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This article shows that the universal generation problem for Optimality Theory (OT) is
PSPACE-complete. While prior work has shown that universal generation is at least NP-hard
and at most EXPSPACE-hard, our results place universal generation in between those two
classes, assuming that NP 6= PSPACE. We additionally show that when the number of con-
straints is bounded in advance, universal generation is at least NL-hard and at most NPNP-hard.
Our proofs rely on a close connection between OT and the intersection non-emptiness problem
for finite automata, which is PSPACE-complete in general and NL-complete when the number of
automata is bounded. Our analysis shows that constraint interaction is the main contributor to
the complexity of OT: The ability to factor transformations into simple, interacting constraints
allows OT to furnish compact descriptions of intricate phonological phenomena.

1. Introduction

Optimality Theory (OT; Prince and Smolensky 1993, 2004) is a constraint-based formal-
ism for describing mappings between strings. Its primary application lies in theoretical
phonology, where it has been used to explain the relationship between the underlying
representations of linguistic utterances (URs) and their surface representations (SRs).
According to OT phonology, SRs are the result of mutations applied to URs that remove
patterns deemed undesirable, or marked, by the grammar. An OT grammar consists
of a set of markedness constraints that identify the marked patterns to be removed,
along with a set of faithfulness constraints that require SRs to resemble the original
URs as much as possible. The constraints are gradient in the sense that some UR–SR
pairs may violate a constraint more than others, and they are ranked in the sense that
some constraints are more important than others. Each UR is mapped to the potential
SRs that violate the constraints the least, with higher-ranking constraints taking priority
over lower-ranking ones.

Like many approaches in social and behavioral sciences, OT casts the pronunciation
of utterances as a constrained optimization problem. Unlike rule-based treatments of
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phonological mappings (Chomsky and Halle 1968; Johnson 1970, 1972; Kaplan and Kay
1994), the OT framework does not provide any obvious algorithm for generating SRs
from URs. For this reason, the computational complexity of optimization has been a
topic of substantial interest in the formal analysis of OT. Prior work has shown that
the universal generation problem for OT (Heinz, Kobele, and Riggle 2009), where an
algorithm must generate an SR given a UR and a list of ranked constraints as input, is
NP-hard in the total size of the constraints (Eisner 1997, 2000b; Wareham 1998; Idsardi
2006), making it at least as hard as typical combinatorial optimization problems such as
the traveling salesperson problem. Assuming that P 6= NP, this result is commonly in-
terpreted to show that any algorithm that solves the universal generation problem must
require intensive resources, at least in the worst case. In practice, most implementations
of OT (e.g., Ellison 1994; Eisner 1997, 2000a; Riggle 2004; Gerdemann and Hulden 2012)
utilize exponential time and space, since they involve representing constraints as finite-
state machines and intersecting them using the construction of Rabin and Scott (1959).

This paper establishes a tight characterization of the complexity of universal gener-
ation. We show that, using the most general formulation of OT in the literature (Riggle
2004), universal generation can be carried out using polynomial space, and that veri-
fying the correctness of an SR is complete in the class of polynomial-space computable
decision problems. To be precise, this article proves the following two theorems.

Theorem 1
The problem of deciding whether an SR y optimally satisfies a list of ranked, finite-state
constraints 〈C1, C2, . . . , Cn〉 for a UR x is PSPACE-complete.

Theorem 2
There is a polynomial-space algorithm that takes a UR x and a list of ranked, finite-state
constraints 〈C1, C2, . . . , Cn〉 and outputs an SR y that optimally satisfies 〈C1, C2, . . . , Cn〉.
(That is, the relation that associates URs and constraint lists with optimal SRs is in
FPSPACE.)

Whereas prior work shows that universal generation is at least NP-hard and at most
EXPSPACE-hard, our result places universal generation in between those two complexity
classes, assuming that NP 6= PSPACE. To establish inclusion in PSPACE, we show
that the automaton-intersection-based techniques used in OT implementations can be
executed without writing down the intersected automaton or the SR in memory. To
establish PSPACE-hardness, we show that the intersection non-emptiness problem for
finite-state automata, a PSPACE-complete problem (Kozen 1977), can be reduced to
universal generation for an OT grammar with only markedness constraints. In addition
to these main results, we also show that universal generation is at least NL-hard and at
most NPNP-hard when the number of constraints in the grammar is fixed a priori.

The techniques and algorithms featured in our proofs identify several features of
OT that contribute to the complexity of universal generation. These features include
the ability of OT to generate exponentially long SRs, the ability of constraints to as-
sign exponentially large violation numbers, and the logical complexity of the concept
of optimization. By far the most significant contributor to computational complexity,
however, is the ability of OT to produce concise explanations of phonological phe-
nomena, where intricate UR–SR transformations are factored into simple but conflict-
ing requirements on well-formedness and communicative transparency. Our analyses
show that PSPACE-complete complexity is the price paid by OT in exchange for this
theoretical elegance.
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2. Preliminaries

We begin by introducing notation and reviewing definitions from automata theory and
complexity theory. Although we state definitions and theorems directly relevant to
this paper, we assume familiarity with basic concepts such as finite-state machines,
Turing machines, and time and space complexity. For readers less familiar with these
concepts, an accessible introduction is provided by Sipser (2013).

Let Σ and Γ denote finite alphabets. For an alphabet Σ, Σ∗ is the set of strings over
Σ. The length of a string x ∈ Σ∗ is denoted by |x|, and the empty string ε the unique
string of length 0. Σε is the set Σ ∪ {ε}. We refer to subsets of Σ∗ as languages. If φ
and ψ are symbols, strings, or languages, then φψ is the (elementwise) concatenation
of φ with ψ, φk is the concatenation of k copies of φ, and φ∗ is the closure of φ
under concatenation. When appropriate, we identify alphabet symbols with strings of
length 1, and individual strings with singleton languages.

We say that a set A is a monoid under ? if ? is a binary operation on A such that

• A is closed under ? (i.e., for all a, b ∈ A, a ? b ∈ A);

• ? is associative (i.e., for all a, b, c ∈ A, (a ? b) ? c = a ? (b ? c)); and

• ? has an identity element e ∈ A (i.e., there exists e ∈ A such that
a ? e = e ? a = a for all a ∈ A).

We consider two kinds of monoids in this paper. For an alphabet Σ, the free monoid
over Σ is the monoid Σ∗ under concatenation; and the natural numbers are the monoid
N under addition, where N is the set of non-negative integers.

2.1 Automata Theory

In this article, we deal with two kinds of finite-state machines: finite-state automata and
finite-state transducers. We use the following definitions for these machines. We assume
that all machines are deterministic.

Definition 1 (Automata)
A deterministic finite-state automaton (DFA) is a tuple M = 〈Q, Σ, q0, F,→〉, where

• Q is the finite set of states;

• Σ is the input alphabet;

• q0 ∈ Q is the start state;

• F ⊆ Q is the set of accept states; and

• → : Q× Σ→ Q is the transition function.

We write q a−→ r to mean that →(q, a) = r. For x = x1x2 . . . xn ∈ Σ∗, we say that M
accepts x and write x ∈M if there exist states q1, q2, . . . , qn ∈ Q, with qn ∈ F, such that

q0
x1−→ q1

x2−→ q2
x3−→ . . .

xn−1−−→ qn−1
xn−→ qn
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Otherwise, we say that M rejects x, and write x /∈M. We identify M with the set of
strings accepted by M. We say that a language is regular if it is accepted by a DFA. A
set of numbers A ⊆ N is regular if the language {ai | i ∈ A} ⊆ a∗ is regular.

We assume that finite-state transducers take strings as input, but may produce out-
put from an arbitrary monoid. Although our transducers are deterministic, we assume
that each input is padded with an implicit end-of-string marker, giving the transducer
an opportunity to produce output after the entire input has been read. We do not allow
our transducers to reject inputs: they must produce an output for every possible input.

Definition 2 (Transducers)
A subsequential finite-state transducer (SFST) is a tuple T = 〈Q, A, B, q0,→, #〉, where

• Q is the finite set of states;

• A, the input monoid, is the free monoid over some alphabet Σ;

• B, the output monoid, is a monoid under some operation ?;

• q0 ∈ Q is the start state;

• → : Q× Σ→ B×Q is the intermediate transition function; and

• # : Q→ B is the final transition function.

We write q a−→
b

r to mean that→(q, a) = 〈b, r〉, and we may optionally write q −→
b

# to mean

that #(q) = b. For x = x1x2 . . . xn ∈ A = Σ∗, we say that T outputs y on input x and write
T(x) = y if there exist states q1, q2, . . . , qn and elements y1, y2, . . . , yn+1 ∈ B such that

q0
x1−→
y1

q1
x2−→
y2

q2
x3−→
y3
. . .

xn−1−−→
yn−1

qn−1
xn−→
yn

qn −−→yn+1
#

and y = y1 ? y2 ? · · · ? yn+1. We identify T with the function mapping strings x ∈ Σ∗ to
outputs T(x) ∈ B. We say that a function is subsequential if it is computed by an SFST.

When T = 〈T1, T2, . . . , Tn〉 is a tuple of SFSTs with the same input monoid, we use
the notation T(x) to denote 〈T1(x), T2(x), . . . , Tn(x)〉.

2.2 Complexity Theory

As usual, we formalize algorithms as deterministic or nondeterministic Turing ma-
chines (DTMs and NTMs, respectively), but we abstract away from their exact defi-
nitions. We assume that all Turing machines have a read-only input tape, a read–write
work tape, and a write-only output tape, each of which uses the tape alphabet {0, 1}.
We assume that all DTMs and NTMs are write-once: Their output tape heads cannot
move left, and must move to the right immediately after writing a bit. We assume that
all mathematical objects φ are represented on the tapes as a bit string JφK ∈ {0, 1}∗. A
Turing machine computes a function f : {0, 1}∗ → {0, 1}∗ if, for every input x ∈ {0, 1}∗,
the machine halts with f (x) on the output tape after starting its computation with x
on the input tape and ε on the work and output tapes. A Turing machine decides a
language L ⊆ {0, 1}∗ if it computes the characteristic function 1L : {0, 1}∗ → {0, 1} of L.

86



Hao Universal Generation for OT Is PSPACE-Complete

We say that a Turing machine runs in polynomial (resp. linear, exponential) time if
its total number of computation steps is always polynomial (resp. linear, exponential)
in the length of its input. We say that a Turing machine runs in polynomial (resp.
logarithmic, linear, exponential) space if the size of the contents of its work tape is
always at most polynomial (resp. logarithmic, linear, exponential) in the length of its
input.

In this article, we deal with the following complexity classes.

• NL is the class of languages decidable by an NTM in logarithmic space.

• P is the class of languages decidable by a DTM in polynomial time.

• NP is the class of languages decidable by an NTM in polynomial time.

• coNP is the class of languages whose complements are in NP.

• NPNP is the class of languages decidable by an NTM in polynomial time
with oracle access to a language in NP or coNP (i.e., there is some
language L ∈ NP ∪ coNP such that the NTM is allowed to decide L in one
computational step).

• PSPACE is the class of languages decidable by a DTM in polynomial
space.

• NPSPACE is the class of languages decidable by an NTM in polynomial
space.

• coPSPACE is the class of languages whose complements are in PSPACE.

• coNPSPACE is the class of languages whose complements are in
NPSPACE.

• EXPSPACE is the class of languages that are decidable by a DTM in
exponential space.

The following relationships between the above complexity classes are currently known.

• NL ⊆ P ⊆ NP ⊆ NPNP ⊆ PSPACE ( EXPSPACE

• P ⊆ coNP ⊆ NPNP

• coNPSPACE = coPSPACE = PSPACE = NPSPACE, by Savitch’s (1970)
theorem

• NL ( PSPACE, by the space hierarchy theorem

We say that a language L is hard with respect to a complexity class A (or alter-
natively, that L is A-hard) if every language in A is reducible to L, according to the
following definition.

Definition 3 (Logspace Reduction)
A function f : {0, 1}∗ → {0, 1}∗ is logspace reducible to a function g : {0, 1}∗ → {0, 1}∗
if and only if there exists a function h : {0, 1}∗ → {0, 1}∗ computed by a DTM in loga-
rithmic space such that f = g ◦ h. A language L is logspace reducible to a language M
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if and only if 1L is logspace reducible to 1M. We refer to h as a reduction of f to g (or
L to M).

We say that L is complete with respect to A, or A-complete, if L ∈ A and L is
A-hard. To show that a language L is A-hard, it suffices to show that an A-hard language
is logspace reducible to L.

3. Background: Computational Analysis of Optimality Theory

This section surveys past work relevant to this article, providing background for our
main contributions. We begin with a high-level introduction of OT as it is commonly
used in phonology. We then turn to the formal treatment of OT, reviewing ways in which
it has been conceptualized as a formal system and as a computational problem.

3.1 Introduction to OT Phonology

We introduce OT by way of example. Consider the English plural suffix -s. Although
the UR for this suffix is /z/, it surfaces as [s] when preceded by a voiceless consonant
(e.g., cats [kæts]) and as [@z] when preceded by a sibilant (e.g., foxes [fAks@z]). A typical
OT analysis would propose that the SR distribution of -s is caused by the following
constraints, listed in order of rank.

• MAX: Assign one violation for every symbol deleted from the UR.

• OCP: Assign one violation for every two consecutive sibilants in the SR.1

• AGREE(voice): Assign one violation for every voiceless consonant that is
adjacent to a voiced consonant in the SR.

• DEP: Assign one violation for every symbol inserted into the UR.

• IDENT(voice): Assign one violation for every z that is changed to s and
vice versa.1

At least one of the three faithfulness constraints MAX, DEP, and IDENT(voice) is violated
whenever the SR differs from the UR. Since MAX is the highest-ranking constraint, the
plural suffix can never be deleted. Changing /z/ to [s] or epenthesizing @ to form [@z],
which would violate IDENT(voice) and DEP, respectively, can only occur if [z] violates
one of the two markedness constraints, OCP or AGREE(voice). AGREE(voice) is violated
when -s is preceded by a voiceless consonant. Since IDENT(voice) is the lowest-ranking
faithfulness constraint, the violation of AGREE(voice) is repaired by changing /z/ to
[s]. On the other hand, OCP is violated when -s is preceded by a sibilant. However,
changing /z/ to [s] does not repair the OCP violation, so [@] is epenthesized instead.

OT analyses are typically visualized using a tableau—a table showing various po-
tential SRs, or candidates, and the degree to which each constraint is violated. Figure 1
shows tableaux that analyze the SRs of cats and foxes. The UR is shown in the top-left
corner; each row corresponds to a candidate SR, and each column corresponds to a

1 In practice, these constraints apply to broader classes of phonemes than what we have described here. We
state these constraints here in a restricted form for simplicity of exposition.
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/kætz/ cats MAX OCP AGREE(voice) DEP IDENT(voice)
a. [kætz] 0 0 1 0 0

� b. [kæts] 0 0 0 0 1
c. [kæt@z] 0 0 0 1 0
d. [kæt] 1 0 0 0 0

/fAksz/ foxes MAX OCP AGREE(voice) DEP IDENT(voice)
a. [fAksz] 0 1 1 0 0
b. [fAkss] 0 1 0 0 1

� c. [fAks@z] 0 0 0 1 0
d. [fAks] 1 0 0 0 0

Figure 1
Tableaux showing the violations incurred by various candidates for the English plural OT
grammar. In each tableau, the SR is marked with the symbol�.

constraint. The numbers in the cells indicate the number of violations assigned by each
constraint to each candidate.

Observe that the five constraints we have discussed here do not suffice for uniquely
determining the pronunciation of -s. For instance, because the description of DEP
given above makes no distinction between different vowels, there is no reason why
the epenthesized vowel should be [@] and not some other vowel. Furthermore, the
constraints we have stated here do not distinguish between the plural suffix -s and other
instances of the segment /z/; this means that, for example, our analysis predicts that the
SR for catnip should be *[kæt@nIp] instead of the true SR [kæt^nIp]. Accounting for all the
possible edge cases, however, would require the introduction of an unwieldy number of
constraints into the analysis. For this reason, the constraints included in an OT analysis
are typically limited to those that are directly relevant for explaining the phenomenon
under examination. In this case, because we are only interested in explaining when -s
surfaces as [z], [s], or [@z], it suffices for our discussion to only include constraints that
distinguish between those three possible SRs for the suffix -s.

3.2 OT as a Formal System

Numerous formalizations of OT have been proposed in the literature, such as those of
Ellison (1994), Eisner (1997), Frank and Satta (1998), Karttunen (1998), Chen-Main and
Frank (2003), and Riggle (2004). These formalizations share several common character-
istics: The URs and SRs are represented as strings; constraints are implemented using
DFAs or SFSTs; and each candidate is associated with a vector of violation numbers,
known as a violation profile, corresponding to a row in a tableau. Many of these
treatments introduce restrictions, such as setting a maximum bound on the number of
violations that can be assigned by a constraint, designed to facilitate compilation of OT
grammars into SFSTs for fast runtime performance.

The most general formalization of OT is that of Riggle (2004), which Section 4
describes in detail. In this version of OT, candidates are represented as strings of paired
symbols 〈x1, y1〉〈x2, y2〉 . . . 〈xn, yn〉, where x = x1x2 . . . xn is the UR, y = y1y2 . . . yn is a
potential SR, and each xi and yi has length 1 or 0. This representation, inspired by
McCarthy and Prince’s (1995) Correspondence Theory, reifies epenthesis, deletion, and

89



Computational Linguistics Volume 50, Number 1

other segment-level operations by aligning each symbol of y with a symbol of x. Con-
straints are then implemented as SFSTs that read a candidate and output the number
of violations incurred by that candidate. Because this formalism is not designed for
compilation into SFSTs, there are no restrictions on the number of violations a constraint
may assign. Riggle (2004) implements universal generation by first constructing a con-
straint requiring the UR to be x, and then intersecting this constraint with all the other
constraints in the grammar. This operation results in an SFST that reads a candidate
and outputs the full violation profile for that candidate. The optimal candidate is found
by using Dijkstra’s (1959) algorithm to find the shortest path, measured by violation
profiles, through the state diagram of intersected SFST.

3.3 OT as a Computational Problem

Complexity results for OT crucially depend on how OT is formalized as a computational
problem. Although prior work always assumes that an optimal SR y must be computed
from a UR x given a list of constraints C, there is variation in the literature in terms
of whether C is considered part of the problem instance, or whether it is treated as a
constant. Heinz, Kobele, and Riggle (2009) categorize these problem formulations into
three types:

• the simple generation problem, where C is treated as a constant;

• the universal generation problem, where C is part of the input; and

• the quasi-universal generation problem, where C is a constant, but the
input includes a permutation π of C.

Synthesizing prior complexity results, Heinz, Kobele, and Riggle report that the simple
and quasi-universal generation problems can be solved in linear time, while the uni-
versal generation problem is NP-hard. These results are a consequence of the fact that,
in the simple and quasi-universal generation problems, the exponential space used by
the constraint intersection step of Riggle’s (2004) algorithm can be treated as a constant,
since the constraints themselves are treated as constants.

The quasi-universal generation problem was originally proposed by Heinz, Kobele,
and Riggle (2009) as part of a discussion of the implications of complexity results on
OT phonology as a theory of human behavior. The quasi-universal generation problem
reifies the typical assumption in OT phonology that all languages share the same set
of constraints, but differ from one another in the ranking of those constraints. While
Idsardi (2006) interprets the NP-hardness of universal generation to mean that “[OT] is
computationally intractable,” Heinz, Kobele, and Riggle use the quasi-universal gener-
ation problem to argue that the assumption of a universal constraint set suffices to make
OT tractable.

In this article, we propose a fourth version of OT generation: the bounded uni-
versal generation problem, where C is treated as part of the input, but the number
of constraints in C is bounded by a constant. In Section 7, we show that bounded
universal generation lies between the complexity classes NL and NPNP, making it easier
than universal generation (assuming NP 6= PSPACE) but possibly harder than quasi-
universal generation (assuming P 6= NP).

In prior work, OT generation problems are formulated as function problems, where
an algorithm is expected to output an SR. This is the version of universal generation
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Table 1
Computational problems associated with OT, formulated as decision problems, along with their
computational complexity. Variables are interpreted as follows: x represents a UR, y represents
an SR, C = 〈C1, C2, . . . , Cn〉 is a list of ranked constraints, π is a permutation of C, and k is a
constant integer. Entries marked with * are introduced in this article. All other terms and results
are introduced in Heinz, Kobele, and Riggle (2009).

Language Complexity

Simple Generation SG(C) =
{

J〈x, y〉K
∣∣∣ y optimally satisfies C

for UR x

}
DTIME(n)

Quasi-Universal
Generation

QUG(C) =

{
J〈π, x, y〉K

∣∣∣∣ y optimally satisfies
π(C) for UR x

}
DTIME(n)

Bounded Universal
Generation*

BUG(k) =

{
J〈C, x, y〉K

∣∣∣∣∣ y optimally satisfies
C for UR x, where
|C| = k

}
NPNP and
NL-Hard*

Universal
Generation

UG =
{

J〈C, x, y〉K
∣∣∣ y optimally satisfies C for

UR x

} PSPACE-
Complete*

considered in Theorem 2. However, classical complexity classes like P, NP, NL, PSPACE,
and EXPSPACE only include decision problems, where the algorithm is expected to
decide a language of bit strings. For this reason, in Table 1 we reformulate the four OT
generation problems as decision problems where an algorithm must verify whether or
not a string y is the correct SR for given a UR and a list of constraints.

4. Formal Definition of Optimality Theory

This section describes the version of OT proposed by Riggle (2004). We choose to use this
version of OT because it is the most powerful: It allows arbitrary finite-state constraints
that assign arbitrary numbers of violations. Because our goal is to establish PSPACE
as an upper bound on the complexity of OT, using the most powerful version of OT
available makes it likely that our results extend to other versions of OT.

We begin by describing the representation of candidates. As mentioned in Sec-
tion 3.2, candidates are represented as pairs of strings in which each symbol of one
string is optionally aligned with a symbol of the other. This allows candidates to record
the operations (epentheses, deletions, and substitutions) used to derive the candidate
SR from the UR, so that faithfulness constraints may be evaluated.

Definition 4 (Representation of Candidates)
A candidate over Σ and Γ is a string over the alphabet Σε × Γε. For α =
〈x1, y1〉〈x2, y2〉 . . . 〈xn, yn〉, we define αC = x1x2 . . . xn and αB = y1y2 . . . yn.

Next, we define constraints as SFSTs that map candidates to numbers of violations.
For the purposes of our analysis, it is not necessary to make a formal distinction between
markedness and faithfulness constraints.

Definition 5 (Constraints)
A constraint over Σ and Γ is an SFST with input monoid (Σε × Γε)∗ and output monoid
N. If Ci is a constraint, then for a candidate α ∈ (Σε × Γε)∗, the output of Ci on input α
is denoted by Ci(α). If C = 〈C1, C2, . . . , Cn〉 is a tuple of constraints over Σ and Γ, then

91



Computational Linguistics Volume 50, Number 1

the violation profile of α with respect to C, denoted by C(α), is defined as the tuple
C(α) = 〈C1(α), C2(α), . . . , Cn(α)〉.

Finally, we define an ordering relation < on violation profiles, such that a candi-
date α is “more optimal” than candidate β for a list of constraints C if and only if
C(α) < C(β). Informally, more optimal candidates are those that incur fewer violations
of higher-ranked constraints, where constraints are listed in order of decreasing rank.

Definition 6 (Ordering of Violation Profiles)
For each k ∈ N, the lexicographic ordering on Nk is the ordering < defined by
〈a1, a2, . . . , ak〉 < 〈b1, b2, . . . , bk〉 if and only if there exists i such that ai < bi and aj = bj

for all j < i. We write a ≤ b for a, b ∈ Nk to mean that a < b or a = b.
We define optimal SRs as SRs that correspond to candidates that are minimal with

respect to <.

Definition 7 (Optimality)
Let C be a list of constraints over Σ and Γ, and let x ∈ Σ∗ be a UR. We say that an SR y ∈
Γ∗ is optimal with respect to C and x if and only if there is a candidate α ∈ (Σε × Γε)∗

such that

• αC = x,

• αB = y, and

• for all β ∈ (Σε × Γε)∗ with βC = x, C(β) ≥ C(α).

Example 1 (OCP and Faithfulness Constraints)
Recall the OCP markedness constraint and the faithfulness constraints MAX, DEP, and
IDENT(voice) from Section 3.1. Assuming that Σ = Γ is the alphabet of International
Phonetic Alphabet symbols, Figure 2 illustrates how these constraints may be imple-
mented using SFSTs. The markedness constraint AGREE(voice) is implemented using
an SFST with a structure similar to that of OCP.

q0start q1

q2

〈·, ·〉 : 0 〈·, s〉 : 0
〈·, z〉 : 0

〈·, ·〉 : 0

〈·, s〉 : 1
〈·, z〉 : 1

〈·, ε〉 : 0

〈·, ·〉 : 0
〈·, s〉 : 1
〈·, z〉 : 1
〈·, ε〉 : 0

qMAXstart

qDEPstart

qIDstart

〈ε, ε〉 : 0
〈·, ε〉 : 1
〈·, ·〉 : 0

〈ε, ε〉 : 0
〈ε, ·〉 : 1
〈·, ·〉 : 0

〈s, z〉 : 1
〈z, s〉 : 1
〈·, ·〉 : 0

Figure 2
SFSTs for the constraints OCP (left), MAX (upper right), DEP (middle right), and IDENT(voice)
(lower right) in the English plural OT grammar. The notation · refers to any symbol in Σε ∪ Γε
that results in a valid transition.
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The candidate [kæts] for cats is represented as 〈k, k〉〈æ, æ〉〈t, t〉〈z, s〉, while the
candidate [fAks@z] for foxes is represented as 〈f, f〉〈A, A〉〈k, k〉〈s, s〉〈ε, @〉〈z, z〉. Identifying
constraints with their SFSTs as shown in Figure 2, it is easy to see that [kæts] undergoes
the following transitions when read by the SFST for IDENT(voice):

qID

〈k,k〉−−−→
0

qID

〈æ,æ〉−−−→
0

qID

〈t,t〉−−→
0

qID

〈z,s〉−−→
1

qID −→
0

#

while [fAks@z] undergoes the following transitions when read by DEP:

qDEP

〈f,f〉−−→
0

qDEP

〈A,A〉−−−→
0

qDEP

〈k,k〉−−−→
0

qDEP

〈s,s〉−−→
0

qDEP

〈ε,@〉−−−→
1

qDEP

〈z,z〉−−→
0

qDEP −→
0

#

The candidate [fAksz] undergoes the following transitions when read by OCP:

q0
〈f,f〉−−→

0
q0
〈A,A〉−−−→

0
q0
〈k,k〉−−−→

0
q0
〈s,s〉−−→

0
q1
〈z,z〉−−→

1
q2 −→

0
#

Consider the list of constraints C = 〈MAX, OCP, AGREE(voice), DEP, IDENT(voice)〉.
As discussed in Section 3.1, these five constraints do not actually suffice to predict the
correct forms for English plurals. For example, observe that

C(〈k, A〉〈æ, A〉〈t, A〉〈z, A〉) = 〈0, 0, 0, 0, 0〉 < 〈0, 0, 0, 0, 1〉 = C(〈k, k〉〈æ, æ〉〈t, t〉〈z, s〉)

This means that AAAA is optimal with respect to C and kætz, but kæts is not. While
the constraints that eliminate candidates like [AAAA] are typically abstracted away in
phonological theory, in the formal setting we must assume that C contains all constraints
necessary to achieve the desired mapping.

5. Universal Generation in Polynomial Space

In this section, we prove that universal generation can be done in polynomial space,
deriving Theorem 2 as well as one half of Theorem 1. To do so, we will use the following
formulation of the universal generation problem.

Lemma 1
The language

ug = {J〈C, x, v〉K | ∃α[αC = x ∧ C(α) ≤ v]}

is in PSPACE.
The language ug represents the problem of deciding whether, given an SR x, list

of constraints C, and violation profile v, there exists a candidate for x that is more
optimal than v. Proving a statement like Lemma 1 is a common approach to complexity
analysis for combinatorial optimization problems. For analogy, consider the traveling
salesperson problem, which asks an algorithm to find the shortest path that connects
a set of points in Euclidean space. The complexity analysis of the traveling salesperson
problem is typically stated as follows (see Arora and Barak 2009, p. 40, for an overview).
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Proposition 1 (Traveling Salesperson Problem)
The language

tsp = {J〈P, l〉K | There is a path of length at most l connecting all points in P}

is NP-complete.
The reason the traveling salesperson problem is formulated in this way is because

it is easy to extend an algorithm that decides tsp to one that finds the shortest path
connecting all the points in P. Such an algorithm would iterate through possible val-
ues of l, while using an NTM that decides tsp to nondeterministically generate paths
through the points of P with a length of at most l. When l is small enough such that
J〈P, l〉K /∈ tsp, then the most recently generated path is returned.

In the remainder of this section, we apply this line of reasoning to universal gen-
eration for OT. We begin by proving Lemma 1, and then we use Lemma 1 to prove
Theorem 2 and the first half of Theorem 1.

5.1 Proof of Lemma 1

To prove Lemma 1, we will adopt a strategy similar to the proof of Proposition 1, where
an NTM decides tsp by nondeterministically generating a path through the points in
P and verifying that it is a valid path with length at most l. In our case, we will use
an NTM to nondeterministically generate a candidate α, and check that αC = x and
C(α) ≤ v. Since PSPACE = NPSPACE (Savitch 1970), if our NTM uses only polynomial
space, then Lemma 1 is proven.

The main challenge to this approach is that we cannot guarantee that the length
of α is polynomial in |J〈C, x, v〉K|. Proposition 2, stated below, shows that an NTM
that decides ug will occasionally need to generate a candidate that does not fit within
polynomial space. While generating such a candidate is not a problem (since NPSPACE
imposes no restriction on the running time of an NTM), our NTM will not be able to
write down the candidate in memory, at least not in its entirety.

Proposition 2 (Existence of Long Optimal Candidates)
For every polynomial f (n), there is a UR x and a list of constraints C such that

• there is a candidate α such that αC = x and C(α) = 〈0, 0, . . . , 0〉, and

• for all candidates αwith αC = x, C(α) = 〈0, 0, . . . , 0〉 only if
|α| > f (|J〈C, x, v〉K|).

Proof. See Appendix A. �

Thankfully, we do not need to write down α in order to verify that C(α) ≤ v.
Instead, we simply present each symbol pair of α to the constraints as it is guessed.
The previously guessed symbol pairs do not need to be remembered; it suffices to
remember the most recent state of each constraint, as well as the number of violations
that have been assigned by the constraints so far. While remembering the most recent
states of the constraints only requires at most linear space, the representations of the
violation numbers could potentally grow indefinitely as more and more symbol pairs
are generated. Therefore, to ensure that the information required to decide ug fits within
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polynomial space, we need to establish an upper bound on the number of violations
that can be issued by a list of constraints.

Lemma 2 (Exponential Upper Bound on Violation Numbers)
Let x be a UR, let C = 〈C1, C2, . . . , Cn〉 be a list of constraints, and let l = |J〈C, x〉K|. Then,

• there is a candidate of length at most lel that is optimal for C and x, and

• for all candidates α, if |α| ≤ lel, then for all i, Ci(α) ≤ le2l.

Proof. See Appendix A. �

By Lemma 2, in order to decide whether J〈C, x, v〉K ∈ ug, it suffices for our NTM
to only consider candidates of up to exponential length, since these candidates are
guaranteed to include at least one optimal candidate. As long as this length limit is
observed, the violation numbers computed by the constraints will be exponential in
value, and therefore their binary representations will be polynomial in size.

We are now ready to prove Lemma 1.

Proof of Lemma 1. Define the following nondeterministic procedure for deciding ug. On
input J〈C, x, v〉K, where C = 〈C1, C2, . . . , Cn〉 is a list of constraints over Σε and Γε:

1. Initialize the variables x′ = ε and l′ = 0. Let l = |J〈C, x, v〉K|.

2. For each i ∈ {1, 2, . . . , n}, initialize the variable vi = 0, and initialize qi to
be the start state of Ci.

3. Repeat indefinitely:

(a) Nondeterministically generate a pair 〈a, b〉 ∈ Σε × Γε such
that x begins with x′a.

(b) For each i ∈ {1, 2, . . . , n}, let ui and ri be such that

qi
〈a,b〉−−→

ui
ri,

where→ is the transition function for Ci.

(c) Update x′ ← x′a and l′ ← l′ + 1, and for each
i ∈ {1, 2, . . . , n}, update vi ← vi + ui and qi ← ri.

(d) If l′ = lel, then terminate this loop. Otherwise,
nondeterministically decide whether or not to terminate
this loop.

4. For each i ∈ {1, 2, . . . , n}, update vi ← vi + #i(qi), where #i is the final
transition function for Ci.

5. If x′ = x and 〈v1, v2, . . . , vn〉 ≤ v, then return 1. Otherwise, return 0.
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This algorithm generates a candidate α of length at most lel, where l = |J〈C, x, v〉K|. While
doing so, it keeps track of αC = x′ and C(α) = 〈v1, v2, . . . , vn〉, but does not remember α
itself. It then checks whether αC = x and C(α) ≤ v, and returns 1 if these conditions are
met. Recall that an NTM returns 1 as long as some set of nondeterministic choices leads
to an output of 1. By Lemma 2, at least one such set of choices leads to the generation of
an optimal candidate, causing 1 to be returned if and only if J〈C, x, v〉K ∈ ug.

To verify that the NTM described above uses only polynomial space, we observe
that the input 〈C, x, v〉 as well as the variables x′, l′, l, q1, q2, . . . , qn, and indices used for
looping all fit within linear space, and that Lemma 2 guarantees that v1, v2, . . . , vn are
of polynomial size when represented in binary form. �

5.2 Proof of Theorem 2

We now prove that universal generation, formulated as a function problem, can be done
in polynomial space. Below we restate Theorem 2 using the formalism we have defined
in Section 4.

Theorem 2 (Restated)
There is a polynomial-space computable function

UGFunc(J〈C, x〉K) = JyK

such that C is a list of constraints, x is a UR, and y is an SR that is optimal for C and x.
Recall that in Section 2, we have assumed that the measurement of space complexity

does not include the output tape. Therefore, the mere fact that the output of UGFunc
may be exponential in size thanks to Proposition 2 does not automatically disprove
Theorem 2, as long as only polynomially many positions of the work tape are used.

Our strategy for implementing UGFunc is as follows. Since the SR might be expo-
nentially long, we cannot write down the SR on the work tape. Instead, we generate the
SR one symbol at a time, writing each symbol to the output tape before generating the
next symbol. Because the output tape is write-once, we cannot go back and change a
previously generated symbol. Therefore, we use the following lemma to verify that our
generated symbols are correct before writing them to the output tape.

Lemma 3
The language

ugFirst = {J〈C, x, 〈a, b〉, v〉K | ∃α[(〈a, b〉α)C = x ∧ C(〈a, b〉α) ≤ v]}

is in PSPACE.2

Proof. Write C = 〈C1, C2, . . . , Cn〉, and assume that x = ax′ for some x′ (if not, then
J〈C, x, 〈a, b〉, v〉K /∈ ugFirst). For each i ∈ {1, 2, . . . , n}, let qi,0 be the start state of Ci, and
let ri and ui be such that

qi,0
〈a,b〉−−→

ui
ri

2 It is actually PSPACE-complete, but we will not prove this here.
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where→ is the transition function for Ci. Now, for each i, let C′i be Ci, but with ri as the
start state instead of qi,0. Let C′ = 〈C′1, C′2, . . . , C′n〉, and let v′ = 〈v1 − u1, v2 − u2, . . . , vn −
un〉. The membership of J〈C, x, 〈a, b〉, v〉K in ugFirst can then be decided in polynomial
space by simply deciding whether J〈C, x′, v′〉K ∈ ug. �

Lemma 3 allows us to verify (in polynomal space) whether a symbol pair 〈a, b〉 is the
first valid pair of an optimal candidate by checking whether J〈C, x, 〈a, b〉, v〉K ∈ ugFirst,
where v is the violation profile of optimal candidates. To do this, we need to be able to
compute the violation profile of optimal candidates in the first place. This can be done
in polynomial space thanks to the following lemma.

Lemma 4
The function given by

OptViol(J〈C, x〉K) = JvK

where C is a list of constraints, x is a UR, and C(α) = v whenever α is optimal for C
and x, is polynomial-space computable.

Proof. Given input J〈C, x〉K, let l = |J〈C, x〉K|. By Lemma 2, if OptViol(J〈C, x〉K) = JvK,
then v is of the form v = 〈v1, v2, . . . , vn〉, where vi ≤ le2l for all i. Therefore, in or-
der to compute OptViol in polynomial space, it suffices to loop over all possible v ∈
{0, 1, . . . , le2l}n in reverse lexicographic order and check whether or not J〈C, x, v〉K ∈ ug.
When a result of 0 is obtained (i.e., J〈C, x, v〉K /∈ ug), the previous value of v is the opti-
mal violation profile for C and x. �

We are now ready to prove Theorem 2.

Proof of Theorem 2. Consider the following deterministic algorithm. On input J〈C, x〉K:

1. Let v be the optimal violation profile for C and x; thus,
OptViol(J〈C, x〉K) = JvK. Write v = 〈v1, v2, . . . , vn〉.

2. Let C = 〈C1, C2, . . . , Cn〉, where each Ci is a constraint over Σ and Γ.

3. Repeat at most lel times, where l = |J〈C, x〉K|:

(a) For each 〈a, b〉 ∈ Σε × Γε in lexicographic order, where ε is
the last symbol of both Σε and Γε:

i. If J〈C, x, 〈a, b〉, v〉K /∈ ugFirst, then skip the
following steps and move on to the next
iteration of this for-loop.

ii. Write JbK to the output tape, and let x′ be
such that x = ax′. Set x← x′.

iii. For each i ∈ {1, 2, . . . , n}, let q0,i be the start
state of Ci, and let ri be such that

q0,i
〈a,b〉−−→

ui
ri
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where→ is the transition function for Ci.
Update vi ← vi − ui, and change the start
state of Ci from q0,i to ri.

iv. Break out of this for-loop.

(b) If the inner for-loop in Step 3(a) finishes without writing
anything to the output tape, then break out of this outer
loop.

4. Return the current contents of the output tape.

The algorithm above is designed to implement UGFunc. To do so, it first computes
the optimal violation profile, which by Lemma 4 requires only polynomial space, and
then generates an optimal SR one symbol at a time, using Lemma 3 to verify that the
generated symbol is valid. To ensure that the algorithm terminates, we set a time limit
of lel for the outer loop, which by Lemma 2 is enough time to generate an optimal
candidate. With this time limit, however, it is possible that the outer loop terminates
before the entire UR has been included in the generated candidate (i.e., Step 5 may be
reached while x 6= ε). In order to prevent this, we assume in Step 3(a) that symbol pairs
of the form 〈ε, b〉 are the last to be considered by the inner loop. This causes the UR to
be generated as early as possible, leaving superfluous epentheses and instances of 〈ε, ε〉
until the end of the computation.

Let us verify that the algorithm above uses polynomial space. By Lemma 4, Step
1 uses polynomial space, and by Lemma 3, Step 3(a)i uses polynomial space. Since
PSPACE = NPSPACE, we can assume that OptViol and ugFirst are decided determinis-
tically. By Lemma 2, the variable v only requires polynomial space, and it is clear that
the other variables only require polynomial space as well. �

5.3 Partial Proof of Theorem 1

We conclude this section by showing that the decision version of the universal gener-
ation problem, as stated in Table 1, is in PSPACE. This proves one half of Theorem 1.

Theorem 3
The language

UG = {J〈C, x, y〉K | y is optimal for C and x}

is in PSPACE.

Proof. Fix an input J〈C, x, y〉K, and let C0 be the markedness constraint shown in
Figure 3. This constraint checks whether a candidate α corresponds to the SR y: we
have C0(α) = 0 if and only if αB = y. Now, observe that UG is decided in polynomial
space using the following algorithm. On input J〈C, x, y〉K:

1. Construct the constraint C0, described in Figure 3.
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q0,0start q0,1 q0,2 · · · q0,k

# # #

L

#

〈·, y1〉 : 0 〈·, y2〉 : 0 〈·, y3〉 : 0 〈·, yk〉 : 0

〈·, ε〉 : 0 〈·, ε〉 : 0 〈·, ε〉 : 0 〈·, ε〉 : 0

〈·, ·〉 : 1

: 1 : 1 : 1
〈·, ·〉 : 1〈·, ·〉 : 1 〈·, ·〉 : 1 〈·, ·〉 : 1

: 1

Figure 3
A constraint that assigns one or more violations to a candidate αwhen αC 6= y = y1y2 . . . yk. The
notation · refers to any symbol in Σε ∪ Γε that results in a valid transition.

2. Writing C = 〈C1, C2, . . . , Cn〉, let C′ = 〈C0, C1, . . . , Cn〉.

3. Writing OptViol(J〈C, x〉K) = J〈v1, v2, . . . , vn〉K, let v′ = 〈0, v1, v2, . . . , vn〉.

4. Return 1 if J〈C′, x, v′〉K ∈ ug and 0 otherwise.

This algorithm clearly runs in polynomial space, since |J〈C′, x, v′〉K| is linear in
|J〈C, x, y〉K|. It decides whether J〈C, x, y〉K ∈ UG by deciding the existence of an optimal
candidate α such that αB = y. The condition that αB = y is enforced by requiring that
C0(α) = 0, and the condition that α is optimal is enforced by requiring that C(α) ≤
OptViol(J〈C, x〉K). �

6. PSPACE-Hardness of Universal Generation

We now complete the proof of Theorem 1 by showing that ug, UGFunc, and UG are
PSPACE-hard. To do so, we reduce the following PSPACE-complete problem to ug,
UGFunc, and UG in logarithmic space.

Definition 8 (A PSPACE-Complete Problem, Kozen 1977)
The intersection non-emptiness problem for DFAs is the language INE-DFA ⊆ {0, 1}∗
defined by

INE-DFA =

{
J〈M1, M2, . . . , Mn〉K

∣∣∣∣∣Each Mi is a DFA and
n⋂

i=1

Mi 6= ∅

}

The intersection non-emptiness problem for DFAs asks, given a list of DFAs,
whether there are strings accepted by all DFAs in the list. Already, we can see a natural
connection between universal generation and the intersection non-emptiness problem:
Both deal with the intersection of finite-state machines. In order to reduce INE-DFA to
OT universal generation, we convert each DFA M into the following OT constraint.
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• ACCEPT(M): Assign one violation to candidate α if αB /∈M, unless
α = 〈 , 〉.

We then add a constraint called NOTBLANK, defined below, as the lowest-ranking
constraint.

• NOTBLANK: Assign one violation to candidate α if αB = .

In other words, we convert a set of DFAs {M1, M2, . . . , Mn} into the list of constraints
C = 〈ACCEPT(M1), ACCEPT(M2), . . . , ACCEPT(Mn), NOTBLANK〉, where is a special
symbol not in any of the Mis’ alphabets.

The basic idea behind our approach is as follows. If y is a string accepted by all the
Mis, then y is always an optimal SR for C and UR , since such a y would not violate
any of the constraints in C. If no string is accepted by all the Mis (i.e., if

⋂n
i=1 Mi = ∅),

then the only optimal SR for C and is . This is because only violates NOTBLANK,
whereas any other SR would violate at least one of the ACCEPT(Mi) constraints, which
are ranked higher than NOTBLANK. We can therefore reduce the problem of deciding
whether ∩n

i=1Mi = ∅ to the problem of deciding whether is an optimal SR for the
constraint list C described above.

Example 2
Let Γ = {a, b}. Suppose M1 = a∗b∗, M2 = (ΓΓ)∗, and M3 = bΓ∗a; and assume that these
languages are identified with DFAs that accept them.

In the upper portion of Figure 4, we consider the constraint list C =
〈ACCEPT(a∗b∗), ACCEPT((ΓΓ)∗), NOTBLANK〉. Observe that a∗b∗ ∩ (ΓΓ)∗ is the set
of even-length strings where no b precedes an a. Since the candidate α =
〈 , a〉〈ε, a〉〈ε, a〉〈ε, b〉〈ε, b〉〈ε, b〉 represents an SR satisfying these criteria (i.e., αB =
aaabbb ∈ a∗b∗ ∩ (ΓΓ)∗), it is optimal for C and x = .

In the lower portion of Figure 4, we consider the constraint list C = 〈ACCEPT(a∗b∗),
ACCEPT(bΓ∗a), NOTBLANK〉. Now, observe that a∗b∗ ∩ bΓ∗a = ∅: strings in bΓ∗a must

ACCEPT(a∗b∗) ACCEPT((ΓΓ)∗) NOTBLANK

� a. aaabbb 0 0 0
b. bbbaaa 1 0 0
c. aabbb 0 1 0
d. 0 0 1

ACCEPT(a∗b∗) ACCEPT(bΓ∗a) NOTBLANK

a. aaabbb 0 1 0
b. bbbaaa 1 0 0
c. aabbb 0 1 0

� d. 0 0 1

Figure 4
Sample tableaux illustrating optimal SRs for the UR given a list of ACCEPT(Mi) constraints
followed by NOTBLANK. When the intersection of the Mis is non-empty (upper tableau), the
optimal SRs are precisely those that are accepted by all the Mis. When the intersection of the Mis
is empty (lower tableau), is the only optimal SR.
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begin with b and end with a, but a∗b∗ does not allow any instance of b to precede
an instance of a. Since the two ACCEPT(Mi) constraints contradict one another, any
candidate other than 〈 , 〉 must violate at least one of them. Therefore, 〈 , 〉 is the
only optimal candidate for this list of constraints.

6.1 Conversion of Automata to Constraints

We now spell out how exactly we can convert a DFA M = 〈Q, Γ, q0, F,→〉 into the
constraint ACCEPT(M), implemented by the SFST T = 〈R, A∗,N, r0,⇒, #〉, where R =
Q ∪ {r0, r1, r2,L} and A = { , ε} × (Γ ∪ { , ε}). To do this, we propose a procedure in
four steps.

The first step is to build the following SFST, which implements the “unless α =
〈 , 〉” condition of ACCEPT(M).

r0start r1 r2
〈 , 〉 : 0 〈·, ·〉 : 1

〈·, ·〉 : 0

This SFST reads candidates of the form α ∈ 〈 , 〉A∗ and assigns one violation if α is
more than just 〈 , 〉.

The second step is to make a copy of M and convert it into an SFST that, upon
reading a symbol pair 〈a, b〉 ∈ A, simulates the behavior that M exhibits when reading
b. To do this, for each transition of M of the form

q b−→ r

we add transitions of the form

q
〈ε,b〉
==⇒

0
r and q

〈 ,b〉
==⇒

0
r

to T. If q ∈ Q is a state for which M does not have an ε-transition (i.e., there is no r ∈ Q
such that q ε−→ r), then we additionally add transitions of the form

q
〈ε,ε〉
==⇒

0
q and q

〈 ,ε〉
==⇒

0
q

The third step is to make T assign a violation when its simulation of M results
in a rejection. There are two ways in which M can reject a string: Either it ends its
computation on a non-accepting state, or it can reach a state for which there is no valid
transition corresponding to the next input symbol. To handle the former case, we make
the final transition function assign a violation when the computation ends on a non-
accepting state (i.e., we set #(q) = 1 whenever q ∈ Q\F). To handle the latter case, we
introduce a sink state L, and create transitions

q
〈ε,b〉
==⇒

1
L and q

〈 ,b〉
==⇒

1
L
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whenever there is no transition of the form q b−→ r, as well as transitions

L
〈a,b〉
==⇒

0
L

for all 〈a, b〉 ∈ A.
The fourth and final step is to connect the initial SFST consisting of the states

r0, r1, and r2 with the other states containing a copy of M. Since r0 is the start state
of T, we need it to exhibit the same behavior as q0. Therefore, for every transition of the
form

q0
〈a,b〉
==⇒

i
r

we add the transition

r0
〈a,b〉
==⇒

i
r

Example 3
Figure 5 shows a DFA M for the language a∗b∗ over alphabet Γ = {a, b, c}, along with
an SFST T for ACCEPT(M), constructed according to the procedure we have outlined.

The top row of T’s states contains the states r0, r1, and r2, which implement the
“unless α = 〈 , 〉” condition of ACCEPT(M). Below these three states is a copy of M’s
states: q0, q1, and q2. Since q2 is a non-accepting state in M, T has #(q2) = 1. Below q0,
q1, and q3 is the sink state L, which is reached whenever the symbol pair 〈ε, c〉 or 〈 , c〉
is read. These transitions exist because M does not contain any valid transitions that
involve reading a c.

There are only three ways in which T can emit a violation. The first is if a symbol
pair is read after encountering 〈 , 〉, causing T to transition from r1 to r2. Since /∈ Γ,
no candidate beginning with 〈 , 〉 can represent a string accepted by M (i.e., if α ∈
〈 , 〉A∗, then αB /∈M); so if this transition is taken, then we know that a violation
needs to be assigned. The second case is if the last state of T is a non-accepting state of
M (viz., q2), whereupon the final transition function assigns a violation. The third case
is if T transitions to L, causing exactly one violation to be assigned. Once L is reached,
no further violations are assigned.

We now verify that the conversion procedure that we have described uses only
logarithmic space.

Lemma 5
The function given by

f (JMK) = JACCEPT(M)K

where M is a DFA and ACCEPT(M) is implemented according to the procedure de-
scribed above, is logspace computable.
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M, a DFA that accepts a∗b∗ ( {a, b, c}:

q0start q1 q2
b a

a b a, b

The constraint ACCEPT(M):

r0start r1 r2
〈 , 〉 : 0 〈·, ·〉 : 1

〈·, ·〉 : 0

q0 q1 q2

#

L

〈·, b〉 : 0

〈·, a〉 : 0
: 1

〈·, aε〉 : 0

〈·, bε〉 : 0

〈·, ·〉 : 0

〈·, aε〉 : 0
〈·, b〉 : 0

〈·, c〉 : 1〈·, c〉 : 1
〈·, c〉 : 1 〈·, c〉 : 1

〈·, ·〉 : 0

Figure 5
A DFA M for the language a∗b∗ ( {a, b, c} (above), and the constraint ACCEPT(M) over { } and
{a, b, c, } (below). The notation aε (resp. bε) refers to either a (resp. b) or ε, and the notation ·
refers to any symbol in Σε ∪ Γε that results in a valid transition.

Proof. Write M = 〈Q, Γ, q0, F,→〉. Let JTK = f (JMK), where T = 〈R, A∗,N, r0,⇒, #〉, R =
Q ∪ {r0, r1, r2,L}, and A = { , ε} × (Γ ∪ { , ε}). We assume that a DTM implementing
f writes JTK on its output tape by concatenating its six sub-components: JRK, JA∗K,
JNK, Jr0K, J⇒K, and J#K. JNK and Jr0K can be treated as constant values, while JRK and
JA∗K are constructed by concatenating JQK and JΓK, respectively, with constant values.
Since JQK and JΓK can be copied verbatim from JMK, the components JRK, JA∗K, JNK, and
Jr0K can be written to the output tape without using the work tape. To show that f can
be computed in logarithmic space, therefore, it suffices to show that J⇒K and J#K can be
written to the output tape using at most logarithmic space.

To that end, consider the following procedure for implementing f . We assume
that the functions⇒ and # are represented as lists of input–output pairs. On input JMK,
where M = 〈Q, Γ, q0, F,→〉:

1. Write JRK, JA∗K, JNK, and Jr0K to the output tape, where
R = Q ∪ {r0, r1, r2,L} and A = ({ , ε} × (Γ× { , ε)).

2. Write the transition
s

r0
〈 , 〉
==⇒

0
r1

{
to the output tape.

3. For each 〈a, b〉 ∈ A:
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(a) Write
s

r1
〈a,b〉
==⇒

1
r2

{
,
s

r2
〈a,b〉
==⇒

0
r2

{
, and

s
L
〈a,b〉
==⇒

0
L

{
to the

output tape.

4. For each state q ∈ Q and symbol b ∈ Γ ∪ { , ε}:

(a) If M has a transition q b−→ r for some r:

i. Write
s

q
〈ε,b〉
==⇒

0
r
{

and
s

q
〈 ,b〉
==⇒

0
r
{

to the

output tape.

ii. If q = q0, then write
s

r0
〈ε,b〉
==⇒

0
r
{

and
s

r0
〈 ,b〉
==⇒

0
r
{

to the output tape.

(b) Otherwise:

i. If b = ε, then write
s

q
〈ε,ε〉
==⇒

0
q
{

and
s

q
〈 ,ε〉
==⇒

0
q
{

to the output tape.

ii. Otherwise, write
s

q
〈ε,b〉
==⇒

1
L

{
and

s
q
〈 ,b〉
==⇒

1
L

{

to the output tape.

5. For each state q ∈ R:

(a) If q ∈ Q\F, then write
s

q =⇒
1

#
{

to the output tape.

(b) Otherwise, write
s

q =⇒
0

#
{

to the output tape.

The only information that needs to be stored on the work tape in this algorithm is the
looping indices used in Steps 3, 4, 4(a), and 5, which range over { , ε}, Γ ∪ { , ε}, Q,
R, and →. Since all the transitions of M are listed explicitly in JMK, the work tape is
not needed for the loop over transitions in Step 4(a), because the input tape head can be
used as a looping index (i.e., it can point to the rightmost position of the transition under
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consideration at each loop iteration). For the other loop counters, values in Γ and Q can
be represented in logarithmic space by identifying each symbol or state with the binary
representation of the leftmost position in JMK where the symbol or state is mentioned
for the first time. �

6.2 Reduction of INE-DFA to Universal Generation

We now formally present our reductions of INE-DFA to universal generation, which
proves that universal generation is PSPACE-hard. We begin with a straightforward
proof that INE-DFA is reducible to ug.

Proposition 3
INE-DFA is logspace-reducible to ug. (Thus, ug is PSPACE-hard.)

Proof. It suffices to simply convert a list of DFAs J〈M1, M2, . . . , Mn〉K into the tuple
J〈C, , 〈0, 0, . . . , 0〉〉K, where

C = 〈ACCEPT(M1), ACCEPT(M2), . . . , ACCEPT(Mn), NOTBLANK〉

As we have established, a candidate α can only achieve a perfect violation profile of
C(α) = 〈0, 0, . . . , 0〉 if αB is accepted by all the Mis. By Lemma 5, constructing the
ACCEPT(Mi)s only requires logarithmic space, assuming that the ACCEPT(Mi)s are
written to the output tape one at a time. The constraint NOTBLANK and the UR
are constant values, and therefore do not require the work tape to generate. The tuple
〈0, 0, . . . , 0〉 representing the perfect violation profile is not constant, however, because
it has a length of n. Nonetheless, it can be written using a logarithmically-sized counter
on the work tape that counts the number of 0s written from 0 to n. �

Reducing to UG is somewhat trickier. It is easy to check whether the intersection
of DFAs is empty by checking whether is an optimal SR for the ACCEPT(Mi) and
NOTBLANK constraints. In order to reduce intersection non-emptiness to UG, however,
it seems prima facie that a logspace reduction algorithm would need to furnish an
example of a string that is accepted by all the DFAs, in order to check whether that
string is an optimal SR. Thankfully, we can avoid this complication by relying on the
following two facts:

• PSPACE = coPSPACE (that is to say, a decision problem is in PSPACE if
and only if its negation is in PSPACE), and

• a problem is PSPACE-hard if and only if its negation is coPSPACE-hard.

This implies that the intersection emptiness problem for DFAs, a coPSPACE-complete
problem, is PSPACE-complete, so it suffices to reduce this problem to UG.
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Lemma 6
The language

IE-DFA =

{
J〈M1, M2, . . . , Mn〉K

∣∣∣∣∣Each Mi is a DFA and
n⋂

i=1

Mi = ∅

}

is logspace-reducible to UG. (Thus, UG is coPSPACE-hard.)

Proof. To reduce IE-DFA to UG, we convert a list of DFAs J〈M1, M2, . . . , Mn〉K into the
tuple J〈C, , 〉K, where

C = 〈ACCEPT(M1), ACCEPT(M2), . . . , ACCEPT(Mn), NOTBLANK〉

By construction, is optimal for C and if and only if J〈M1, M2, . . . , Mn〉K ∈ IE-DFA;
and we have already seen that this conversion can be done using logarithmic space. �

Finally, we discuss the idea of reducing INE-DFA to UGFunc. Strictly speaking, the
concept of a logspace reduction is only defined for decision problems; since UGFunc
does not return binary outputs, it is impossible by definition to reduce INE-DFA to
UGFunc. Informally, however, it is easy to see that INE-DFA can be solved efficiently
with oracle access to UGFunc, since one can simply construct the ACCEPT(Mi) and
NOTBLANK constraints, use the oracle to generate an optimal SR for , and check
whether this SR is . The time and space requirements of such an algorithm depend on
details concerning how the oracle returns its output to the DTM, since by Proposition 2
it is possible that the oracle may return an output of super-polynomial length.

7. Bounded Universal Generation

In this section, we briefly discuss the bounded universal generation problem for OT
defined in Section 3.3, where the number of constraints is bounded a priori. Since the
intersection non-emptiness problem for DFAs is NL-complete when the number of
DFAs is bounded a priori (Jones 1975), from the arguments in Section 6 it immediately
follows that the bounded versions of ug and UG are NL-hard.

Intuitively speaking, the difference between the bounded and unbounded versions
of INE-DFA is as follows. Both Kozen (1977) and Jones (1975) decide intersection non-
emptiness using a strategy similar to the one presented in Section 5, where a string
accepted by all the DFAs is nondeterministically generated. During this process, the
NTM needs to keep track of the most recent state of the DFAs. The size of this informa-
tion is O(n log(l)), where n is the number of DFAs in the input and l is the length of the
binary representation of the input. When the number of DFAs is bounded, n is treated
as a constant, so O(n log(l)) = O(log(l)). When the number of DFAs is not bounded, n is
approximately linear in l in the worst case, so O(n log(l)) is approximated as O(l log(l)).

This logic cannot be applied to universal generation, however, because unlike DFA
states, violation numbers cannot be represented using logarithmically many bits in
general. In the following lemma, we derive a polynomial bound on the length of the
shortest optimal candidate, but leave open the possibility that the optimal violation
bound may contain exponential values.
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Lemma 7 (Analog of Lemma 2 for Bounded Universal Generation)
Let x be a UR, let C = 〈C1, C2, . . . , Cn〉 be a list of constraints, and let l = |J〈C, x〉K|. Then,

• there is a candidate of length at most (l/n)n that is optimal for C and x,
and

• for all candidates α, if |α| ≤ (l/n)n, then for all i, Ci(α) ≤ 2l(l/n)n.

Proof. See Appendix A. �

By modifying the algorithms in Section 5 according to Lemma 7, we can deduce
that the bounded version of ug is in NP, since the generation of an optimal candidate
only requires nondeterministic polynomial time. Additionally, we prove here that the
bounded version of UG is in NPNP.

Lemma 8
For n fixed, the language

{J〈C, x, v〉K | |C| = n ∧ ∃α[αC = x ∧ C(α) ≤ v]}

is in NP.

Proof. To decide this language in nondeterministic polynomial time, it suffices to check
that |C| = n, guess a candidate α of length at most (|J〈C, x〉K|/n)n, and return 1 if
C(α) < v and 0 otherwise. �

Proposition 4
The language

BUG(n) = {J〈C, x, y〉K | |C| = n and y is optimal for C and x}

is in NPNP.

Proof. Consider the following nondeterministic algorithm. On input J〈C, x, y〉K:

1. Return 0 if |C| 6= n. Write C = 〈C1, C2, . . . , Cn〉.

2. Construct the constraint C0 shown in Figure 3, which requires optimal
candidates α to satisfy αB = y.

3. Generate a candidate α of length at most (|J〈C′, x〉K|/(n + 1))n+1, where
C′ = 〈C0, C1, . . . , Cn〉.

4. Using an oracle for the language in Lemma 8 with n + 1 constraints,
decide whether C′(α) is an optimal violation profile for C′ and x. Return 1
if so, and return 0 otherwise.
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This algorithm clearly decides BUG(n), and in Step 4 an oracle for a language in NP is
invoked. It therefore remains to show that this algorithm runs in polynomial time. To
that end, note that |JC0K| = O(|y|), since C0 has as many states and transitions as the
length of y, plus or minus a constant. Therefore, constructing C0 only requires polyno-
mial time, and the candidate length bound (|J〈C′, x〉K|/(n + 1))n+1 remains polynomial
in |J〈C, x, y〉K|. �

Because violation numbers cannot be represented in logarithmic space in general,
we conjecture here that the bounded versions of ug and UG are not in NL. We can-
not prove this conjecture using current techniques, however, since it is still unknown
whether NL 6= NP or whether NL 6= NPNP.

8. Discussion

Our formal results establish universal generation for OT as a maximally difficult prob-
lem in the class of polynomial-space computable decision problems. In theory, this
means that universal generation for OT is as difficult as solving quantified Boolean
formulae (Stockmeyer and Meyer 1973) or playing games such as Othello (Iwata and
Kasai 1994), Rush Hour (Flake and Baum 2002), and The Legend of Zelda: Ocarina of
Time (Aloupis et al. 2015). In this section, we interpret our results by identifying and
discussing four properties of OT universal generation that play an important role in our
analyses:

• the expressive power of constraint intersection, which places a
PSPACE-hard lower bound on OT and related systems;

• the ability of constraints to multiplicatively increase the length of the
shortest SR and assign exponentially high violation numbers, which
prevents universal generation from being done in nondeterministic
polynomial time (assuming NP 6= PSPACE) or in nondeterministic
logarithmic space (assuming NP 6= NL) in the bounded case;

• the logical structure of ug and UG, which makes the latter more complex
than the former in the bounded setting; and

• representational assumptions we have made in this article, which affect
our accounting of time and memory resources.

8.1 Expressivity of Constraint Intersection

Our analysis from Section 5 and Section 6 shows that the main contributor to the
complexity of universal generation is the ability to intersect arbitrarily many finite-
state constraints. Since the DFA intersection emptiness and non-emptiness problems are
PSPACE-complete, the ability to intersect constraints gives OT a PSPACE-hard lower
bound on the complexity of universal generation. The fact that OT universal generation
does not require additional complexity beyond PSPACE implies that the complexity of
constraint intersection dominates the complexity of other components of OT such as
the constraint ranking mechanism or the ability to optimize violation profiles.

Given this insight, it is not difficult to see that other OT-like formalisms that involve
constraint intersection are also PSPACE-complete. For instance, Frank and Satta’s (1998)
and Chen-Main and Frank’s (2003) version of OT, which uses binary-valued constraints
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that can assign at most one violation, is PSPACE-complete, since it is transparently
reducible in both directions to DFA intersection. The version of Harmonic Grammar
(HG) proposed by Pater (2009) and Potts et al. (2010), where constraint interaction
is implemented by taking a weighted sum of constraint violations instead of using a
constraint ranking mechanism, is also PSPACE-complete, since the analyses presented
in Section 5 and Section 6 are just as applicable to HG as they are to OT.

One interpretation of our PSPACE-completeness result is that OT is “too powerful”:
A theory of phonology should not predict that computing the SR for a UR is compu-
tationally intractable when in reality, human speakers have little difficulty producing
SRs on the fly. Another interpretation, which we propose here, is that our PSPACE-
completeness result reflects the explanatory power that is offered by the method of
factoring intricate phonological phenomena into simple constraints on markedness and
faithfulness. A typical analysis in OT phonology, like the toy example we gave in Sec-
tion 3.1, includes a plain-language description of the phenomenon under consideration,
followed by a ranked list of proposed constraints that accounts for the phenomenon. We
can understand this style of analysis to be a process in which the phonologist composes
a compact description of a complex generalization by factoring it into a much simpler,
formally clean list of ranked constraints. Under this view, our PSPACE-completeness
result validates the explanatory effectiveness of this approach by showing that these
compact descriptions have the potential to explain enormously complex phenomena.

8.2 Violation Numbers, Candidate Length, and Grammar Size

A recurring theme in the proofs we have presented is the need to control the maximum
value of violation numbers as well as the maximum possible length of the shortest
optimal candidate for a UR. In Section 5, we have seen that the reason ug cannot be
decided in nondeterministic polynomial time (assuming that NP 6= PSPACE) is because
the shortest optimal candidate may be longer than polynomial length. Similarly, in
Section 7 we were unable to prove that the bounded version of ug could be decided in
nondeterministic logarithmic space because remembering violation numbers requires
linear space in the worst case. If the length and violation profile of an optimal SR were
both subject to polynomial bounds, then the full version of ug would be NP-complete,
and the bounded version of ug would be NL-complete.

The reason why long optimal candidates exist can be understood by examining the
proofs in Appendix A. Roughly speaking, these arguments show that given a UR x and
a list of constraints C = 〈C1, C2, . . . , Cn〉 where each Ci has qi states, the length of the
shortest optimal candidate for C and x is at most

(2 + |x|)
n∏

i=1

qi

This means that in the worst case, each constraint Ci multiplies the length of shortest
optimal candidates by a factor of qi, causing candidate length to grow exponentially in
the number of constraints in the grammar.

The reason for the existence of large violation numbers, on the other hand, is at-
tributed to the compactness of the bit-string representation of integers. Since a sequence
of n bits can represent an integer of value up to 2n, it is difficult to avoid the possibility
of exponential violation numbers incurred by a candidate. One possible approach for
doing so would be to use a unary representation of integers on the input tape, but
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a binary representation on the work tape. The use of unary numbers is not without
precedent in OT phonology, since the visualization of tableaux typically uses a unary
representation of violation numbers (e.g., “∗ ∗ ∗” represents a violation number of 3). If
such a representation is used, then violation numbers only require logarithmic space on
the work tape, making bounded universal generation NL-complete.

8.3 Logical Structure of Optimization

Another recurring theme is the use of nondeterminism in our proofs. For example, our
proof that ug ∈ PSPACE actually shows that ug ∈ NPSPACE by guessing a candidate
that is at least as optimal as the violation bound given. We argue here that our use
of nondeterminism reflects the logical structure of the universal generation problem.
In complexity theory, nondeterministic complexity classes typically correspond to de-
cision problems whose statements involve existential quantification. For instance, the
Hamiltonian path problem, an NP-complete problem, asks whether there exists a path in
a graph that visits all the vertices. Similarly, the statement of ug also involves existential
quantification: ug asks whether there exists a candidate α such that αC = x and C(α) ≤ v.
On the other hand, the complements of nondeterministic classes correspond to univer-
sal quanitification. For example, the complement of the Hamiltonian path problem, a
coNP-complete problem, asks whether for all paths in a graph, at least one vertex is not
visited. In Lemma 6, the problems IE-DFA and UG both involve universal quantification:
IE-DFA asks whether all strings are rejected by at least one DFA, and UG asks whether
all SRs are less optimal than the one given in the input.

Although ug and UG are both PSPACE-complete, the latter is logically more com-
plex than the former, in the sense that the statement of UG involves an alternation of
quantifiers. Whereas ug merely asks whether there exists a candidate α for x such that
C(α) ≤ v, UG asks whether there exists a candidate α such that αC = x, αB = y, and
for all candidates β with βC = x, C(α) ≤ C(β). This discrepancy in logical complexity
is not captured by PSPACE, since PSPACE is closed under quantifier alternation in an
appropriate sense (see Arora and Barak 2009, Chapter 5, for details); but it is reflected in
the bounded versions of these problems. As we showed in Section 7, the bounded version
of ug is in NP, which corresponds to existential quantification, while the bounded
version of UG is in NPNP, which corresponds to problems with a single ∃∀ alternation.

8.4 Representations

Finally, we briefly discuss the impact of representation on our complexity analysis. Our
representational assumptions for bit strings are based on convention in complexity
theory: numbers, states, and alphabet symbols are represented as binary strings of
logarithmic length; tuples are represented by concatenation of their elements; and finite
functions are represented as lists of input–output pairs. Abstracting away from bit
strings, our representation of phonological objects, particularly the Correspondence-
Theoretic representation of candidates as strings of symbol pairs, largely follows the
assumptions of prior literature such as Chen-Main and Frank (2003), Riggle (2004),
and Hao (2019). These representational choices have a measurable impact on our com-
plexity results: for instance, as discussed in Section 8.2, using a tableau-style unary
representation of violation numbers would make the bounded universal generation
problem NL-complete. More dramatic effects on complexity may be observed when us-
ing sophisticated representations designed to account for suprasegmental phenomena.
Lamont (2023), for instance, shows that the undecidable Post Correspondence Problem
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(Post 1946) is Turing-reducible to OT universal generation when candidates are repre-
sented as autosegmental structures (Goldsmith 1976).

9. Conclusion

In this article, we have obtained several theoretical results regarding the computational
complexity of OT. Namely, we have shown that OT universal generation is PSPACE-
complete, while bounded universal generation is at least NL-hard and at most NPNP-
hard. The close relationship between OT universal generation and the intersection
non-emptiness problem for DFAs shows that our complexity lower bounds are almost
entirely attributable to the expressive power of automaton intersection, which allows
OT to produce concise, elegant explanations of sophisticated phonological phenomena.
However, more careful inspection of our proof techniques as well as our results for
bounded universal generation reveals that candidate length, violation numbers, and
the logical structure of optimization problems also contribute to the time and memory
requirements of OT algorithms.

Appendix A. Optimal Candidate Length and Violations

This appendix presents the proofs of Proposition 2 and Lemma 2 from Section 5.1. These
results are restated below.

Proposition 2
For every polynomial f (n), there is a UR x and a list of constraints C such that

• there is a candidate α such that αC = x and C(α) = 〈0, 0, . . . , 0〉, and

• for all candidates αwith αC = x, C(α) = 〈0, 0, . . . , 0〉 only if
|α| > f (|J〈C, x, v〉K|).

Lemma 2
Let x be a UR, let C = 〈C1, C2, . . . , Cn〉 be a list of constraints, and let l = |J〈C, x〉K|. Then,

• there is a candidate of length at most lel that is optimal for C and x, and

• for all candidates α, if |α| ≤ lel, then for all i, Ci(α) ≤ le2l.

The interpretation of Proposition 2 and Lemma 2 is that they set an exponential
upper bound on the length and violation profile of the shortest SR for a list of constraints
and a UR. We begin with a straightforward proof of Proposition 2.

Proof of Proposition 2 . Let x = ε, and for each k ≥ 1, let vk = 〈0, 0, . . . , 0〉 be the zero
vector of length k. For i > 1, let MOD(i) and NOTEMPTY be constraints over Σ = Γ = {a}
defined as follows.

• MOD(i): Assign one violation to candidate α if |αB| is not a multiple of i.

• NOTEMPTY: Assign one violation to candidate α if |αB| = 0.
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q0start q1 q2 · · · qi−1

# # #

〈·, a〉 : 0 〈·, a〉 : 0 〈·, a〉 : 0 〈·, a〉 : 0

〈·, a〉 : 0

: 1 : 1 : 1

〈·, ε〉 : 0 〈·, ε〉 : 0 〈·, ε〉 : 0 〈·, ε〉 : 0

Figure A.1
The constraint MOD(i), which assigns one violation when the SR’s length is not a multiple of i.
The notation · refers to any symbol in Σε ∪ Γε that results in a valid transition.

Now, let pi denote the ith prime number. (Thus, p1 = 2, p2 = 3, etc.) For k ≥ 1, let

Ck = 〈NOTEMPTY, MOD(p1), MOD(p2), . . . , MOD(pk)〉.

Observe that Ck(α) ≤ vk = 〈0, 0, . . . , 0〉 only if αB ∈ (ap1p2...pk )∗. Since NOTEMPTY elim-
inates ε as a possible optimal candidate, the length of αmust therefore satisfy

|α| ≥ p1p2 . . . pk ≥ f (|J〈x, Ck, vk〉K|)

for k large enough. �
To prove Lemma 2, we use a strategy based on Riggle’s (2004) approach to universal

generation, where optimal SRs are generated by finding the shortest path through the
state diagram of an SFST that computes the violation profile for a candidate while
ensuring that the candidate corresponds to the intended UR. The length of the shortest
optimal candidate is then bounded above by the pumping length of this SFST. Further-
more, a bound on the optimal violation profile is obtained by observing that an SFST
can only assign a linear number of violations to a candidate, since each transition is
associated with a constant number of violations assigned.

To derive the specific mathematical formulae appearing in Lemma 2, we introduce
a technical lemma that relates the total number of states in a collection of SFSTs with the
pumping length of the intersection of the SFSTs.

Lemma 9
Fix l ∈ N. For q1, q2, . . . , qn ∈ N\{0}, if q1 + q2 + · · ·+ qn ≤ l, then q1q2 . . . qn ≤ el/e.

Proof. We use strong induction on l. When l = 1, we have n = 1 and q1 = 1; thus,

q1q2 . . . qn = q1 = 1 < e1/e ≈ 1.44

Now fix l, and assume that Lemma 9 holds for all j < l. If q1 + q2 + · · ·+ qn ≤ l, then

q1q2 . . . qn ≤ e(l−qn )/eqn
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q0,0start q0,1 q0,2 · · · q0,k

# # #

L

#

〈x1, ·〉 : 0 〈x2, ·〉 : 0 〈x3, ·〉 : 0 〈xk, ·〉 : 0

〈ε, ·〉 : 0 〈ε, ·〉 : 0 〈ε, ·〉 : 0 〈ε, ·〉 : 0

〈·, ·〉 : 1

: 1 : 1 : 1
〈·, ·〉 : 1〈·, ·〉 : 1 〈·, ·〉 : 1 〈·, ·〉 : 1

: 1

Figure A.2
A constraint that assigns one or more violations to a candidate αwhen αC 6= x = x1x2 . . . xk. The
notation · refers to any symbol in Σε ∪ Γε that results in a valid transition.

The proof is complete if we can show that qn ≤ eqn/e. This follows easily, however, from
the observations that 1 < e1/e and el/e is exponential in l. �

Proof of Lemma 2 . We begin by constructing an SFST C∩ takes a candidate α as input
and outputs a tuple C∩(α) = 〈v0, v1, . . . , vn〉, where C(α) = 〈v1, v2, . . . , vn〉 and v0 = 0 if
and only if αC = x. Let C0 be the constraint illustrated in Figure A.2, which computes
v0. For each i ∈ {0, 1, . . . , n}, write Ci = 〈Qi, Σε × Γε,N, qi,0,→i, #i〉. Let C∩ = 〈Q∩, Σε ×
Γε,Nk, q0,→, #〉 be defined as follows.

• Q∩ = Q0 ×Q1 × · · · ×Qn

• q0 = 〈q0,0, q1,0, . . . , qn,0〉

• 〈q0,j0 , q1,j1 , . . . , qn,jn〉
〈a,b〉−−−−−−−→

〈v0,v1,...,vn〉
〈q0,j′0

, q1,j′1
, . . . , qn,j′n〉 if and only if for all

i ∈ {0, 1, . . . , n}, qi,ji
〈a,b〉−−→

vi
qi,j′i

• #(〈q0,j0 , q1,j1 , . . . , qn,jn〉) = 〈#0(q0,j0 ), #1(q1,j1 ), . . . , #n(qn,jn )〉

C∩ is simply the intersection of C0, C1, . . . , Cn, where transition outputs of each Ci are
concatenated together into tuples of violation numbers.

In order for a candidate α to be a valid candidate for x (i.e., αC = x), it is necessary
and sufficient for C∩ to end its computation on one of the states in F = {q0,k} ×Q1 ×
Q2 × · · · ×Qn on input α (i.e., C0 must end on state q0, k). Therefore, let α = α1α2 . . . αm
be a candidate such that

q0
α1−→
c1

q1
α2−→
c2
. . .

αm−−→
cm

qm

where qm ∈ F. We need to show that there is such an α that is optimal while satisfying
m ≤ lel and c = c1 + c2 + · · ·+ cm ≤ le2l.
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To obtain the bound on m, first note that without loss of generality, we can assume
that qi 6= qj whenever i 6= j; that is to say, C∩ never enters any state more than once. This
because if qi = qj with i 6= j, then we would have

q0
α1−→
c1

q1
α2−→
c2
. . .

αi−→
ci

qi
αj+1−−−→
cj+1

qj+1
αj+2−−−→
cj+2

qj+2 . . .
αm−−→
cm

qm

In this case the shorter candidate α′ = α1α2 + · · ·+ αiαj+1αj+2 . . . αm would be at least
as optimal as α, since

C(α′) = C(α)− (ci+1 + ci+2 + · · ·+ cj)

≤ C(α)

Now, assuming that C∩ never enters any state more than once on input α, it follows
that m ≤ |Q∩|. Assuming that each state in each Qi is represented by at least one bit of
J〈C, x〉K, we have

|Q1|+ |Q2|+ · · ·+ |Qn| ≤ l

so using Lemma 9 we can compute

|Q∩| = |Q0| × |Q1| × · · · × |Qn|

≤ (|x|+ 2)el/e

≤ lel/e

≤ lel

thus m ≤ lel.
Now, to obtain a bound on c, we observe that no constraint in C can assign more

than 2l violations in a single transition, assuming that numbers are represented in binary
form. Therefore, writing c = 〈v0, v1, . . . , vn〉, for each i we have

vi ≤ 2lm

≤ 2l · lel

≤ el · lel

= le2l

�
In Section 7, we stated an alternate version of Lemma 2, reproduced below, in which

a polynomial bound on the length of the shortest optimal candidate is obtained by
treating the number of constraints as a constant.

Lemma 7
Let x be a UR, let C = 〈C1, C2, . . . , Cn〉 be a list of constraints, and let l = |J〈C, x〉K|. Then,
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• there is a candidate of length at most (l/n)n that is optimal for C and x,
and

• for all candidates α, if |α| ≤ (l/n)n, then for all i, Ci(α) ≤ 2l(l/n)n.

To obtain these bounds, it suffices to use the same proof as in Lemma 2, but with
the following alternate version of Lemma 9.

Lemma 10
Fix l, n ∈ N. For q1, q2, . . . , qn ∈ N\{0}, if q1 + q2 + · · ·+ qn ≤ l, then q1q2 . . . qn ≤ (l/n)n.

Proof. Without loss of generality, assume that q1 + q2 + · · ·+ qn = l. We prove a some-
what different statement: if qi 6= qj for some i and j, then

qiqj <

(
qi + qj

2

)2

(A.1)

This strict inequality implies that the maximum value of q1q2 . . . qn is attained when all
qis have the same value. If real values of qi are allowed, then the maximum value of
q1q2 . . . qn is (l/n)n, hence the lemma.

To prove Inequality A.1, simply observe that

(qi + qj)2 − (qi − qj)2 = q2
i + 2qiqj + q2

j − q2
i + 2qiqj − q2

j

= 4qiqj

thus

qiqj =
(qi + qj)2 − (qi − qj)2

4

<
(qi + qj)2

4 assuming qi 6= qj

=

(
qi + qj

2

)2

�
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