly impervious. Dirt proof, stain proof. . . Ouch! And
bullet proof! It’s still not perfected yet! It’s hell on the dry-cleaning bill.

This baby is the ultimate corrosive. I call it - DON’T TOUCH IT! - I call it
“hydrochloricdioxynucleocarbonium”. Well, the name needs work. But it’ll eat through
a Buick! OR -

3.4 Generation Tasks

Regarding RQ4 Functionality, we want to understand whether LLMs are best suited
to classify taxonomic social science constructs from text, or whether these models are
equally if not better suited for generative explanations and summaries. This section
describes our natural language generation tasks, where LLMs might be used to summa-
rize relevant aspects (Section 3.4.1), elucidate the hidden social meaning behind a text
(Section 3.4.2–Section 3.4.4), or implement social theory by stylistically restructuring an
utterance (Section 3.4.5).

3.4.1 Emotion-Specific Summarization. Prior work has already demonstrated LLMs’ skill
at generic summarization tasks (Goyal, Li, and Durrett 2022; Qin et al. 2023). Here, we
consider a more domain-specific task, aspect-based summarization. The key idea of
aspect-based summarization is that different elements of a document will be relevant to
different users. This is especially true for social scientists and other domain specialists.
For example, scientists who study population-level emotional responses to crisis events
will need to know not only which emotions are represented in text (i.e., emotion detec-
tion; Section 3.1.2), but also, in brief, what specific experiences triggered such emotions.
The scientist may not have highly focused queries like in QA tasks, but this use still
demands summaries about broad subtopics or themes (Ahuja et al. 2022).

We use the COVIDET dataset of Zhan et al. (2022), which contains 1,883 Reddit posts
from the COVID-19 pandemic. Given a post and one of Plutchik’s target emotions, the
task is to summarize from the post what triggered the author to feel the target emotion.

3.4.2 Figurative Language Explanation. Our interests in figurative language are covered
in Section 3.1.3, where we introduce the FLUTE dataset. FLUTE contains 9k (literal,
figurative) sentence pairs with either entailed or contradictory meanings. The goal of
the explanation task is to generate a sentence to explain the entailment or contradiction.
For example, the figurative sentence “she absorbed the knowledge” entails the literal
sentence “she mentally assimilated the knowledge” under the following explanation:
“to absorb something is to take it in and make it part of yourself.”

3.4.3 Implied Misinformation Explanation. Both scientific understanding and real-world
intervention strategies depend on more than black-box classification. This motivates our
implied statement generation task, which is specified in the Misinfo Reaction Frames
corpus (Gabriel et al. 2022) as covered in Section 3.1.7. Models take the headline of a
news article and generate the underlying meaning of the headline in plain English. This
is called the writer’s intent. Consider, for example, the misleading headline, “Wearing
a face mask to slow the spread of COVID-19 could cause Legionnaires’ disease.” Here, the
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annotator wrote that the writer’s intent was to say “wearing masks is dangerous; people
shouldn’t wear masks.”

3.4.4 Social Bias Inference. While hate speech detection focuses on the overall harmfulness
of an utterance, specific types of hate speech are targeted towards a demographic sub-
group. To this end, the Social Bias Inference Corpus (SBIC; Sap et al. 2020a) consists of
34K inferences where hate speech is annotated with free-text explanations. Importantly,
explanations highlight why a specific subgroup is targeted. For example, the sentence
“We shouldn’t lower our standards just to hire more women.” implies that “women are less
qualified.” To model these explanations, Sap et al. (2020a) treat the task as a standard
conditional generation problem. We mirror this setup to evaluate LLMs.

3.4.5 Positive Reframing. NLP can help scale mental health and psychological counseling
services by training volunteer listeners and teaching individuals the techniques of
cognitive behavioral therapy (CBT; Rothbaum et al. 2000), which is used to address
mental filters and biases that perpetuate anxiety and depression. Positive reframing is
a sequence-to-sequence task which translates a distorted negative utterance into a com-
plementary positive viewpoint using CBT strategies without contradicting the original
speaker meaning. Take the example source sentence:

Always stressing and thinking about loads of things at once need I take it one at a time
overload stressed need to rant.

Using the growth and neutralizing strategies, the author can reframe this thought more
positively as follows:

Loads of things on my mind, I need to make a list, prioritize and work through it all
calmly and I will feel much better.

4. Evaluation Methods

4.1 Model Selection and Baselines

Our goal is to evaluate LLMs in zero-shot settings through prompt engineering
(Section 4.2) and to identify suitable model architectures, sizes, and pre-training/fine-
tuning paradigms for CSS research (RQ 1,2). We choose FLAN-T5 (Chung et al. 2022)
as an open-source model with strong zero-shot and few-shot performance. Although it
follows a standard T5 encoder-decoder architecture, FLAN’s zero-shot performance is
due to its instruction fine-tuning over a diverse mixture of sequence to sequence tasks.
The added benefit is that FLAN-T5 checkpoints exist at six different sizes ranging from
small (80M parameters) to XXL (11B) and UL2 (20B), allowing us to investigate scaling
laws. Next, we consider OpenAI’s GPT-3 (Brown et al. 2020; Zong and Krishnamachari
2022) including text-001, text-002 learning with instructions and text-003, which
is further learned from human preferences (RLHF) (Christiano et al. 2017) series,
and gpt-3.5-turbo (Qin et al. 2023; Gilardi, Alizadeh, and Kubli 2023), which is the
conversation-based LLM trained through RLHF (Christiano et al. 2017). Finally we
include GPT-4 (OpenAI 2023), which is a multimodal model that, at 1.7 trillion param-
eters, scales up the GPT-3 architecture by 1000×.

Traditional supervised fine-tuned models can serve as baselines for each task.
These baselines are intended to provide a comparison point for the utility of LLMs for
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CSS, rather than providing a fair methodological comparison between approaches. For
classification tasks, we use RoBERTa-large (Liu et al. 2019) as the backbone model and
tune hyperparameters based on F1 score on the validation set. For generation tasks, we
use T5-base (Raffel et al. 2020) as the backbone model and tune hyperparameters based
on average BLEU score on the validation set. We use a grid search to find the most
suitable hyperparameters including learning rate {5e-6, 1e-5, 2e-5, 5e-5}, batch
size {4, 8, 16, 32} and the number of epochs {1, 2, 3, 4}. Other hyperparameters
are set to the defaults defined by the HuggingFace Trainer. We average results across
three different random seeds to reduce variance. These baselines will prove competitive
in Table 3, matching or exceeding the best reported performances from the original
publications in Event Surprisal, Event Argument Extraction, and the classification of Emo-
tions, Empathy, Figurative Language, Implicit Hate, Persuasion, Persuasion Strategies, Political
Ideology, and Semantic Change. Still, it is important to note that greater performances
might be achievable by fine-tuning alternative architectures.

4.2 Prompt Engineering

One strength of current LLMs is their ability to be “programmed” through natural
language instructions (Brown et al. 2020). This capability has been further improved
by training models to explicitly follow these instructions (Sanh et al. 2021; Wang et al.
2022; Chung et al. 2022; Ouyang et al. 2022). CSS tools can then be developed directly
by subject-matter experts using natural language instructions rather than explicit pro-
gramming language interpretations. In order to evaluate LLMs, each task requires a
prompt designed to elicit the desired behavior from the model.

The author who is most familiar with the task writes an initial prompt for it based on
the task description and the design guidelines below. Then we generate four semantically
equivalent perturbations of that prompt using gpt-3.5-turbo as a zero-shot paraphrase
model. All results are averaged across prompt perturbations to remove instruction-
based variance (Perez, Kiela, and Cho 2021; Zhao et al. 2021).

In order to receive consistent, reproducible results we utilize a temperature of zero
for all LLMs. For models that provide probabilities directly, we constrain decoding to
the valid output classes.3 For other models, such as gpt-3.5-turbo, we use logit bias to
encourage valid outputs during decoding.4 All other generation parameters are left at
the default settings for each model.

CSS Prompt Design Guidelines. CSS tasks often require models to make inferences about
subtext and offensive language. Additionally, CSS codebooks often project complex
phenomena into a reduced set of labels. This raises challenges for the use of LLMs
which have been refined for general use. When initially exploring LLM behavior, we
found that models would hedge in the case of uncertainty, refuse to engage with
offensive language, and attempt to generalize beyond provided labels. While desirable
in a general context, these behaviors make it difficult to use LLMs inside a CSS pipeline.

Therefore, we built a set of guidelines in Table 1, drawn from both the literature and
our own experience with non-CSS tasks as NLP researchers. We explicitly share these
guidelines to help CSS practitioners control LLMs for their purposes. There is no claim

3 Probability outputs for HuggingFace and GPT-3. https://platform.openai.com/docs/api-reference
/completions/create#completions/create-logprobs.

4 Logit Bias reference for gpt-3.5-turbo. https://platform.openai.com/docs/api-reference/chat
/create#chat/create-logit bias.
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Table 1
LLM Prompting Guidelines to generate consistent, machine-readable outputs for CSS tasks.
These techniques can help solve overgeneralization problems on a constrained codebook, and
they can force models to answer questions with inherent uncertainty or offensive language.
Effective Prompt Guideline Reference Guideline Example
When the answer is categorical, enumerate options Hendrycks et al. (2021) {$CONTEXT}
as alphabetical multiple-choice so that the output
is simply the highest-probability token (‘A’, ‘B’). Which of the following describes

the above news headline? ←↩
Each option should be separated by a new line ( ←↩ ) Inverse Scaling Prize A: Misinformation ←↩
to resemble the natural format of online multiple B: Trustworthy ←↩
choice questions. More natural prompts will elicit {$CONSTRAINT}
more regular behavior.
To promote instruction-following, give instructions Child et al. (2019) {$CONTEXT}
after the context is provided; then explicitly {$QUESTION}
state any constraints. Recent and repeated text
has a greater effect on LLM generations due to Constraint: Even if you are
common attention patterns. uncertain, you must pick either
Clarify the expected output in the case of uncertainty. No Existing Reference “True” or “False” without using
Uncertain models may use default phrases like any other words.
“I don’t know,” and clarifying constraints force
the model to answer.
When the answer should contain multiple pieces MiniChain Library {$CONTEXT}
of information, request responses in JSON {$QUESTION}
format. This leverages LLM’s familiarity with code
to provide an output structure that is more JSON Output:
easily parsed.

that the resulting prompts are optimally-engineered for each task; they instead provide
reasonable approximations to the kinds of prompts a non-AI expert could design after
considering established guidelines. By averaging our results over five prompt pertuba-
tions, we reduce the variance in this approximation of standard CSS tool-use.

4.3 Test Set Construction

For each task, we evaluate a class-stratified sample of at most 500 instances from the
dataset’s designated test set. If the designation is missing, we take the class-stratified
sample from the entire dataset. Our sampled test sizes and class counts are in Table 2. All
datasets, prompts, and model outputs are released for future comparison and analysis.5

4.4 Evaluation Metrics

Automatic Evaluation. Each dataset has a different structure with a different number of
labels (see Table 2), so the use of accuracy is not the most informative metric. Instead,
we compute the macro F1 score for all classification and structured parsing tasks and
average over the 5 prompt perturbations. Since we mapped the label space for each task
to an alphabetical list of candidate options and set the logit bias to favor these options
(Section 4.2), evaluation scripts use straightforward string-matching.

5 Data directory of our Github Project.
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Table 2
Dataset size and classes count across all selected CSS benchmarks. Datasets are sorted by class
count for each task category.

Dataset Size Classes Dataset Size Classes
Generation Tasks 500 – Conversation Level

Utterance Level
Discourse 497 7
Politeness 498 3

Dialect 266 23 Empathy 498 3
Persuasion 399 7 Toxicity 500 2
Impl. Hate 498 6 Power 500 2
Emotion 498 6 Persuasion 434 2
Figurative 500 4

Document Level
Ideology 498 3
Stance 435 3 Event Arg. 283 –
Humor 500 2 Evt. Surprisal 240 –
Misinfo 500 2 Tropes 114 114
Semantic Chng 344 2 Ideology 498 3

For high-variation domains like our generation tasks, on the other hand, word-
overlap-based machine translation metrics like BLEU (Post 2018) are expected to have
low correlation with human quality judgments (Liu et al. 2016). Here, even embedding-
similarity metrics like BERTScore (Zhang et al. 2020) may be insufficient (Novikova
et al. 2017). Manual inspection revealed high-quality generation outputs, but the
BLEURT (Sellam, Das, and Parikh 2020) score reported zero semantic overlap, and
variation in BLEU and BERTScores failed to follow any discernible patterns with regard
to model preference or scaling laws that we observed by manual inspection. For gener-
ation tasks, human evaluation is strongly preferable (Santhanam and Shaikh 2019), and
we describe human evaluation in the following paragraphs.

Human Scoring Evaluation. To get a sense of the generation quality for each task, we
recruit a domain expert to blindly evaluate 100–400 model outputs. Evaluations are on
1–5 Likert scales for 4 standard metrics from the NLG literature. Following Fabbri et al.
(2021), we define these metrics as follows:

• Faithfulness: The generation is consistent with the source document and with
the definition of the task.

• Coherence: The generation is well-structured and well-organized. The
generation is not just a heap of unrelated information, but forms a coherent body
of information about a topic. (Dang 2005)

• Relevance: The generation includes only important information from the source
document; no redundancies or excess information.

• Fluency: The generation has no formatting problems, capitalization errors, or
obviously ungrammatical sentences (e.g., fragments, missing components) that
make the text difficult to read.
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All experts are recruited and paid through the Upwork platform. Annotator back-
grounds and expertise are summarized in the bottom right pane of Table 6. For
COVIDET summarization, we recruit a former CDC health communication specialist
with a B.S. in Public Health and an M.S. in Health Education. For Misinformation, we
enlist a Public Policy Graduate Student with a B.A. in Political Science. For Figurative
Language, we hire a former writing expert at Grammarly with an M.F.A. For Social Bias,
we find a Graduate Student with a B.S. in Journalism. And for Positive Reframing, we
hire a Nurse in Clinical Behavioral Health with a B.A. in Psychology.

Human Ranking Evaluation. Instead of scoring or rating target generations on a standard
Likert scale, annotators can also rank the model explanations in terms of their faithfulness
at describing the target construct. The ranking-style evaluation can be less variable than
scoring for generation tasks (Harzing et al. 2009; Belz and Kow 2010). We will use Social
Bias Frames as an example to illustrate the general setup for Human Ranking Evalua-
tions. Here, the annotator reviews a hateful message and an associated hate target. Then
they review four Implied Statements generated by one of the OpenAI models or pulled
from the SBIC’s gold human annotations. They are asked to rank these statements from
best to worst according to how accurate the implied statement is at describing the hidden
message from the hateful message. In this forced-choice ranking scheme, ties are not
allowed, but we use a unanimous vote to determine when a given model outranks
human performance. Unanimous vote flattens the variance for explanations of similar
quality and reflects only significant differences in quality.

Pilot annotation proved that crowdworker evaluations can exhibit high variance
and instability due to cultural and individual differences, as well as different interpre-
tations of the task. Thus the authors served as blind annotators for this evaluation. Two
authors evaluated each task and unanimous voting determined the reported metrics.

5. Classification Results

Table 3 presents all zero-shot results for utterance, conversation, and document-level
tasks. We use these results to answer RQ 1–3. The results suggest that LLMs are a viable
tool for augmenting human CSS annotation. For classification tasks, results show that larger,
instruction-tuned open-source LLMs are preferable.

5.1 Viability (RQ1)
5.1.1 Zero-Shot Viability. To understand the viability of LLMs as CSS tools, we ask if zero-
shot LLMs match or exceed the reliability of human annotation. If the overall perfor-
mance is high and the expected agreement between humans and prompted models is as
high as that between humans alone, then we might expect LLMs to viably augment the
human annotation process. According to one paradigm, an LLM can serve as just one of
many human and AI labelers, and gold labels would be decided by majority vote across
these independent annotations. According to another complementary paradigm, LLM
pseudo-labels can be used with a small set of gold-labels to compute unbiased estima-
tors in downstream regressions following methods like Design-based Semi-supervised
Learning (DSL; Egami et al. 2023) and others.

Table 3 shows the best zero-shot models achieve as high as 77.4 F1 on misin-
formation detection. On this task, the best-performing FLAN-UL2 model achieves an
agreement of κ = 0.55 with gold labels (see Table 4), which is higher than the κ = 0.51
inter-human agreement reported by Gabriel et al. (2022) in their original paper. In fact,
for 8 of 17 tasks in Table 4, or 47% of classification tasks, models achieve moderate
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Table 3
Zero-shot classification results across our selected CSS benchmark tasks. All tasks are evaluated
with macro F-1, which is averaged across 5 prompt permutations for zero-shot models.
Supervised baseline results are averaged over 3 random seeds. Best zero-shot models are in
green . A dash indicates a model did not follow instructions.

Data
Model

Baselines FLAN-T5 FLAN text-001 text-002 text-003 Chat

Rand Finetune Small Base Large XL XXL UL2 Ada Babb. Curie Dav. Davinci Davinci GPT3.5 GPT4

Utterance Level Tasks

Dialect 3.3 3.0 0.2 4.5 23.4 24.8 30.3 32.9 0.5 0.5 1.2 9.1 17.1 14.7 11.7 23.2

Emotion 16.7 71.6 19.8 63.8 69.7 65.7 66.2 70.8 6.4 4.9 6.6 19.7 36.8 44.0 47.1 50.6

Figurative 25.0 99.2 16.6 23.2 18.0 32.2 53.2 62.3 10.0 15.2 10.0 19.4 45.6 57.8 48.6 17.5

Humor 49.5 73.1 51.8 37.1 54.9 56.9 29.9 56.8 38.7 33.3 34.7 29.2 29.7 33.0 43.3 61.3

Ideology 33.3 64.8 18.6 23.7 43.0 47.6 53.1 46.4 39.7 25.1 25.2 23.1 46.0 46.8 43.1 60.0

Impl. Hate 16.7 62.5 7.4 14.4 7.2 32.3 29.6 32.0 7.1 7.8 4.9 9.2 18.4 19.2 16.3 3.7

Misinfo 50.0 81.6 33.3 53.2 64.8 68.7 69.6 77.4 45.8 36.2 41.5 42.3 70.2 73.7 55.0 26.9

Persuasion 14.3 52.0 3.6 10.4 37.5 32.1 45.7 43.5 3.6 5.3 4.7 11.3 21.6 17.5 23.3 56.4

Sem. Chng. 50.0 62.3 33.5 41.0 56.9 52.0 36.3 41.6 32.8 38.9 41.3 35.7 41.9 37.4 44.2 21.2

Stance 33.3 36.1 25.2 36.6 42.2 43.2 49.1 48.1 18.1 17.7 17.2 35.6 46.4 41.3 48.0 76.0

Conversation Level Tasks

Discourse 14.3 49.6 4.2 21.5 33.6 37.8 50.6 39.6 6.6 9.6 4.3 11.4 35.1 36.4 35.4 16.7

Empathy 33.3 71.6 16.7 16.7 22.1 21.2 35.9 34.7 24.5 17.6 27.6 16.8 16.9 17.4 22.6 6.4

Persuasion 50.0 33.3 9.2 11.0 11.3 8.4 41.8 43.1 6.9 6.7 6.7 33.3 33.3 53.9 51.7 28.6

Politeness 33.3 75.8 22.4 42.4 44.7 57.2 51.9 53.4 16.7 17.1 33.9 22.1 33.1 39.4 51.1 59.7

Power 49.5 72.7 46.6 48.0 40.8 55.6 52.6 56.9 43.1 39.8 37.5 36.9 39.2 51.9 56.5 42.0

Toxicity 50.0 64.6 43.8 40.4 42.5 43.4 34.0 48.2 41.4 34.2 33.4 34.8 41.8 46.9 31.2 55.4

Document Level Tasks

Event Arg. 22.3 65.1 – – – – – – – – 8.6 8.6 21.6 22.9 22.3 23.0

Event Det. 0.4 75.8 9.8 7.0 1.0 10.9 41.8 50.6 29.8 47.3 47.4 44.4 48.8 52.4 51.3 14.8

Ideology 33.3 85.1 24.0 19.2 28.3 29.0 42.4 38.8 22.1 26.8 18.9 21.5 42.8 43.4 44.7 51.5

Tropes 36.9 – 1.7 8.4 13.7 14.6 19.0 28.6 7.7 12.8 16.7 15.2 16.3 26.6 36.9 44.9

Table 4
(Acc.) Best model F1 scores. F1 scores above 70% are bolded. (κ) Agreement scores between
zero-shot model classification and human gold labels. Out of ten utterance-level tasks, six have
at least moderate M and only two have poor agreement P . Three (50%) of the conversation
tasks have at least fair agreement F .

to good agreement scores ranging from κ = 0.40 to 0.65. These tasks also correspond
to the highest absolute performances on Stance (76.0 F1), Emotion (70.8 F1), Figurative
Language (62.3 F1), and utterance-level Ideology Classification (60.0 F1). In these cases of
high viability, we recommend that CSS researchers consider the DSL and augmented-annotator
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Figure 2
Breakdown of shared error types. For a representative subset of classification tasks, we conduct
an analysis of up to 50 shared errors across evaluated models. We focus specifically on the best
performing model in a class (e.g. the best variant of FLAN models or the best OpenAI model).
Plausible/gold errors occur when gold labels are incorrect or the model identifies a valid
secondary label. Neutral errors occur when a model over-predicts a category in a respective task
(metaphor in Figurative; surprise in Emotion; neutral in Politeness; and stereotypical in Implicit).

paradigms. Such strong performances are on tasks that either have objective ground truth
(fact checking for misinformation) or have labels with explicit colloquial definitions in
the pretraining data (emotional categories like anger are part of everyday vernacular;
political stances are well-documented and explicit in online forums). Our qualitative
error analysis in Section 5.1.2 will show that here, models are less likely to default to
neutral categories, and errors are more likely to come from annotation mistakes in the
gold dataset according to the author’s own manual error analysis (see lower neutral and
higher gold error in Figure 2).

Are zero-shot models ready to label text out-of-the-box? Zero-shot results rarely
exceed the carefully tuned supervised RoBERTa baselines in Table 3. However, the
best observed performances here match that of classifiers used in published studies
on stance detection (67.8 F1; Zarrella and Marsh 2016), COVID-19 vaccination opinions
(Cotfas et al. 2021), political opinions (Siddiqua, Chy, and Aono 2019), and debates (Lai
et al. 2020). In such scenarios, zero-shot models could offer a data-efficient alternative to fine-
tuned models by removing the need for expensive training sets. Humans could focus all
of their efforts on validating LLM outputs and tuning prompts (Section 4.2) rather than
coding unstructured text. However, we encourage practitioners to proceed cautiously,
especially in sensitive domains, and we recommend human-in-the-loop methods to
mitigate bias and risk. See Section 7.7 and Section 7.8 for further discussion.

It is important to consider that LLM performance could be unusably poor for some
CSS tasks. For a non-negligible subset of tasks we considered, LLMs have poor agree-
ment (5/17 = 29.5%), and here social scientists might not consider zero-shot annotation
augmentation via LLMs. On these poor agreement tasks, LLM absolute performance
is not significantly better than random guessing: see 56.9 F1 vs 50 Random on Semantic
Change; 35.9 F1 vs 33.3 Random on Empathy; 53.9 F1 vs 50 Random on conversation-level
Persuasion; and 55.4 F1 vs 50 Random on Toxicity. Some of these low-performance tasks
like Event Argument Extraction are structurally complex and may require additional
engineering efforts. Others like Empathy and Tropes have challenging and subjective ex-
pert taxonomies whose semantics differ from definitions learned in model pretraining.
This is confirmed by our error analysis in Figure 2 where GPT3.5 often defaults to the
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neutral, more colloquially recognizable label stereotype (64% of errors) rather than use
a more taxonomy-specific label like white grievance. In Section 5.1.3, we test if few-shot
prompting can reduce misalignments between model and ground-truth definitions.

5.1.2 Zero-Shot Error Analysis. For a representative subset of classification tasks, we
conduct an analysis of shared errors across evaluated models. We focus specifically on
the best performing model in a class (e.g., the best variant of FLAN models or the best
OpenAI model). Finally, in Figure 2 we break down the error types for gpt-3.5-turbo.

Figurative Language. We sample all 29 cases in which every model was incorrect. In just
under half of these cases (14/29), all models agreed on an incorrect answer, which we
call a unanimous error. Out of fourteen unanimous errors, the models were at least
partially correct four times, which we call a plausible/gold error (see Figure 2). There
was one mistaken gold label and three cases of correctly labeled similes nested inside
the predicted sarcasm. Of the remaining 10 unanimous errors, 3 were idioms mistaken
as metaphors, and 7 were similes classified with the more general metaphor label. For
humans, this is a common error, but for models, this is surprising, since similes should
have easy keyword signals “as” and “like.” The baseline method was likely able to
exploit these signals to achieve a higher accuracy.

In 5 errors, all models disagreed and missed the intended sarcasm label. In another
5 error cases, only UL2 and text-davinci-003 agreed on the correct label, but the
dataset was mislabeled, with four idioms marked wrongly as metaphors and one simile
marked as an idiom. In the remaining 5 errors, ChatGPT showed a preference for the
most generic label and predicted metaphor.

Emotion Recognition. We sample 50 cases where all models differed from the gold labels.
Unlike Figurative Language, a minority of examples had the same mismatch across
models (9/50). However, a closer analysis of individual errors yields a surprising result:
at least 18 of 50 examples across all evaluated models were judged as gold mislabels.
Additionally, for FLAN-UL2 and ChatGPT, 17 of 50 and 15 of 50 predictions, respec-
tively, could be considered as valid—even if they differed from the gold label.6

Moving to true negatives, we observe that DV2 makes the most errors (28/50) that
cannot be categorized as a gold mislabel, while UL2 (17/20) and ChatGPT (19/20) make
significantly fewer. The distribution of errors differ across each model type: ChatGPT,
for example, over-labels with surprise: especially instances with a true gold label of Joy
(8) or Love (5). On the other hand, UL2 mislabels Love as Joy frequently (9); and fear as
Sadness (4) or Surprise (4). Finally, davinci mislabels Sadness most frequently as Joy (9)
or anger/love (3 each).

Politeness Prediction. We first visualize the per-category accuracy of the different best-
performing models (FLAN-T5-XL, Text-davinci-002, and ChatGPT). We observe that:
(1) The XL model tends to predict more polite labels. It is more accurate in terms of
the utterances that were polite and neutral with 70.4% and 62.0% accuracy. Most errors
come from impolite cases (with a 45.2% accuracy). (2) davinci-002 performs best in
judging neutral utterances. davinci-002 is the most accurate for neutral utterances

6 For example, “i feel that the sweet team really accomplished that” can be considered both love - gold or joy -
predicted.
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(82.9% accuracy) while making significantly more errors for polite and impolite utter-
ances (43.9% and 40.9% accuracy, respectively). (3) ChatGPT performs worst in finding
impolite utterances while making more neutral predictions, with only 9.0% accuracy for
the impolite category, whereas it achieves 75.9% and 66.8% for neutral and polite cases.

We then consider the 81 of 498 cases where the three models are all making errors.
We find that the three models make the same errors in most cases (54/81) and davinci-

002 models make errors more similar to ChatGPT (17/81 cases). Among these common
error cases, we observe that 79 of 81 cases are related to the 1st and 2nd person mention
strategy (Danescu-Niculescu-Mizil et al. 2013) and all of them are direct or indirect
questions, while 38 of 81 are related to counterfactual modal and indicative modal
(Danescu-Niculescu-Mizil et al. 2013). This indicates that all three models struggle with
direct or indirect questions with 1st and 2nd person mentions.

Implicit Hate Classification. We first consider the confusion matrix and find that OpenAI
models are particularly oversensitive to the “stereotypical” class (71% and and 65%
false-positive rates from davinci-003 and ChatGPT, respectively). Our error analysis
of 50 samples shows that models fail to apply the definition: Stereotypical text must
associate the target with particular characteristics. Instead, models are more likely to
mark as stereotype any text that contains an identity term (86% of false-positives contain
identity terms). All models also fail to recognize strong phrasal signals, like “rip” or
“kill white people” for the white grievance (all 3/50 cases are errors), or violent terms
associated with threats. More subtle false-negatives require sociopolitical knowledge
(2/50) or understanding of humor (6/50). Other errors are examples where the model
identified a valid secondary hate category (5/50).

5.1.3 Few-Shot Viability. Zero-shot models may not be naturally aligned with the non-
standard or technical meanings of certain key terms in the social sciences. To address
this issue, we consider the viability of open-source FLAN models for few-shot clas-
sification. Specifically, we try 3-shot and 5-shot experiments with no further prompt
engineering. Table 5 shows that any improvements from these methods are spotty
and inconsistent. For some challenging tasks like Empathy and Persuasion that have
subjective definitions or non-standard taxonomies, few-shot learning can improve per-
formance in 2 and 5 out of 6 model sizes, respectively. However, these gains are small
and not widespread among other tasks. We conclude that additional engineering efforts
may be needed to achieve significant gains on CSS tasks via few-shot learning.

5.2 Model-Selection (RQ2)

CSS researchers should understand how their choice of model can decide the reliability
of zero-shot methods. Our results show that, for structured parsing tasks like event
extraction, it is best to use a code-instructed model like OpenAI’s gpt-3.5-turbo, while
for most classification tasks, open-source LLMs like FLAN-UL2 are best.

Model Size. LLMs generally follow scaling laws (Kaplan et al. 2020; Hoffmann et al.
2022) where performance increases with the size of the model and training data. We
investigate scaling laws in the two families of instruction-tuned LLMs: FLAN and
OpenAI. Results show larger open-sourced models are preferable.

FLAN’s CSS performance roughly matches Kaplan et al.’s predicted power-law
effects from pure model size. Figure 3 shows FLAN classification performances scaling
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Table 5
Few-shot classification does not uniformly improve performance across our selected CSS
benchmark tasks. All tasks are evaluated with macro F-1.
Model FLAN Small FLAN Base FLAN Large FLAN XL FLAN XXL FLAN UL2

Shot 0 3 5 0 3 5 0 3 5 0 3 5 0 3 5 0 3 5
Dialect 0.2 0.0 0.4 4.5 0.0 1.4 23.4 0.7 14.1 24.8 8.0 20.5 30.3 0.2 29.9 32.9 12.6 27.5
Emotion 19.8 10.6 10.1 63.8 42.7 42.0 69.7 67.6 67.4 65.7 62.1 62.5 66.2 61.8 57.4 70.8 70.0 69.8
Figurative 16.6 10.0 9.2 23.2 29.1 27.3 18.0 21.8 19.6 32.2 27.9 28.5 53.2 52.6 66.2 62.3 52.7 62.0
Humor 51.8 52.8 53.1 37.1 35.1 34.7 54.9 54.0 53.8 56.9 57.0 56.7 29.9 34.8 35.3 56.8 55.5 54.1
Ideology 18.6 16.7 24.0 23.7 22.6 38.3 43.0 47.3 45.5 47.6 48.8 50.4 53.1 52.9 57.7 46.4 36.9 51.5
Impl. Hate 7.4 6.8 6.2 14.4 21.1 7.4 7.2 9.3 4.7 32.3 28.5 34.6 29.6 31.6 35.1 32.0 29.5 25.9
Misinfo 33.3 33.3 33.3 53.2 45.3 59.7 64.8 64.8 64.2 68.7 67.2 69.7 69.6 74.9 74.4 77.4 53.7 76.4
Persuasion 3.6 3.6 3.6 10.4 10.8 7.3 37.5 39.0 37.7 32.1 44.3 41.8 45.7 44.6 48.6 43.5 42.2 40.1
Sem. Chng. 33.5 33.3 34.0 41.0 35.7 41.7 56.9 48.8 60.4 52.0 40.8 35.6 36.3 34.0 33.3 41.6 62.5 34.6
Stance 25.2 16.7 29.6 36.6 18.1 36.6 42.2 41.8 39.8 43.2 52.1 46.2 49.1 46.0 48.7 48.1 55.6 54.7
Discourse 4.2 4.0 7.5 21.5 18.1 20.7 33.6 3.6 34.6 37.8 3.6 38.0 50.6 3.6 43.4 39.6 3.6 39.1
Empathy 16.7 16.7 16.7 16.7 16.7 16.7 22.1 16.7 17.1 21.2 30.4 22.8 35.9 29.8 28.2 34.7 41.5 39.6
Persuasion 9.2 55.9 45.0 11.0 55.0 48.7 11.3 54.6 51.7 8.4 42.8 43.8 41.8 38.8 35.2 43.1 44.9 46.1
Politeness 22.4 16.7 20.1 42.4 23.9 35.4 44.7 44.5 51.9 57.2 27.7 50.4 51.9 44.2 50.3 53.4 43.6 53.9
Power 46.6 44.5 33.3 48.0 39.8 41.4 40.8 45.5 43.5 55.6 58.9 60.2 52.6 52.0 62.6 56.9 57.2 57.5
Toxicity 43.8 46.7 33.3 40.4 34.7 54.4 42.5 34.7 36.7 43.4 38.7 49.2 34.0 33.3 35.1 48.2 44.7 52.5
Ideology 24.0 16.7 19.2 19.2 16.6 21.3 28.3 17.0 17.9 29.0 31.7 27.0 42.4 48.5 47.9 38.8 38.9 39.7
Tropes 1.7 5.1 3.4 8.4 5.1 3.4 13.7 10.0 11.6 14.6 8.4 10.0 19.0 8.4 6.8 28.6 27.3 24.6
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Figure 3
Effects of scaling on the mean zero-shot performance on our CSS benchmark tasks. FLAN
models and davinci-001/002 are instruction fine-tuned. davinci-003 and gpt-3.5-turbo are
instruction fine-tuned and refined with Reinforcement Learning from Human Feedback. GPT
Parameter counts reported based on approximates.

nearly logarithmically with the parameter count. With each order of magnitude size
increase, the median average task improvement in FLAN models is 5.0 absolute per-
centage points. All FLAN-T5 models use the same stable corpus, pretraining objective,
and architecture, which gives us a controlled environment to observe stable scaling
laws.
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OpenAI’s GPT-3 001 models, on the other hand, do not monotonically benefit
from scaling.7 There is minimal performance improvement from ada to davinci-001,
despite the three orders of magnitude increase in size. Similarly, we observe little benefit
from the trillion-parameter GPT-4 over the hundred-billion-parameter GPT-3.5-turbo.
Instead, the greatest performance improvements come from variations in pretraining,
fine-tuning, and reinforcement learning.

Pretraining & Instruction Fine-tuning. Besides scale, two key factors play a major role
in model performance: pretraining data and instruction fine-tuning. Pretraining data is
the raw text upon which an LLM learns to model the general generative process of
language. Instruction fine-tuning refines the raw LLM to perform specific tasks based
on human-written instructions.

OpenAI’s davinci models significantly benefit from pretraining and instruction
fine-tuning tricks. For classification tasks (Table 3), we see an outsized increase in CSS
performance (↑ absolute 11 pct. pts.) moving from davinci-001 to davinci-002, larger
than any performance increase from scale alone. Both davinci-001 and davinci-002

use the same supervised instruction fine-tuning strategy, but davinci-002 is based
on OpenAI’s base-code model, which had access to a larger set of instruction fine-
tuning data. Most importantly, davinci-002 was pre-trained on both text and code. This
difference benefits structured, JSON-formatted tasks like Event Argument Extraction.
While davinci-001 often fails to generate JSON, davinci-002 succeeds with markedly
improved performance (+13.0 F1).

Learning From Human Feedback. We see that RLHF can improve LLM performance on CSS
classification tasks. RLHF has been lauded as the major catalyst behind the success of
instruction-following models (Ouyang et al. 2022), and here we see text-davinci-

003 and gpt-3.5-turbo (with RLHF) improves the average F1 of text-davinci-002
(without RLHF) by 3.5 absolute points.

5.3 Domain-Utility (RQ3)

The survey and taxonomy of social science need in Section 2 allows us to understand
whether the utility of LLMs is limited to certain domains or certain data types. To do
so, we partition all classification results from Table 3 into bins corresponding to the aca-
demic field most impacted by the task.8 Although we recognize the multi-disciplinary
utility of all tasks, this type of 1:1 organization is appropriate for understanding the
academic scope of our results. We acknowledge that the partitioning and selection of
the dataset influence the performance distributions that we observe. We urge readers to
interpret the results with caution and focus on broader conclusions rather than the fine
numerical details of these distributions.

The box plot in Figure 4 shows that field-specific performances significantly over-
lap. Thus overall, we do not observe a strong bias against or proclivity for a particular field of

7 This analysis relies on estimates which combine community estimates, the OpenAI research
documentation, and the assumption that all models named or “improved” from davinci have the same
parameter counts. These estimates may be incorrect, as hypothesized by other community estimates. This
is a limitation of research on these models as exact model size and training data are a trade secret of
OpenAI.

8 This partitioning follows Figure 1, with stance and ideology detection in the political science bin and
dialect feature classification under linguistics, for example.
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Figure 4
(Left) Task performance by field of study. Significant overlap in the distributions suggests that
neither high nor low performance is exclusive to any particular discipline. Caution: The
distributions depend on the particular choices of this study, which datasets to select, and how to
partition them.
(Right) Task performance by level of analysis. Document-level tasks are challenging for their
input length and complexity, and this is reflected in their F1 scores all near or below 50%.
Utterance and conversation-level task performance varies also with the complexity of the task.

study. In political science, we see the highest overall performance on misinformation de-
tection (F1 = 77.4) and much lower performance on implicit hate detection (F1 = 32.3).
For psychology, we observe high performance on emotion detection (F1 = 70.8) and
low performance on empathy detection (F1 = 35.9). Performances span the full range of
disciplines. This suggests that performance is not tied to academic discipline.

In terms of data type, Figure 4 suggests that performance may be more closely deter-
mined by the complexity of the input. In particular, documents encode complex sequences
of ideas or temporal events, and overall, the two lowest task performances are on the
document-level tasks: character trope classification and event argument extraction. All
other document-level accuracies are at or below 50%. The most challenging utterance
and conversation-level tasks are also a function of their label space complexity. Implicit
hate (F1 = 32.3), empathy (F1 = 35.9), and dialect feature (F1 = 32.9) annotations are
expert-labeled on a subtle theoretical taxonomy.

6. Generation Results

In this section, we answer RQ4: Are prompted LLMs useful for generatively implementing
theories and explaining social scientific constructs with text? Will generative models replace
or augment human analysis? To answer this question, we rely on the human evaluation
setup described in Section 4.4. Note that FLAN models are excluded from all evaluation
tables because FLAN models failed to follow instructions by manual inspection. Instead,
we evaluate across the OpenAI suite.

Human Scoring Evaluation. According to the domain experts in Table 6, leading genera-
tive models can produce text of a quality that matches or exceeds that of human gold
references. For Aspect-Based Emotion Summarization, Misinformation Explanation,
and Social Bias Inference, gpt-3.5-turbo produce, on average, more domain-faithful,
coherent, and fluent text than both gold references and the fine-tuned baseline. For
Positive Reframing and Figurative Language explanation, text-davinci-003 match the
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Table 6
Expert scoring evaluations for zero-shot generation tasks show that leading generative models
(davinci-003, GPT 3.5) can match or exceed the faithfulness, relevance, coherence, and fluency
of both fine-tuned models (Baseline) and gold references (Human). All scores are average ratings
on 1-5 Likert scales. Best models are in green followed by blue . Marks for + and − show
performance significantly better or worse than human (P < .05) by Paired Bootstrap.

gold-standard levels of faithfulness, relevance, coherence, and fluency, again outper-
forming the fine-tuned baseline. For generation performance, scale matters, as smaller
models fail to produce explanations and summaries that are faithful to the task specifica-
tions, especially in COVIDET, FLUTE, and SBIC, where text-ada-001 earns faithfulness
scores of less than 2 out of 5 on average. With scale, however, LLMs are capable of
generating useful, relevant, coherent, and fluent explanations and summaries of underlying
social science constructs.

Human Ranking Evaluation. According to the authors’ ranking evaluations in Table 7,
prompted LLMs produce helpful and informative text in all five generation tasks. Model
generations outrank the dataset’s gold human reference at least 38% of the time. The

265



Computational Linguistics Volume 50, Number 1

Table 7
Ranking evaluations for zero-shot generation tasks give the proportion of all pairwise rankings
where authors unanimously ranked the model’s generation as more accurate or preferable to a
gold-standard explanation drawn from the dataset. Best models are in green and runner-ups are
in blue .

% Model Preferred Over Gold Annotations
Model MRF FLUTE SBIC Reframing COVIDET
Baseline 31.2% 4.6% 16.5% 45.0% 37.5%
ada-001 17.6% 1.7% 11.8% 0.0% 23.5%
babbage-001 29.4% 6.7% 29.4% 0.0% 23.5%
curie-001 29.4% 1.7% 32.4% 11.5% 41.2%
davinci-001 21.4% 6.2% 39.0% 30.4% 50.0%
davinci-002 21.4% 25.0% 29.3% 10.0% 37.5%
davinci-003 38.9% 47.0% 50.0% 48.5% 59.1%
GPT 3.5 27.8% 37.9% 65.9% 56.1% 68.2%
GPT 4 36.4% 51.5% 60.6% 39.4% 36.4%

best models approach parity with humans—a near 50-50 coin toss to decide which
is preferred. Furthermore, we see significant performance benefits from both RLHF
models, gpt-3.5-turbo and text-davinci-003. Unlike classification (Section 5.2), our
selected generation tasks seem to systematically benefit from human feedback.

Despite strong performances, no model substantially outperforms human anno-
tation. This suggests that current LLMs cannot fully replace human analysis. Still, given
LLM’s performance parity with humans, the results suggest one avenue for human-
AI collaboration: instead of coding text with summary explanations from scratch, re-
searchers and annotators could apply minor edits to correct model generations.9 The
results in Table 7 suggest that, for every five model generations, 2 to 3 of these out-
puts would demand no additional annotator effort. If implemented successfully, this
partnership could significantly increase the efficiency of the social scientist’s research
pipeline. However, we leave it to future work in HCI to determine the plausibility of
this partnership and the degree to which it might reduce annotators’ cognitive load on
exploratory analysis and free-coding tasks.

As a tradeoff for LLM’s efficiency, researchers will face the burden of manually validating
generative outputs. It is well-known that automatic performance metrics fail to capture
human preferences (Goyal, Li, and Durrett 2022; Liang et al. 2022). In fact, we found
that BLEU, BERTScore, and BLEURT, which rely on comparisons to human written
ground truth, all produced uninterpretable scores for generation tasks. This highlights
a fundamental challenge for evaluation of generation systems in CSS, especially if zero-
shot performance continues to improve. As zero-shot models approach or outperform
the quality of the gold-reference generations, reference-based scoring becomes an invalid
construct for measuring models’ true utility (Raji et al. 2021), even if we assume the

9 Note that machine generated explanations might be limited in terms of their diversity. Although human
validation can help refine these machine outputs, such a process may not be able to introduce novel edits
or perspectives.
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semantic similarity metrics are ideal. This motivates our use of reference-free expert
evaluation of generations, that is, asking expert annotators which generation is more
accurate with regard to the input. However, this alternative is limited by both cost and
reproducibility concerns (Karpinska, Akoury, and Iyyer 2021). There is a clear need for
new metrics and procedures to quantify model utility for CSS.

7. Discussion

This work presents a comprehensive evaluation of LLMs on a representative suite of
CSS tasks. We contribute a robust evaluation pipeline, which allows us to benchmark
performance alongside supervised baselines on a wide range of tasks. Our research
questions and empirical results are designed to help CSS researchers make decisions
about when LLMs are suitable and which models are best suited for different research
needs. In summary, we find that LLMs can augment but not entirely replace the traditional
CSS research pipeline.

More concretely, we make the following recommendations to CSS researchers:

1. Integrate LLMs-in-the-loop to transform large-scale data labeling.

2. Prioritize open-source LLMs for classification

3. Prioritize faithfulness, relevance, coherence, and fluency in your
generations by opting for larger instruction-tuned models that have
learned human preferences.

4. Investigate how LLMs produce new CSS paradigms built on the
multipurpose capabilities of LLMs in the long term.

In the following subsections, we more specifically detail how annotation fits into
the CSS pipeline (Section 7.1), how LLMs can augment annotation (Section 7.2), which
LLMs we recommend for this purpose (Section 7.3), and the opportunities LLMs expose
for new research paradigms (Section 7.4 and Section 7.5).

7.1 How Annotation Fits Into CSS

Social scientists are not often interested in classification labels or generative codes
merely for their own sake. Labeled text is almost always used to explain a wider phe-
nomenon using downstream inferential statistics such as regression. To ensure a valid
downstream inference, any estimators of the underlying construct need to be asymptot-
ically unbiased and allow for the computation of valid confidence intervals. In a study
that follows up our own, Egami et al. (2023) demonstrate that even the most accurate of
LLM annotations will produce biased estimates and invalid confidence intervals when
they are merely averaged. However, Egami et al. (2023) propose a method called DSL
which they use for computing unbiased estimators for prevalence estimation on each of
our 17 classification tasks. Using FLAN-UL2 pseudo-labels and only a handful of gold-
labeled instances, they find that it is possible to compute unbiased regressions, even for
tasks with low accuracy from UL2. With only 25 gold annotations, DSL can compute
confidence intervals that have >86% correct coverage for all of our classification tasks
including those with the lowest performance from LLM pseudo-labels.
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7.2 How LLMs Can Augment Annotation

Our work shows that current LLMs perform well enough to augment the CSS annotation
pipeline and thus reduce the need for human labor on some tasks. Section 5.1 shows that
an LLM annotator yields fair to strong agreement with humans on 12 out of 17 clas-
sification tasks. However, LLMs are not a wholesale replacement for human annotators.
Even the best LLMs exhibit unusably low performance on some CSS tasks. Ensembling
prediction does not mitigate this label corruption as LLMs demonstrate high internal
agreement, even when inaccurate (Gilardi, Alizadeh, and Kubli 2023). Overconfident
models, if left unchecked, distort the conclusions of CSS research and subsequently mis-
lead policy and social actions taken in response. Human validation is key to avoiding a
replication crisis in CSS caused by LLM hallucinations and inaccuracies.

Instead, we advocate that CSS researchers integrate LLMs with human annotation, as
illustrated in Figure 5. When a LLM matches human levels of agreement, it can be
used as one of multiple labelers. It is possible from such methods to produce unbiased
estimators. The estimation methods of Chaganty, Mussmann, and Liang (2018) are
provably optimal, and provide these unbiased estimators with 7–13% monetary savings
by leveraging LLM pseudo-labels.

Moving forward, LLMs can serve as a flywheel for dataset collection. Prompted
LLMs consistently perform significantly better than chance, providing imperfect labels
at low cost. Annotation schemes developed to iteratively improve imperfect data—such
as weak supervision (Ratner et al. 2017), targeted data cleaning (Chen, Yu, and Bowman
2022), and active learning (Yuan, Lin, and Boyd-Graber 2020; Li et al. 2022)—avoid
LLM pitfalls by allowing human validation to refine the original model. This creates
a virtuous cycle which exploits the strengths of LLMs to focus human expertise where
it is most needed (Kiela et al. 2021).

Our results show that LLMs are even stronger at generation tasks, being rated superior
to human gold annotations over 38% of the time in all 5 tasks we evaluate. LLMs can
already generate syntactically cohesive and stylistically consistent text, and as we have
shown, the best generations are also highly relevant and faithful to core CSS tasks.
Human expertise can be used to further curate outputs according to domain-specific

Persimmon kills coronavirus, according to the study by Japanese scientists.

Misinformation Detection Example

LLM Augmented

✗✗ ✓

✗

✗

?

✓

Traditional

Figure 5
Human-AI Collaboration can improve the efficiency and reliability of text analysis. In this
misinformation example, the LLM helps scale up annotation while reducing variance in the gold
labels. Human annotation serves as validation for model-provided annotations.
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accuracy and quality metrics. Dataset construction through human curation of LLM gen-
erations has already emerged in recent NLP works on decision explanation (Wiegreffe
et al. 2022), model error identification (Ribeiro and Lundberg 2022), and even to build
the figurative language benchmark used in this work (Chakrabarty et al. 2022).

We recommend that CSS researchers consider the use of LLMs as the foundation of
such annotation procedures, and that future studies measure the degree to which this
strategy improves annotation efficiency as we suspect. If the anticipated efficiency is
achieved, CSS researchers should reinvest savings to train expert annotators, reversing
the trends of replacing experts with crowdworkers due to cost (Snow et al. 2008). By
doing so, LLMs could enable data labeling procedures that more deeply benefit from
the non-computational expertise of the social scientists whose theories we build upon.

7.3 When To Use What LLM

We hope these results help CSS researchers to understand LLM alternatives for their use
cases. Our general prompt guidelines allow us to quickly design functional prompts for
many models. When looking to incorporate LLMs in their work, CSS researchers should
consider the advantages and disadvantages of open and closed-source models.

For CSS classification, our work shows that open-source models like FLAN are as capable
as state-of-the-art closed-source LLMs from OpenAI. We recommend that researchers who
already have access to GPUs capable of running these models prefer open-source mod-
els. For continuous monitoring and enormous-scale analysis, the low marginal cost of
these models could make them price-advantageous. For CSS researchers with expertise,
open-source LLMs have the added benefit of being able to be fine-tuned on labeled data
and constrained programatically for more predictable behavior. At this time, it is not
possible to further fine-tune all of OpenAI’s instruction-tuned models.

For those without existing hardware infrastructure, proprietary APIs appear to be a
cost-efficient option. Based on current cloud pricing,10 the hardware necessary to run
FLAN-T5-XXL costs $170 per day—the equivalent of processing ∼50 million words
with gpt-3.5-turbo.11 In most cases, gpt-3.5-turbo is more cost-efficient and has a
lower operational overhead for hardware-constrained research groups.

For generation tasks, the results are clear-cut. Even the largest open-source models
failed to generate meaningful responses for CSS tasks. Even when labeled data is avail-
able, the best proprietary models outperform fine-tuned baselines consistently and approach
parity with gold human annotations when evaluated by crowdworkers. For CSS experts
looking to generate interpretations or explanations of data, gpt-3.5-turbo is the clear
leading LLM by both price and performance. No matter which modeling decision is
made, practitioners should keep the limitations of natural language generation in mind,
understanding that explanations are not causal and recognizing the risks that come with
model errors and hallucinations (see Section 7.8).

Our work shows that all LLMs struggle most with conversational and full document
data. Also, LLMs currently lack clear cross-document reasoning capabilities, limiting ex-
tremely common CSS applications like topic modeling. For CSS subfields that often
study these discourse types—sociology, literature, and psychology—LLMs have major
limitations and are unlikely to have major immediate impact. NLP researchers who
aim to improve existing LLMs to empower more CSS tasks should study the unique

10 Google Cloud FLAN hosting cost. https://medium.com/google-cloud/deploy-flan-t5-xxl-on
-vertex-ai-prediction-579953afdc88.

11 OpenAI pricing. https://openai.com/pricing.
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technical challenges of conversations, long documents, and cross-document reasoning
(Beltagy, Peters, and Cohan 2020; Caciularu et al. 2021; Yu et al. 2021).

7.4 Blending CSS Paradigms

The few-shot (Brown et al. 2020) and zero-shot capabilities (Ouyang et al. 2022) of LLMs
blur the traditional line between supervised and unsupervised ML methods for the social sci-
ences. Historically, supervised methods invest in labeled data guided by existing theory
to develop a trained model. This model is then used to classify text at scale to gather
evidence for the causal effects surrounding the theory. By comparison, unsupervised
methods like topic modeling often condense large amounts of information to help
researchers discover new relationships, which develop or refine social theories (Evans
and Aceves 2016).

The ability of LLMs to follow instructions and interpret complex tasks is rapidly
advancing, with major new models even within the course of this work (OpenAI
2023). Beyond annotation, LLMs have multi-purpose capabilities to retrieve, label, and
condense relevant information at scale. We believe that this can blend the boundaries be-
tween supervised and unsupervised paradigms. Rather than using separate paradigms
to develop and test theories, a single tool can be used to develop working hypotheses,
using generated and summarized data, and test hypotheses, labeling human samples
flexibly with low-cost classification capabilities. We believe CSS researchers should use
the multi-functionality of LLMs to create new paradigms of research for their fields.

Simulation. An emerging example of such innovation in CSS is the use of LLMs as
simulated sample populations. Game theorists have used rule-based utility functions
to develop hypotheses about the causes of social phenomena (Schelling 1971; Easley
and Kleinberg 2010) and to predict the effects of policy changes (Shubik 1982; Kleinberg
et al. 2018). However, simulations are limited by the expressiveness of utility functions
(Ellsberg 1961; Machina 1987). LLMs hold a great potential to provide more power-
ful simulations for CSS (Bail 2023), as they replicate human biases without explicit
conditioning (Jones and Steinhardt 2022; Koralus and Wang-Maścianica 2023). Recent
work leverages this capacity to simulate social computing systems (Park et al. 2022),
community and their members’ interactions (Park et al. 2023), public opinion (Argyle
et al. 2022; Chu et al. 2023), and subjective experience description (Argyle et al. 2022).

However, there are dangers and uncertainties in this area as noted in these works.
Since social systems evolve unpredictably (Salganik, Dodds, and Watts 2006), simulated
samples inherently have limited predictive and explanatory power. While utility-based
simulations have similar limitations, their assumptions are explicit unlike the opaque
model of human behavior an LLM provides. Additionally, current models exhibit
higher homogeneity of opinions than humans (Argyle et al. 2022; Santurkar et al. 2023).
Combining LLMs with true human samples is essential to avoid an algorithmic mono-
culture and could lead to fragile findings covering only the limited perspectives repre-
sented (Kleinberg and Raghavan 2021; Bommasani et al. 2022).

7.5 The Need for a New Evaluation Paradigm

Evaluation will need to adapt if blended methods create a new CSS paradigm.
Accuracy-based metrics were ideal for fixed-taxonomy classification tasks in the era
of NLP benchmarking. Similarly, word-overlap metrics made sense for natural lan-
guage generation tasks in which the gold reference was well-defined (e.g., translation).

270



Ziems et al. Can LLMs Transform CSS?

However, open-ended coding and CSS explanation objectives follow neither a pre-
defined taxonomy nor a regular output template. For more open-ended data explo-
ration tasks like topic modeling, held-out likelihood helped automatically measure the
predictive power of the model (Wallach et al. 2009), but predictiveness does not always
correlate with explainability (Shmueli et al. 2010), and these automatic metrics proved
to be at odds with human quality evaluations (Chang et al. 2009). In CSS, human
evaluations can be unreliable (Karpinska, Akoury, and Iyyer 2021). We observe this
directly in our work, as crowd work seems to provide unreliable quality metrics for
FLUTE, a nuanced generative task. New metrics are needed to capture the semantic
validity of free-form coding with LLMs as explanation-generators.

7.6 CSS Challenges for LLMs

As shown by our Section 5 results, LLMs face notable challenges that pervade the
computational social sciences. The first challenge comes from the subtle and non-
conventional language of expert taxonomies. Expert taxonomies contain technical
terms like the dialect feature copula omission (Section 3.1.1), plus specialized or nonstan-
dard definitions of colloquial terms, like the persuasive scarcity strategy (Section 3.1.8),
or white grievance in implicit hate (Section 3.1.4). LLMs may lack sufficient representa-
tions for such technical terms, as they may be absent from the pretraining data (Yao et al.
2021). How to teach LLMs to understand these social constructs deserves further tech-
nical attention. This is especially true for novel theoretical constructs that social scientists
may wish to define and study in collaboration with LLMs.

Unlike widely used NLP classification tasks, the challenge of expert taxonomies in
CSS is compounded by the size of the target label space, which, in CSS applications,
may contain upwards of 72 classes (see character tropes, Section 3.3.4). This challenges
transformer-based LLMs, which have relatively limited memory, finite processing win-
dows, and quadratic space complexity.

Large, complex, and nuanced annotation schemes may also introduce dependen-
cies among labels that are organized into multi-level hierarchies or richly constrained
schemas, as in many event argument extraction applications. Such complex structural
parsing tasks pose special challenges to the zero-shot prompting paradigm intro-
duced in this work since prompted models often struggle to generate consistent outputs
(Mishra, Tater, and Sankaranarayanan 2019). Our prompting best practices in Table 1
all help LLMs generate more consistent machine-readable outputs, but this challenge is
not fully solved for all CSS tasks.

Finally, computational social scientists study language, norms, beliefs, and political
structures that all change across time. To account for these distribution shifts, LLMs
will need an extremely high level of temporal grounding—knowledge and signals by
which to orient a text analysis in a particular place and time (Bommasani et al. 2021).
This is especially challenging wherever researchers are interested in rapid, synchronous
analysis of breaking events. It may be prohibitively expensive to frequently update LLM’s
knowledge of current events via continually training (Bender et al. 2021), and this
challenge will only be exacerbated as models continue to scale up.

7.7 Issues in Bias and Fairness

Bias. Researchers should weigh the benefits of applying prompting methods to CSS,
along with the limitations and risks of doing so. Most notably, LLMs are known to
amplify social biases and stereotypes (Sheng et al. 2021; Abid, Farooqi, and Zou 2021;
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Borchers et al. 2022; Lucy and Bamman 2021; Shaikh et al. 2022), as well as viewpoint
biases in subjective domains (Santurkar et al. 2023). These biases can emerge in open-
ended generation tasks like explanation and paraphrasing (Dhamala et al. 2021). The
performance of LLMs as tools for classification and parsing may vary systematically as
a function of demographic variation in the target population (Zhao et al. 2018). With
the datasets available, we were unable to perform a systematic analysis of biases and
performance discrepancies, but we urge researchers to carefully consider these risks in
downstream applications.

Risks Inherent to Proprietary LLMs. Researchers will often lack details on the selection,
filtering, and formatting of online corpora for training proprietary models like OpenAI’s
GPT-4. There are unique risks and privacy implications for those who employ these
models for research. One risk inherent in an obscured pre-training corpus is that we
can’t decompose the above issues of bias and social harm into their respective sources
for targeted mitigation. Especially with open-ended generative coding (Section 3.4),
unattributed biases could jeopardize the reliability and prosocial impact of downstream
scientific analyses. Such issues may also escape human review, as humans are prone to
falsely attribute factuality to texts that bear a more authoritative or expert style (Wu and
Aji 2023)—a style that modern proprietary LLMs have largely mastered. Furthermore,
black-box industrial APIs may not allow for targeted mitigation via fine-tuning.

Researchers who operate with closed-source industrial APIs may also be more
prone to privacy issues and legal disputes over intellectual property. Proprietary models
are known to replicate copyrighted materials and sensitive personally identifiable in-
formation (Carlini et al. 2021). Researchers who use these models may be unknowingly
accountable for knowledge based on false or missing attributions as well as private
personal information.

7.8 Limitations

Task Selection and Data Leakage. Our tasks do not represent an exhaustive list of all appli-
cation domains. Some highly sensitive domains like mental health (Nguyen et al. 2022),
which requires expert annotations, and cultural studies, which requires community-
specific knowledge, are rife with additional challenges and ethical concerns. These are
largely outside the scope of the current study. More broadly, LLMs should not be used to
give legal or medical advice, prescribe or diagnose illness, or interfere with democratic
processes (Solaiman and Dennison 2021). Finally, our task selection was limited by the
available data resources in the field, which is largely dominated by text in standard
dialects (Ziems et al. 2023) representing members of Western, Educated, Industrial, Rich,
and Democratic populations (WEIRD; Ignatow and Mihalcea 2016; Muthukrishna et al.
2020). Future studies should separately consider LLMs’ utility for cross-cultural CSS.

When evaluating LLMs, one notable concern is data leakage. Data from the test
set might have been seen by LLMs during the pre-training, and this would artificially
inflate test performances. This problem is especially concerning for closed-source or
proprietary models with undisclosed training sets. One mitigation strategy is to design
explicit prompts that force the model to forget the test set. Another strategy is to design
custom test sets from perturbations of existing data to more fairly evaluate models. We
leave this for future work.

Causality and Explanations. Explanations are important to social science (Shmueli et al.
2010; Hofman, Sharma, and Watts 2017; Yarkoni and Westfall 2017). In this work, we
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explored the predictive power of LLMs rather than causal explanations. Predictions
serve to expose and elaborate on the underlying social phenomena latent in a text. These
explicit phenomena can then be used as structured features for further causal analysis.

However, this may not be sufficient: Social scientists often seek causal theories
(DiMaggio 2015), or at least contrastive explanations, why P instead of Q (Miller 2019).
Because LLMs are not grounded in a causal model of the world (Bender et al. 2021),
they are not on their own reliable tools for mining causal relationships in text. We leave
it to future work to explore contrastive or causal explanations in LLMs.
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Hedström. 2018. Analytical sociology and
computational social science. Journal of
Computational Social Science, 1(1):3–14.
https://doi.org/10.1007/s42001-017
-0006-5, PubMed: 31930176

Kiela, Douwe, Max Bartolo, Yixin Nie,
Divyansh Kaushik, Atticus Geiger,
Zhengxuan Wu, Bertie Vidgen, Grusha
Prasad, Amanpreet Singh, Pratik Ringshia,
Zhiyi Ma, Tristan Thrush, Sebastian
Riedel, Zeerak Waseem, Pontus Stenetorp,
Robin Jia, Mohit Bansal, Christopher Potts,
and Adina Williams. 2021. Dynabench:
Rethinking benchmarking in NLP. In
Proceedings of the 2021 Conference of the
North American Chapter of the Association for

Computational Linguistics: Human Language
Technologies, pages 4110–4124. https://
doi.org/10.18653/v1/2021.naacl-main
.324

Kim, Tae Yeol, Deog-Ro Lee, and Noel Yuen
Shan Wong. 2016. Supervisor humor and
employee outcomes: The role of social
distance and affective trust in supervisor.
Journal of Business and Psychology,
31:125–139. https://doi.org/10.1007
/s10869-015-9406-9

Kim, Yoon, Yi-I Chiu, Kentaro Hanaki,
Darshan Hegde, and Slav Petrov. 2014.
Temporal analysis of language through
neural language models. In Proceedings of
the ACL 2014 Workshop on Language
Technologies and Computational Social
Science, pages 61–65. https://doi.org
/10.3115/v1/W14-2517

King, Gary and Will Lowe. 2003. An
automated information extraction tool for
international conflict data with
performance as good as human coders: A
rare events evaluation design. International
Organization, 57(3):617–642. https://
doi.org/10.1017/S0020818303573064

Kirby, Simon, Mike Dowman, and Thomas L.
Griffiths. 2007. Innateness and culture in
the evolution of language. Proceedings of
the National Academy of Sciences,
104(12):5241–5245. https://doi.org/10
.1073/pnas.0608222104, PubMed:
17360393

Kleinberg, Jon, Himabindu Lakkaraju, Jure
Leskovec, Jens Ludwig, and Sendhil
Mullainathan. 2018. Human decisions and
machine predictions. The Quarterly Journal
of Economics, 133(1):237–293.
https://doi.org/10.3386/w23180

Kleinberg, Jon and Manish Raghavan. 2021.
Algorithmic monoculture and social
welfare. Proceedings of the National Academy
of Sciences, 118(22):e2018340118. https://
doi.org/10.1073/pnas.2018340118,
PubMed: 34035166

Koralus, Philipp and Vincent
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