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Abstract

The zero-resource cross-domain named entity recognition (NER) task aims to perform NER in a
specific domain where labeled data is unavailable. Existing methods primarily focus on transfer-
ring NER knowledge from high-resource to zero-resource domains. However, the challenge lies
in effectively transferring NER knowledge between domains due to the inherent differences in
entity structures across domains. To tackle this challenge, we propose an Unsupervised Domain
Adaptation Adversarial (UDAA) framework, which combines the masked language model auxil-
iary task with the domain adaptive adversarial network to mitigate inter-domain differences and
efficiently facilitate knowledge transfer. Experimental results on CBS, Twitter, and WNUT2016
three datasets demonstrate the effectiveness of our framework. Notably, we achieved new state-
of-the-art performance on the three datasets. Our code will be released.

1 Introduction

Named entity recognition (NER) is a fundamental task in natural language processing. However, in
real-world scenarios, obtaining the amount of domain-specific labeled data for the NER task is often
challenging, as it can be expensive and time-consuming (Ma and Hovy, 2016; Lample et al., 2016;
Akbik et al., 2018; Winata et al., 2019). Hence, zero-resource cross-domain NER (Jia et al., 2019; Bari
et al., 2020; Zhang et al., 2021; Karouzos et al., 2021; Zheng et al., 2022), which addresses the issue of
data scarcity by adapting NER models to specific domains without available labeled data, draws more
and more attention.

Based on the mainstream methods, recent researches have focused on the transfer of NER knowl-
edge from high-resource to zero-resource domains. These methods typically involve training a source
model on labeled data from the source domain to learn domain invariant features and apply the adapt-
ing NER models to the target domain. In the process of transferring knowledge to the target domain,
the Masked Language Model(MLM) is currently recognized as an unsupervised adaptive auxiliary task
with good performance. AdaptBERT (Han and Eisenstein, 2019) fine-tunes the MLM on unlabeled data
to learn both task-special knowledge and domain-invariant knowledge. Furthermore, TOF (Zhang et al.,
2021) addresses the zero-resource cross-domain task scenario through MLM capturing enough NER task
knowledge. The acquired knowledge serves as a bridge to facilitate the transfer of NER knowledge.

MLM plays a significant role in extracting context and recognizing entity boundaries. However, during
knowledge transfer, especially when mapping between two domains, the transfer of knowledge from
different tasks and the varying data distributions across domains can introduce noise and hinder model
generalization performance. For instance: a) I'm watching a documentary about a shark on TV, and
b) The stock market experienced a shark attack as prices plummeted. In the social media domain,
the word shark represents sea animals. However, in the news domain, this is used metaphorically,
referring to the stock market crash. The word “shark™ shares the same affixes and root knowledge across
different domains, yet it carries different semantic meanings in each domain. Meanwhile, due to such
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Task
non-NER :  [Germany] [European Union] [Werner Zwingmann ] [Smash Shiba]

NER:  <Germany, LOC> <European Union, ORG> < Werner Zwingmann , PER> <Smash Shiba, PER>

|

Knowledge Transfer
Task-Special: eg. Semantics ,Entity Structure, Entity Boundaries.

Domain-Invariant: eg. Affixes, and Roots, Common Sense.

I

Source (News): Germany's representative to the European Union 's veterinary committee Werner Zwingmann.

Target (Twitter): @redbullESPORTS : Smash Shiba is stoked for #fNWM7 Melee Grand Finals .

Figure 1: The example of knowledge transfer process from two perspectives: domain and task.

semantic biases across different domains, the MLM task may fail to adapt to the specific context and task
requirements of the target domain, resulting in a decrease in model performance in the target domain.

Inspired by the idea of (Bari et al., 2020), which adopted the adversarial approach to learning language-
invariant knowledge in an unsupervised adaptive way, we propose a framework named Unsupervised
Domain Adaptation Adversarial (UDAA). UDAA combines the MLM auxiliary task with the Domain
Adaptation Adversarial Network (DAAN) to mitigate inter-domain disparities. By incorporating an ad-
versarial loss, the model becomes more adept at distinguishing domain-invariant knowledge from task-
specific knowledge. This encourages the development of resource-agnostic representations, allowing
knowledge from high-resource domains to be more effectively aligned with zero-resource domains.

As shown in Figure 1, in our work, the knowledge transfer process is from two perspectives: domain
and task.

Domain. From the domain perspective, the domain-invariant knowledge can be transferred, such as
affixes, roots, and common sense, in both source and target domains. To ensure the consistency between
feature representations extracted from the source domain and those from the target domain, we employ
the DAAN method to align features across different domains, eliminating distribution discrepancies be-
tween domains. This approach captures domain-relevant knowledge, allowing for the learning of more
domain-invariant features to ensure the model’s generalization performance.

Task. From the task perspective, the task-special knowledge can be transferred, such as entity structure
and senmantics, in both NER and non-NER task. These task-specific features play a crucial role in the
complementary process of NER and non-NER task(Rei, 2017; Peters et al., 2017). For instance, by
introducing the MLM task, the model can extract entity and semantic information from the context and
identify entity boundaries, thus compensating for missing entity information in domain-specific NER
task. In the UDAA model, tasks in different stages act as bridges from high-resource domains to zero-
resource domains, facilitating effective knowledge transfer.

In this paper, the UDAA framework is designed to address the challenge of zero-resource cross-domain
NER task, which focuses on ensuring the adaptability of unsupervised domains by combining the MLM
auxiliary task with DAAN. This integration enables the framework to transfer knowledge from both
domain and task perspectives. With enough training on the labeled data from the source domain, the
framework generates pseudo-data on the unlabeled corpus to address the data scarcity challenge encoun-
tered in the target domain. The training process of the UDAA framework consists of three unified steps:
Adversarial Domain Learning (ADL), Adaptive Pseudo-Data Generation(APG), and Domain Adaptive

Proceedings of the 23rd China National Conference on Computational Linguistics, pages 1123-1135, Taiyuan, China, July 25 — 28, 2024.
Volume 1: Main Conference Papers
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China 1124



Computational Linguistics

Prediction(DAP).

To validate the effectiveness and superiority of our proposed approach, we conduct experiments on
three datasets for zero-resource cross-domain NER task: CBS (Jia et al., 2019), Twitter (Zhang et al.,
2018b), and WNUT2016 (Strauss et al., 2016).

Our contributions can be summarized as follows:

* We propose the UDAA framework, which performs the zero-resource cross-domain NER task by
unifying training through the steps of Adversarial Domain Learning, Adaptive Pseudo-Data Gener-
ation, and Domain Adaptive Prediction.

* We combine the MLM auxiliary task with the DAAN to mitigate inter-domain disparities. By incor-
porating an adversarial loss, the model becomes more adept at distinguishing task-special knowl-
edge from domain-invariant knowledge. This integration provides a lightweight structure for the
UDAA framework.

» Experimental results on the CBS, Twitter, and WNUT2016 datasets demonstrate the effectiveness
of our UDAA framework. Meanwhile, we achieve new state-of-the-art performance on the three
datasets.

2 Related Work

Cross-domain NER. Some studies (Devlin et al., 2018; Sun et al., 2020; Liu et al., 2021) achieves
remarkable performance in cross-domain NER scenario, yet they require many domain-related labeled
data for training when adapting to the target domain. To this end, cross-domain NER algorithms (Yang
et al., 2018; Lin and Lu, 2018; Liu et al., 2020b) that alleviate the data scarcity issue and boost the
models’ generalization ability to target domain have drawn substantial attention recently. To solve this
problem, some studies introduce multitask learning (Liu et al., 2020b; Wang et al., 2020) or designing
new model architectures (Jia et al., 2019; Liu et al., 2020c; Jia and Zhang, 2020) for improving the NER
performance of the target domain by training on data from both source and target domain. However,
these methods typically require training with vast amounts of labeled source domain data to achieve
satisfactory performance in the target domain. Our work differs in that we neither requires a large
amount of domain-related data nor the design of a new model structure. We design a unified training
framework and use models of different tasks as the bridge from high-resource to zero-resource domain
to achieve knowledge transfer.

Zero-resource NER. Some studies (Jia and Zhang, 2020; Pfeiffer et al., 2020) focus on enhancing the
architectural design of existing models by incorporating new components to capture specific knowledge,
such as entity types and task characteristics. Different from these methods, our approach only modifies
the training procedure without changing model structures. Other studies introduce different auxiliary
tasks to alleviate data scarcity (Han and Eisenstein, 2019; Phang et al., 2020; Xue et al., 2020a). They
are usually based on multi-task learning. Multi-task learning requires balance between the NER task and
auxiliary tasks, which needs carefully designed objectives. In addition, LLMs (Ouyang et al., 2022; Zeng
et al., 2022a) have good learning and expression capabilities, so they are also used in zero-resource NER
task and have achieved some good results. Notably, our work differs in that we design an unsupervised
domain adaptation fine-tuning framework to exploit more diverse data and training strategies.

Adversarial Learning. Adversarial learning originates from Generative Adversarial Nets(GAN)
(Goodfellow et al., 2014). Adversarial learning is a regularization method for improving the generaliza-
tion of a classifier. It does so by improving model’s robustness to adversarial examples, which are created
by making small perturbations to the input. Recently, many studies (Bari et al., 2020; Zhao et al., 2022)
have tried to apply adversarial learning to NLP tasks. They(Liu et al., 2017) extended adversarial train-
ing to the multi-task learning framework for text classification, aiming to alleviate the domain-invariant
(shared) and task-special (private) latent feature spaces from interfering with each other. Notably, Our
method integrates both the adversarial training in an unified framework to find domain-invariant infor-
mation for MLM tasks.
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3 Our Approach

In recent years, researchers have paid more attention to cross-language scenarios, as the data in cross-
domain scenarios is more difficult to obtain. Therefore, we adopt TOF framework (Zhang et al., 2021)
as our baseline, which was designed for unsupervised domain adaptation in sequence labeling tasks and
achieved state-of-the-art performance in previous work.

The UDAA framework is enlightened by the TOF. Our approach consists of the knowledge transfer
process and the fine-tuning process. The architecture of UDAA is illustrated in Figure 2.
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Figure 2: The overall architecture of the UDAA framework. The dotted arrows represent the knowledge
transfer process of the data, and the solid arrows represent the fine-tuning process of the model. At the
ADL stage, we combine the AdaptBERT model with the DAAN and incorporating the adversarial loss
to distinguish domain-invariant knowledge from task-specific knowledge. At this time, an MLMADL
model will be generated as the input of the next APG stage. In the APG stage, the MRC framework (Li et
al., 2019) will be used for K rounds of iterations to generate high-quality pseudo-data and the best NER
model for prediction in the next DAP stage. The models for tasks at different stages serve as bridges
from high-resource domains to zero-resource domains and enable knowledge transfer.

3.1 Knowledge Transfer Process

As shown in Figure 2, our framework aims to facilitate knowledge transfer to the target domain, which
displays how to transfer not only domain but also task knowledge from various data. Relevant informa-
tion about the data is listed in Table 1.

We consider six kinds of datasets: i) Unlabeled Corpus Dg i, i) Unlabeled Corpus D 1, 1i1)
Labeled NER Dataset Dg ,er, iv) Labeled MRC Dataset Dt .., v) Labeled MRC Dataset Dg e,
and vi) Unlabeled NER Dataset (for test) D7 per—no, Where datasets { 1), iii), v)} belong to the source
domain and datasets { ii), iv), vi)} belong to the target domain. Additionally, two important intermediate
generated data are also included: vii) Pseudo Data Dt pseudo, and viiil) MRC-Style Data D7 er—mpre,
where D7 er—mre is converted from Dy peeud0 and plays an important role in the knowledge transfer of
MRC intermediate task.

Considering the discrepancy between the source and target domains, it is essential to perform fine-
tuning tasks on both the source and target data. In addition to the labeled data for the NER task, we also
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Number Name Domain  Task
1) Ds mim Source MLM
ii) Dt im Target MLM
1ii) Ds ner Source  NER
v) D7 e Target MRC
V) Dg mre Source MRC

vi) D1 ner—no Target NER
vii) D pseudo Target NER
viii) D7 per—mre  Target  MRC

Table 1: Various data descriptions in the knowledge transfer process.

utilize the non-NER task. For example, Dg i, and Dy, are used for ADL stage, while Dg ;- and
D 1y are used for APG stage.

3.2 Fine-tuning Process

There are three steps to performing the NER task in the fine-tuning process: a) Adversarial Domain
Learning, b) Adaptive Pseudo-Data Generation, and ¢) Domain Adaptive Prediction.

3.2.1 Adversarial Domain Learning

We employ two independent encoders to fine-tune the MLLM auxiliary task to capture domain-invariant
and task-special representations for source and target domains. Concretely, given two input token se-
quences zs = {z;}Y and 2, = {x; }j\/[ , where N, M represents the number of words in source and target
domains. We feed it into the feature encoder to obtain contextualized word embeddings F,.. and E;g;:

Esrc = Adapt BERT () (1)

Etgt = AdaptBERT(xt) (2)

However, the MLLM task may fail to adapt to the specific context and task requirements of the target
domain due to semantic biases present across different domains, resulting in a decrease in model perfor-
mance in the target domain. To address this issue, we integrate DAAN with the MLM task and conduct
joint training to mitigate semantic biases between domains and facilitate effective knowledge transfer.

In our work, we use adversarial training to find domain invariant representations . The DAAN exhibit
an architecture whose first few feature extraction layers are shared by two classifiers trained simultane-
ously. DAAN minimizes the domain classification loss with respect to parameters specific to the domain
classifier D , while maximizing it with respect to the parameters that are common to both classifiers.
This minimax optimization becomes possible via the use of a gradient reversal layer (GRL). By incorpo-
rating DAAN, a more powerful model MLMADL is trained, which can capture more domain-invariant
knowledge, thereby enhancing the model’s generalization performance.

Li(xg) = W; - xq+ b; 3)
D(Eq) = o([L2 - (L1(Eaq) - W3 + b3)]) “4)

where d € {srec,tgt} and L; correspond to the fully connected layer in DAAN. D(E;) discriminates
whether E comes from the source or the target domains. W; and b; represent different fully connected
layer parameters. The loss function £,4, for DAAN is calculated as follows:

Lody = B, log(D(Esre)) + Xg,log(1 — D(Eygt)) 5)
The total loss function £ 4y, for jointly train in the ADL stage is defined as follows:

KADL = gadv + gsrc + ftgt (6)
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where /.. represents the source domain loss function and /;4; represents the target domain loss function.

By incorporating ¢,4,,, the MLMADL model becomes more adept at distinguishing domain-invariant
knowledge from task-specific knowledge. This encourages the development of resource-agnostic repre-
sentations, allowing knowledge from high-resource domains to be more effectively aligned with zero-
resource domains.

3.2.2 Adaptive Pseudo-Data Generation

We obtain a trained NER model by using labeled data from the source domain along with the initial
parameters of the MLMADL, which is utilized on the unlabeled corpus in the target domain and generates
pseudo-data. To iteratively optimize this pseudo-data, we employ the MRC auxiliary task. The MRC task
offers several advantages: i) It enhances the NER model’s capability to extract spans, thereby capturing
semantic information associated with different entity types (Wu et al., 2019). ii) It acts as a bridge
between NER and other tasks. iii) It facilitates the transfer of knowledge from diverse tasks into a
unified training framework (Liu et al., 2020a).

In the iterative optimization process of the MRC task, the dataset format required differs from that
of the NER task dataset. Therefore, dataset conversion is necessary. The dataset is represented using
triples (question, answer, context), and to fully leverage contextual information from each sentence,
we treat the description of each entity as a query. Each entity in the dataset corresponds to an entity
label, and each entity label is associated with a query g, = q1, g2, ..., ¢m, Where m represents the length
of the generated query. The training objective of the MRC task at this point is to answer natural language
queries given the context to obtain named entity information.

In the MRC task, the design of natural language queries plays a crucial role because it requires skillful
construction of queries to encode prior knowledge about entity class labels. Otherwise, named entity
information in the text cannot be effectively obtained. We adopt a template-based approach to construct
natural language queries for relevant entity type labels.

We employ a span selection strategy (Li et al., 2019) by feeding the context word vectors of each label
into two separate linear classification layers. Using binary classifiers to predict the start and end indices
of each entity allows the model to determine the boundaries of the entity based on specific queries. The
probability formula for computing the start or end indices of each label as entity spans is as follows:

start

P = softmax(Wsigrt - x) (7

pnd = softmax(Wepg - x) )
where Ware and We,,g € R%*2 are learnable parameters, and d; denotes the dimensions of contex-
tualized word embedding.
After K rounds of iterative optimization using the MRC task, we obtain high-quality pseudo-data,
which helps alleviate the issue of data scarcity in the target domain. In addition, through the MRC
intermediate task, we also obtained the NER model for prediction in the next DAP stage.

3.2.3 Domain Adaptive Prediction

In the DAP stage, the NER model inherits parameters from the APG stage and applies it to predict
sequence labels in the target domain. During the DAP stage, given the text w = (wy, wa, ...wy) of the
dataset D7 per—no, special characters [C'LS| and [SEP] are respectively appended at the beginning and
end of each sentence to obtain special representations. After encoding by the model f (-, 629'), a series
of contextual feature representations x are returned. These representations x are then inputted into linear
classification layers, maximizing the probability of each label y; using true entity labels. We opt for the

cross-entropy loss function, and the probability calculation for entity prediction is as follows:

logp(ye|wi:r) = By, - © — logy € YXexp(By, - x) ()]

where the contextualized embedding x captures information from the entire sequence wi.;p =
(w1, wa, ..., wr), and By, is a vector of weights for each tag y € {PER, LOC,ORG, MISC'}.
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In the DAP stage, the UDAA model utilizes high-quality pseudo-labeled data refined through K
rounds of iterative optimization, along with a well-generalized NER model, to make predictions. This
process enables the NER task model to effectively adapt to the target domain and achieve domain-
adaptive sequence labeling predictions.

4 Experiments

4.1 Datasets

We take Conll-2003 for English in the news domain as our source domain dataset for the NER task. As
for the target domain, we consider three datasets: a) CBS SciTech News(referred to as CBS) (Jia et al.,
2019), from the technology news domain, b) Twitter (Zhang et al., 2018b), and c) WNUT2016 (Strauss
et al., 2016) both from the social media domain. The unlabeled corpora from these datasets are readily
available for the MLM task. In addition, for the iterative optimization process in the MRC task, we select
NewsQA (Trischler et al., 2016) and TweetQA (Xiong et al., 2019) as our target domain dataset, while
SQuAD (Rajpurkar et al., 2016) is chosen as the source domain dataset.

To ensure one-to-one correspondence between labels across different domains, we chose the “no-type”
category from the WNUT2016 dataset, where entities don’t have specific label types and only contain
entity types in the BIO format. Additionally, the labels in the CBS and Twitter datasets cover four entity
types: PER, LOC, ORG, and MISC. To ensure transferability and adaptability to the target domain, we
applied a data preprocessing approach to remove entity label data from the training set in the CBS and
Twitter datasets. All datasets in the NER task adhere to the Conll-2003 dataset standard, where data is
divided into two columns: the first column contains word segmentation in the input sentence, and the
second column contains named entity type labels corresponding to each word.

4.2 Hyperparameters

Module | Task | CBS Twitter WNUT2016
ADL | MLM | 2e-5 2e-5 2e-5
ADL NER | 5e-5 2e-5 5e-5
APG NER | 8e-5 le-6 le-6
APG MRC | 8e-6 3e-5 le-6
DAP NER | 3e-5 5e-6 2e-6

Table 2: Learning rate for UDAA framework.

In the training procedure, we choose the Adam (Zhang et al., 2018a) optimizer and our experiment
runs on the Tesla P100 server, which takes more than 14h. We conduct the hyperparameters search to
determine the appropriate learning rate for the AD L module. We explore a range of learning rate values:
Se-06, 8e-06, le-5, 2e-5, 3e-5, Se-5, and 8e-5. We also explore a range of batch size values: 16, 32, and
64, which are limited by server computing power and we choose the batch size of 32. The selection of
hyperparameters values is based on the best validation performance.

Furthermore, we fine-tune each MLM model for 3 epochs, MRC for 6 epochs, and NER for 6 epochs.
Additionally, we perform one iteration of APG stage and achieve the best performance. The learning
rates for the UDAA framework can be found in Table 2. Other hyperparameters are set following the
approach described by TOF(Zhang et al., 2021).

4.3 Model
We evaluate the following models by P, R, and F1 scores:

* ChatGPT(Ouyang et al., 2022) select the GPT-3.5-Turbo model for zero-resource named entity
prediction.

e ChatGLM(Zeng et al., 2022a) select the ChatGLM2-6B model for zero-resource named entity
prediction.
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Model CBS Twitter WNUT2016

P R F1 P R F1 P R F1
ChatGPT7}(Ouyang et al., 2022) 28.23 25.63 2687 17.64 1992 18.71 15.85 18.05 16.57
ChatGLM7(Zeng et al., 2022a) 1.74  2.11 1.91 1.58 1.88 1.71 1.29 133 131
Cross-LM BiLSTM(Jia et al., 2019) 68.48 79.52 173.59 - - - - - -
mCell LSTM(Jia and Zhang, 2020) - - 75.19 - - - - - -
COFEE-MRC(Xue et al., 2020b) - - - - - 54.56 - - -
TOF(Zhang et al., 2021) - - 76.41 - - 67.94 - - 67.86
BiLSTM+CRF*(Liu et al., 2020b) 78.10 59.94 67.82 6572 58.89 62.12 / / /
BiLSTM+CRF+DAAN#* 78.48 6129 68.82 6588 60.74 63.21 / / /
AdaptBERT*(Han and Eisenstein, 2019) 69.80 81.26 75.10 6649 66.62 66.55 65.66 6230 64.10
TOF*(Zhang et al., 2021) 71.11 8258 7642 6820 67.61 6790 70.56 62.74 66.42
UDAA(ours) 7176 8223 76.64 6894 68.67 6881 71.17 65.53 68.24
w/o APG Stage 71.39 8197 7632 68.03 67.70 67.86 69.01 6539 67.15
w/o ADL Stage 7142 81.13 7597 6638 67.01 6670 67.67 6473 66.17
w/o APG Stage & w/o ADL Stage 68.83 79.28 73.69 6585 6510 6548 61.44 63.32 62.37

Table 3: Results of our UDAA framework compared to previous state-of-the-art methods for the zero-
resource cross-domain NER task. “1” indicates the prediction results of the LLMs. “-” indicates results
not provided in prior methods. “*” signifies results re-implemented by us. “/” denotes cases where
the processed WNUT2016 dataset is incompatible with the BiLSTM model and therefore results are
unavailable. Bold text highlights the best experimental outcomes.

Model CBS Twitter WNUT2016
Time Flops Size Time Flops Size Time Flops Size

TOF Framework
MRC Enhancing 19.55h  3656.9B  312M 13.53h  2419.0B  312M 13.56h 1397.8B  312M
Pseudo Data Enhancing 0.54h  3479B 103.3M 0.15h  337.1B 103.3M 0.11h  282.7B 103.3M
Continual Learning Enhancing 12.24h  3086.3B 206.6M 12.35h  2439.5B 206.6M 12.01h 14329B 206.6M
Total 31.84h 7091.1B  624M 25.50h 4858.5B  624M 25.6h 31134B 624M
UDAA Framework
Adversarial Domain Learning 12.60h 1043.7B 103.3M 1.17h  872.6B 103.3M 1.28h  726.1B 103.3M
Adaptive Pseudo-Data Generation 12.24h  3086.3B  206.6M 12.35h 2439.5B 206.6M 12.0lh 14329B 206.6M
Domain Adaptive Prediction 0.54h  3479B 103.3M 0.15h  337.1B 103.3M 0.11h  282.7B 103.3M
Total 25.33h  44779B 415.3M 13.69h 3649.2B 415.3M 13.71h 2441.6B 415.3M

Table 4: Comparison of UDAA and TOF frameworks in computing resources. The MRC Enhancing,
Pseudo Data Enhancing, and Continual Learning Enhancing are mentioned in TOF(Zhang et al., 2021).

* Cross-LM BiLSTM(Jia et al., 2019) using a language model as a cross-domain bridge, automat-
ically generate training parameters for the LSTM model to perform zero-resource named entity
prediction.

* mCell LSTM (Jia and Zhang, 2020) designed a multicell compositional LSTM for cross-domain
NER task.

* COFEE-MRC(Xue et al., 2020b) designed a neural network model with MRC auxiliary task.

* BiLSTM+CRF(Liu et al., 2020b) designed a BiLSTM and CRF paradigm for zero-resource cross-
domain NER.

¢ BiLSTM+CRF+DAAN. We built on the work(Liu et al., 2020b), incorporating the DAAN compo-
nents.

* AdaptBERT.(Han and Eisenstein, 2019) adopted the domain-tuning and task-tuning in the cross-
domain NER task.

* TOF(Zhang et al., 2021) performed MLM and MRC auxiliary tasks. It is the previous best state-
of-the-art and we take the TOF as our baseline in the zero-resource cross-domain scenario.
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* UDAA The framework proposed in our work and details can be found in section 3.
S Results and Analysis

5.1 Framework Performance

Table 3 presents the main results of our framework compared to previous methods in the zero-resource
cross-domain NER task. We regard re-implemented results of TOF (Zhang et al., 2021) as our baseline.
Our framework yields obvious improvements over the baseline (CBS: 0.22 1, Twitter: 0.91 1, and
WNUT2016: 1.82 1) and achieves new state-of-the-art results on the three datasets.

The two selected LLMs, ChatGPT and ChatGLM, performed poorly. The reasons may be: (a) The
instructions used by the LLMs require the model to generate more fine-grained entity tags. In the zero-
resource scenario, this more complex instruction design makes it difficult for the models to ensure the
accuracy of the output; (b) LLMs are prone to missing entities, mislabeling, and multiple entities; (c)
The selected LLMs is limited by computing resources and is not fine-tuning for NER task.

In conclusion, all these results verify the effectiveness and transferability of our framework UDAA in
the zero-resource cross-domain NER task.

5.2 Effectiveness of DAAN

As shown in Table 3, the integration of DAAN into the BiLSTM model leads to improved F1 scores in
the experimental results on the CBS(1.0 1) and Twitter(1.09 1) datasets, which shows the effectiveness
of DAAN in enhancing feature extractors. It also indicates that DAAN enables the model to acquire
additional entity information and gain the better understanding of the target domain data.

In addition, our model builds upon the baseline of TOF, and we observed enhancements in the F1
score by introducing DAAN while omitting the MRC task during the fine-tuning process. Moreover,
DAAN provides a lightweight and effective method, which also accelerates the model’s training speed,
consequently reducing training time and computational resource costs. We compare the computing re-
source consumption of the UDAA with TOF, measured by Time(time consumption, & means hour),
Flops(floating point operations per second, B means billion), and Size(model parameters). The results
shown in Table 4 demonstrate that UDAA consumes fewer computing resources than TOF.

Method CBS Twitter WNUT2016
with DAAN 75.97 66.70 66.17
without DAAN | 75.66  66.04 65.14

Table 5: Compared the experimental results of NER task with and without the integration of DAAN.

Finally, as shown in Table 5, the integration of DAAN into the MLM task yielded better experimental
results on the CBS(0.31 1), Twitter(0.66 1) and WNUT2016(1.03 1) datasets. This further underscores
the role of the introduced adversarial loss helps the MLM task distinguish between domain-invariant
features and task-specific features, thereby enhancing the model’s robustness and generalization perfor-
mance.

Overall, whether we consider the notable reduction in computational resources as demonstrated in Ta-
ble 4 or the enhancements in the experimental results as evident in Table 3 and Table 5, it underscores the
effectiveness of DAAN. The integration of this structure has proven to be beneficial for the framework.

5.3 Ablation Analysis
5.3.1 Component Impact

To assess the influence of various components of UDAA, we examine the effects of two modules: i) ADL,
and ii) APG. As shown in Table 3, when we remove the APG stage (CBS(0.32 |), Twitter(0.95 |) and
WNUT2016(1.09 |)), implying the absence of high-quality pseudo-data and the MRC task, the model’s
performance decline is less pronounced compared to when the ADL stage (CBS(0.67 ), Twitter(2.11 |)
and WNUT2016(2.07 |)) is absent. This highlights the substantial contribution of the introduced DAAN
to the task model in subsequent stages, thus improving its robustness and generalization performance.
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Meanwhile, the experimental impact of removing the APG stage alone or removing the ADL stage
alone is far lower than removing both simultaneously, indicating the crucial role of unified joint training
between the APG and ADL stages for the UDAA model. This may be attributed to the coupling effect of
the model eliminating inter-domain differences in the ADL stage and high-quality pseudo-labeled data
in the APG stage during the training process of the UDAA model.

In conclusion, the models for tasks at various stages act as bridge from high-resource domains to zero-
resource domains, facilitating knowledge transfer. The removal of any component has an impact on the
experimental results, proving their positive influence on the UDAA framework.

5.3.2 Task Combination

Components CBS Twitter WNUT2016
MLMADL 76.64 68.81 68.24
NERADL 76.59 68.13 67.62
MLMADL & NERADL | 76.03  68.18 67.30

Table 6: Experimental results on tasks combined with DAAN.

We explore the impact of DAAN when integrated with both NER and non-NER task, represented
as follows: i) MLMADL, which combines DAAN with the MLM task, ii) NERADL, which combines
DAAN with the NER task, and iii)) MLMADL & NERADL, which combines DAAN with the MLLM task
and NER task. Based on the results presented in Table 6, it is evident that the MLMADL component
achieves the best results on the three datasets.

The MLMADL & NERADL strategy yielded the lowest experimental results across the three datasets.
This may be attributed to the introduction of noisy data during training due to potential differences
between tasks after integrating DAAN into both tasks, leading to a decrease in model performance.
Therefore, in the training process of the UDAA model, we opted for the strategy of training MLM
combined with DAAN. Furthermore, considering the high computational resource demand of the MRC
task and its poor experimental results, we did not conduct experiments to construct MRCADL.

5.4 Case Study

CBS Astronomer [Kobie Van] with the [Johannesburg Planetarium] in [South Africa]
told to [CBS News] foreign correspondent Debora [Patta] the reason for ...
TOF [ Kobie Van PER ] [ Johannesburg Planetarium LOC' ] [CBS News ORG ] [Patta PER ]
UDAA [ Kobie Van PER | [ Johannesburg Planetarium O RG ] [CBS News ORG ] [Patta PER ]
Twitter Caress your phrase tenderly : it will end by smiling at you.
[Anatole] [France] #amwriting #writing http://t.co/48WU4phqiO
TOF [ Anatole LOC' | [ France LOC']
UDAA [ Anatole PER | [ France LOC' ]
Where it all begins! An exhilarating visit to source of [Arno River]
WNUT2016 in Alto #[Casentino] http://t.co/EdZIWjVxGc
TOF [ Casentino [ ]
UDAA [ Casentino B |

Table 7: Cases example of three datasets, where the red and blue represent correct and incorrect entities,
respectively.

Table 7 presents case examples from three datasets, exhibit the performance comparison between TOF
and UDAA. In the CBS dataset, the words “Kobie Van”, “CBS News”, and “Debora Patta” are correctly
identified as entities in both TOF and UDAA. However, due to the influence of the word “South Africa”
in the following context, TOF erroneously identifies “Johannesburg Planetarium” as the LOC' entity,
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whereas UDAA can better understand the contextual information and correctly identify it as the ORG
entity.

In the Twitter and WNUT2016 datasets from the social media domain, “#” is used to highlight specific
topics, which constitutes domain-specific knowledge, posing challenges for entity prediction by TOF.
However, UDAA can accurately identify and classify entities. For example, in the Twitter dataset, due
to the influence of “#” and“France” in the context, TOF erroneously identifies “Anatole” as the LOC'
entity, while UDAA correctly identifies it as the PER entity. In summary, the examples in Table 7
visually demonstrate the superiority of the UDAA model in distinguishing domain-specific knowledge
and context understanding.

6 Conclusion

We propose the UDAA framework, which combines the MLM auxiliary task with the DAAN to mitigate
inter-domain differences. The models for tasks at different stages serve as bridges from high-resource
domains to zero-resource domains and enable knowledge transfer. Through extensive experimental eval-
uation using the CBS, Twitter, and WNUT2016 datasets, we demonstrate the effectiveness of UDAA
in the zero-resource cross-domain NER task. In the future, we plan to improve the optimization of
pseudo-data by prompt learning and explore the task where label mismatch scenarios are involved.
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