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Abstract

Biomedical Event Causal Relation Extraction (BECRE) is an important task in biomedical infor-
mation extraction. Existing methods usually use pre-trained language models to learn semantic
representations and then predict the event causal relation. However, these methods struggle to
capture sufficient cues in biomedical texts for predicting causal relations. In this paper, we pro-
pose a Path Reasoning-based Relation-aware Network (PRRN) to explore deeper cues for causal
relations using reinforcement learning. Specifically, our model reasons the relation paths between
entity arguments of two events, namely entity relation path, which connects the two biomedical
events through the multi-hop interactions between entities to provide richer cues for predicting
event causal relations. In PRRN, we design a path reasoning module based on reinforcement
learning and propose a novel reward function to encourage the model to focus on the length and
contextual relevance of entity relation paths. The experimental results on two datasets suggest
that PRRN brings considerable improvements over the state-of-the-art models.

1 Introduction

Biomedical Event Causal Relation Extraction (BECRE) is an important task in the field of biomedical
information extraction which aims to identify the causal relation between two events in biomedical texts.
As shown in Fig.1, given the context and two events, a BECRE model needs to predict whether there
is a causal relation between head and tail events, i.e. “phosphorylated ~~s degraded”. BECRE has
played an important role in many downstream tasks such as knowledge question answering (Mutabazi et
al., 2021), automatic decision-making, and knowledge discovery (Cafiizares-Diaz et al., 2021).

BECRE is challenging because event causal relations in biomedical texts are always expressed in
implicit ways. Existing methods usually utilize pre-trained language models to predict event causal
relations (Akkasi and Moens, 2021). Liang et al. (2022) analyzed the impact of in-domain pre-training
and distillation on the performance of BERT (Kenton and Toutanova, 2019). Akkasi and Moens (2021)
used four different biomedical repositories that are publicly available to investigate the effect of the
corpus used for pre-training BioBERT (Lee et al., 2020). These methods solely learned features of
context relying on pre-trained language models. For further enhancing the ability of models to understand
the context, Zhang et al. (2023) introduced external knowledge to build hierarchical knowledge graphs
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Figure 1: An illustration of expression of causal relations in biomedical texts and the entity relation path.

for the contexts. However, the above methods still have difficulty in capturing sufficient cues for event
causal relations, leading to limited performance in BECRE.

To address the above issues, we pay attention to the entity relation path between biomedical events, and
propose a method based on the entity relation path, named Path Reasoning-based Relation-Aware Net-

work (PRRN). In PRRN, the entity relation path provides rich cues for predicting event causal relations.

. . l . . isT O
For example, in Fig.1, “GSK 3beta cotalyze, Phosphorylation resultln, pB — catanin isTargetO],

proteasome” is a entity relation path between the event pair (phosphorylated, degraded). The en-
tity relation path describes multi-hop interactions between the head argument, GSK3beta and the tail
argument, proteasome, including that GSK3beta can catalyze Phosphorylation, and p[S5-catanin is the
product of Phosphorylation and the target of proteasome. The interactions reveal an underlying cue that
/3 -catanin is degraded by proteasome because GSK3beta converts /5 -catanin to p /5 -catanin through
Phosphorylation. So we can see that the entity relation path introduces multi-hop interactions of entities
to provide rich cues for predicting event causal relation.

To obtain the optimal entity relation path, we design a path reasoning module based on reinforcement
learning and propose a novel reward function. In the module, a policy-based agent network gradually
approaches the optimal reasoning strategy in the way of Monte-Carlo Policy Gradient (Williams, 1992).
The reward function we proposed in PRRN jointly encourages the length and contextual relevance of
paths.

We conduct extensive experiments to evaluate the effectiveness of PRRN. The experimental results
show that our method outperforms previous methods. In summary, the main contributions of this paper
are:

* We propose a Path Reasoning-based Relation-Aware Network (PRRN) for BECRE, which explores
richer cues to predict event causal relations by reasoning relation paths between entity arguments of
biomedical events, i.e. entity relation paths.

* We design a path reasoning module based on reinforcement learning to reason optimal entity rela-
tion paths and propose a novel reward function to encourage the model to focus on the length and
contextual relevance of entity relation paths.

* We conduct a series of experiments to verify the effectiveness of PRRN. The experimental results
show that the entity relation path reasoned using reinforcement learning are beneficial for predicting
event causal relation. Moreover, our method outperforms previous state-of-the-art methods on two
datasets.
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2 Related Work

Early studies of BECRE primarily relied on manually defined rules or shallow neural networks for event
causal relation prediction (Mihdild and Ananiadou, 2014; Hahn-Powell et al., 2016). Hahn-Powell et al.
(2016) conducted rule-based and LSTM-based methods to practice BECRE. However, rule-based meth-
ods attempt to induce extremely rich and complex human language expressions with a small and limited
number of rules, which is hard to extend. The modest parameter size and relatively simple model struc-
ture of LSTM-based methods are also not sufficient to support its ability to achieve a considerable level
of language comprehension. In recent years, pre-trained language models have exhibited outstanding
performances across many natural language processing tasks, attributed to their remarkable semantic un-
derstanding capabilities. Liang et al. (2022) and Akkasi and Moens (2021) utilized pre-trained language
models to learn the semantic representation and achieved promising results. Akkasi and Moens (2021)
also implemented and evaluated various techniques including a Multiview CNN (MVC), attention-based
BiLSTM models, graph LSTM as well as a baseline rule-based system. Overall, compared to small-
scale networks such as CNN, LSTM, and BiLSTM, pre-trained language models such as BERT (Kenton
and Toutanova, 2019) and BioBERT (Lee et al., 2020) have shown better performances. However, these
methods based on pre-trained language models are difficult to obtain enough semantic information solely
in the context. Therefore, Zhang et al. (2023) introduced the external knowledge for BECRE and pro-
posed the GECANet to fuse knowledge, which achieved state-of-the-art performance. In this paper,
we put our emphasis on the entity relation path between biomedical events to capture richer cues for
predicting event causal relations.

3 Method

Following the previous works (Zhang et al., 2023; Akkasi and Moens, 2021), we formulate BECRE as a
classification problem. Given a sentence and an event pair, we predict whether there is a causal relation
between the two events. Fig.2 schematically visualizes our approach, which mainly consists of three
parts, including path reasoning module, representation module, and output module.
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Figure 2: The illustration of our PRRN model, where “BER Network” is the abbreviation of biomedical
entity relation network.

3.1 Path Reasoning Module

In this section, we introduce the process of reasoning paths based on reinforcement learning. Firstly,
section 3.1.1 details the process of constructing a biomedical entity relation network. Secondly, for a
given text and two events, we clarify the construction of reasoning tasks in section 3.1.2. Finally, section
3.1.3 introduces the reinforcement learning process.

3.1.1 Biomedical Entity Relation Network Construction

In this paper, we construct a biomedical entity relation network from the Unified Medical Language
System (UMLS) (Bodenreider, 2004) to reason optimal entity relation paths.
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UMLS is a vast knowledge base which contains rich information about biomedical concepts and
mainly includes three parts: Metathesaurus, Semantic Network and SPECIALIST Lexicon & Lexical
Tools. Metathesaurus contains the information of biomedical concepts and each Metathesaurus concept
is assigned a concepts unique identifier (CUI). Semantic Network consists of semantic types and se-
mantic relationships. Semantic types (STY) are broad subject categories, like Disease or Syndrome or
Clinical Drug. Semantic relationships are relationships that exist between semantic types. Every concept
in Metathesaurus is assigned at least one semantic type.

The complete UMLs contains over five million terms, or names so far and the scale makes running
a reasoning model on it costly. Therefore, a sub-network is constructed from it for reasoning in this
paper. Specifically, MetaMap, an open source tool that can map biomedical text to the Metathesaurus, is
employed to extract CUI of biomedical entities involved in datasets. Based on the set of CUI, we query
11-hop neighbor nodes of them from the Metathesaurus and save as a sub-network. Then the Semantic
Network is introduced into this sub-network to further enrich it. The STY nodes in sub-network are
connected with CUI nodes by the edge "CUI2STY”. At last, we add reverse of every edge to obtain the
final biomedical entity relation network.

As a result, the nodes in biomedical entity relation network are divided into CUI nodes and STY
nodes, and the edges can be divided into those between CUI nodes, those between STY nodes, and those
between CUI and STY. The final network consists of 8311 nodes, 34075 triples, and 85 relations. After
obtaining the biomedical entity relation network, TransE (Bordes et al., 2013) is used to obtain e? € R?
and 7% € RY, i.e. representations of nodes and relations in the network.

3.1.2 Reasoning Task Construction

Before performing reasoning, we construct reasoning tasks to prepare inputs of reasoning module.
Specifically, a python library, spaCy' is employed to extract all biomedical entities in sentence to ob-
tain F4 = {ele € Biomedical Entity, e € sentence}. And then we utilize the syntactic analysis
tool of spaCy to analyze the syntactic dependency ancestor nodes of each entities. If the k-hop ancestor
node of an entity is the trigger word of the head or tail event, and k < Kipreshoid (K threshold 1 @ hyper-
parameter), the entity will be listed into the head entities set, E'zy or the tail entities set, E'r , respectively.
After obtaining E'yy and E7, the inputs of reasoning module are constructed as Eygmple in Eq.(1).

Esample = {(er,er),Ym | en € En,er € Er, ey # er,nm = Ea — {en, er}}, (D

where 1), denotes contextual entities set of size M, (ey, er) denotes the entity pair to be reasoned.
We don’t take the corresponding entity pair into consideration in our method when the ey is same
as the epr. For the convenience of locating entities in biomedical entity relation network in reason-

ing process, MetaMap mentioned in section 3.1.1 is employed again to map Egqppie tO Egzgn{ple =
cuUI ,CUIy ., ,CUI
{(eH y e )v QZJM .

3.1.3 Reinforcement Learning Process

The Reinforcement Learning (RL) process is typically modeled as an interaction between an agent and
the external environment. In this paper, the process can be understood as that a policy-based agent
reasons path hop by hop for input entity pairs. At each step, it choose action based on the current state
of the environment to extend the path. The external environment evaluate the performance of agent with
the reward function when the reasoning of single entity pair is completed. The agent will update its
parameters based on evaluations of the environment, thus gradually approaching the optimal reasoning
strategy encouraged by the reward function. We detail the RL process in PRRN below and present an
overview of the process in Algorithm 1.

Firstly, for the input entities in Egl[{n;le, we locate them with CUI in biomedical entity relation
network to obtain their node id, E;gmple = {(e%d,eid), 1id} and TransE representations, E;lample =

{(efr €7), ¥4}

'https://spacy.io/
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Secondly, at each step ¢, the agent will choose action based on the current state of the external envi-
ronment. The action space in this paper is actually the relation set in biomedical entity relation network,
denoted as £ = {ry, 79, ...,785}. The state s; at step ¢ is calculated as Eq.(2), where e; denotes the node
where the agent is located at step 7, e, denotes the pooling representation of the contextual entities and ||
denotes the concatenation operation.

1
si=ef l[eh—efl lled eRY el = 3™ et @

eEYnm

Algorithm 1 Reinforcement Learning Process

1: restore parameter § from supervised learning
2: while i<samples_num do

3 {1, eGUT), wEP ) (i, ), wid
4 {(eHveT) iy ZM{(elefaeT)a¢M}i
S Esample = {(6H7 eT)’ 7/}%4}
6 {(eheh), )i s
7. whilet: 0 — t,,4, do
. w(alst,0)
8: choose action, s; —— ¢
.. Eq.(2)
9: state transition, (r¢, s¢) ——— S¢+1
10: if reach er then
11: break
12: end if
13:  end while
14 Path=[(so,70), (51,71),-- -, (Sn, *)]
15:  if success then
16: Ry=a-Rp + (1—a) R,
17:  else
18: Rp=-1
19:  end if

20:  update 0 with Eq.(6)
21: end while

The agent in this paper is policy-based and implemented using a fully connected neural network, as
the “Agent” part shown in Fig.2. The neural network is composed of two hidden layers and each layer
is followed by a nonlinear activation function (i.e. LeakyRelu). The dimension of input layer and output
layer is equal to the size of s; and &, respectively. It maps the current state to probability distribution
across the entire action space and can be represented as a policy network my(s,a) = p(als;6), where 6
denotes parameters of the network. The agent choose most promising actions based on the probability
distribution on the action space at each step .

The agent will randomly transfer to the next node based on the transition probability matrix (denoted
as Eq.(3) in the environment after choosing the action.

1 / s
] S € P
1

3
0 ,others, ©)

P(stp1=5"|st=s,a0=1;) =

where ¢f = {s' | r; € 7} denotes the neighbor nodes of s with relation r; as the edge. In this
transition strategy, if the chosen action r; leads to an empty target state, the agent will go back to the
original state s; and make another new decision.

Repeat the above decision-transition process, the path will continuously extend until the agent reaches
the tail entity or the number of reasoning steps reaches the threshold ¢,,,4,. When the reasoning of single
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entity pair is completed, the external environment will evaluate reasoning performance of the agent based
on the reward function.

Given the reasoned path p = {eg,ro,e1,71,...,7—1, er} with a length of L, the reward function
in PRRN is designed for better capturing cues for predicting event causal relations and includes two
components:

Length-optimized Reward. We set this reward component to encourage the agent to reach the target
node with as few hops as possible. On the one hand, we observe that the shorter the path, the stronger
the relation between the head and tail node it can express. Then it would be very beneficial for us to
study the causal relation between events in BECRE task. On the other hand, shorter paths can also save
computational resources and time and then improve reasoning efficiency. In addition, Length-optimized
Reward are also aimed at mitigating the inherent challenges of sample inefficiency and high variance
(Guo et al., 2021; Han et al., 2023) in policy-based RL algorithms when the path is longer. The length-
optimized reward is defined as R, = %

Contextual relevance reward. This reward component encourages the agent to be closer to contex-
tual entities during the reasoning process. The contextual entities, head entities, and tail entities share
the same context and have strong correlation with each other. Therefore, using contextual entities infor-
mation can quickly connect the head and tail entities, working together with length-optimized reward to
improve reasoning efficiency. In addition, when the nodes on the path are closer to the contextual entity,
it can better discover the cues hidden in the context about event causality, avoiding introducing noise that
completely unrelated to the context. The contextual relevance reward is defined as R in Eq.(4).

L
1 d d
C:EZcos<ei,ec>,ei€p. 4
=0
Finally, the total reward R4 is obtained by weighting the above two reward components, as shown in
the Eq.(5).
Ry=a-Rp+(1—-a)-Re, ®)]

where « is a hyper-parameter to balance two reward components. By weighting and integrating these
two reward components, the agent can be encouraged to pursue both shorter path lengths and higher
relevance to the context. In addition, when the agent fails to reach the target node after a certain round
of interaction with the environment, we deem the reasoning as failed, and set R4 = —1 to give the agent
a negative reward.

We update the policy network with Monte-Carlo Policy Gradient (Williams, 1992) and gradient de-
scent, as shown in Eq.(6).

L
Gr — ’TN’TI'QZ Vg 10g71'<at|8t, )]
t=0
L
~V Z —logm(a = r¢|sy; 6) R A] (6)

3.2 Representation Module
3.2.1 Path Encoder

Recently, recurrent neural networks have been widely used in processing sequence data such as path
information. Compared to vanilla GRU, BiGRU brings more comprehensive understanding of the infor-
mation in the sequence. For the reasoned entity relation path p = {eg, 79, €1, ...,71—1, 1.}, the BIGRU
(Chung et al., 2014) is assigned to encode it in PRRN.

We initialize the representation of the path using TransE representations of edges and nodes. These
node and relation representations integrate the topological information of nodes and relations in the
biomedical entity relation network, allowing us to more thoroughly utilize the background knowledge of
the knowledge base. Then the representation of entity relation paths is fed into BiGRU. We concatenate
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the last hidden state of BiGRU output from two directions to obtain the final representation of the entity
relation path, as shown in Eq.(7).

V, = BiGRUP ([eg,rg,ef,rf, . ,rﬁ,l,eﬂ) e RP. %)

3.2.2 Context Encoder

Trigger words are important component of an event, and the semantic representation of trigger words
is valuable reference for the model when predicting the relation between events. Therefore, we use
BioBERT (Lee et al., 2020) to encode the text and extract the word representations corresponding to the
trigger words. If the trigger words are more than one word, we extract the uniformed pooling represen-
tations of multiple trigger words, as shown in Eq.(8) and Eq.(9).

h
1 «— .
Vhead.event = ™ Z fo(head_trigger;|context) € RY (8)
=1
1 &
Vigil_event = . Z fe(tail trigger;|context) € RP, )
" i=1

where h,, and ¢, respectively denotes the number of trigger words for the head and tail events, and
fe(w|context) denotes the contextual semantic representation of word w from BioBERT (Lee et al.,
2020). Benefiting from the attention mechanism (Bordes et al., 2013) of BioBERT (Lee et al., 2020),
these two word representations simultaneously contain the semantic and contextual information of trigger
words, which is effective in predicting causal relations between events.

3.3 Output Module

In section 3.2, we calculate the representation of entity relation paths and the contextual semantic infor-
mation of events, respectively. For these two representations, we add the representation vectors of entity
relation paths to the representation vectors of head and tail events, respectively. The two fusion vectors
is then concatenated to calculate the final representation of each event pair, as shown in Eq.(10).

erature - [Vhead,event + V;?] H [‘/tail,event + V})] (10)

And then Vyeqture is fed into a fully connected neural network followed by a softmax function to
obtain the final prediction. As shown in Eq.(11), W, denotes the parameters of the fully connected
neural network, and p; denotes the predicted probability of i-th class.

pi = softmaz(Wy - Vicature), Wo € Retass XD (11)

3.4 Training Process

Following the previous work (Xiong et al., 2017; Silver et al., 2016), the training of policy network
in agent is divided into two stages in our method including supervised learning and retraining with
reinforcement learning. Supervised learning enables the policy network to have initial reasoning ability
in a vast action space, thereby accelerating the convergence speed of reinforcement learning.

In the supervised learning stage, we run the breadth-first searching algorithm on the biomedical entity
relation network to search paths between the input entity pair. The searched path is employed as the
supervised information to update policy network. We use the policy gradient and set the reward to 1 to
update the policy network in the agent. The gradient is shown in the Eq.(12).

Go(0) = > _logm(a = ri|si;0), (12)
t=0

where s; and r; are the states and actions of the #-th hop in the path, respectively. As for the sample set
used in supervised learning, we conduct the reasoning sample construction as mentioned in section 3.1.2

and extract a sample set of Eg%;l . With size samples_num.
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Then in the reinforcement learning stage, we use the reward function to adjust the policy network.
Firstly, the agent uses the prior knowledge obtained from the supervised learning stage to reason entity
relation paths hop by hop. Next, the external environment will evaluate the performance of the agent
using the reward function and feedback the evaluation to the agent. Finally, the policy network calculate
the policy gradient based on this evaluation to update its parameters. By repeating this process, the policy
network will gradually approach the optimal reasoning policy encouraged by the reward function.

We train the context encoder, path encoder and classifier together using cross entropy loss. In this
stage, the policy network is called offline and does not participate in training. The loss we applied is
shown in Eq.(13).

3

1 ,

L=—% Z > 1e(i)log(pie), (13)
i c=1

where N denotes the number of samples, 1.(¢) is an indicator function that is assigned 1 when ¢ = ¢ and

0 when i # c and p; . denotes the predicted probability that the i-th sample belongs to c-th category.

4 Experiment

4.1 Experimental Setup

Datasets and Metrics. We evaluate

our proposed method on two datasets, Dataset Class Number
including Hpowell (Hahn-Powell et al., El precedes E2 163
2016) and BioCause (Mihdili et al., E2 precedes E1 27

Hpowell
(Hahn-Powell et al., 2016)

2013). Following prior works (Zhang et None 637
al., 2023; Akkasi and Moens, 2021), in Bi E1 precedes E2 36
) : iocause
Hpowell and BioCause, we only consider .1 E2 precedes El 14
- (Mihaila et al., 2013)
two types of relations, “E1 precedes E2” None 3140

and “E2 precedes E1” as target relations
and consider all the others as no relation,
denoted as “None”. Tab.1 presents the number of samples for each category in two datasets. We adopt
Recall (R), Precision (P), and F1-score (F;) as evaluation metrics.

Implemention Details. In the experiments, we use BioBERT-large as the context encoder. The rep-
resentation dimension of token is 768. The K ehoiq mentioned in section 3.1.2 is set to 2, and .42
mentioned in section 3.1.3 is set to 50. We train the context encoder, path Encoder and classifier with the
learning rate=5e-5 and the dropout rate=0.1. Following the previous work (Zhang et al., 2023; Akkasi
and Moens, 2021), we adopt the oversampling method to alleviate the sample imbalance problem in the
Hpowell and BioCause datasets. Specifically, the categories “E2 precedes E1” and “E1 precedes E2” are
sampled to equal numbers, matching the quantity of samples in the “None” category. The dimension of
hidden layers in the policy network of Path Reasoning Module are 512 and 1024, respectively. We train
TransE model on our biomedical entity relation network for 1000 training rounds?.

Baseline Methods. We compare the proposed PRRN with the following baseline models. Akkasi
and Moens. (2021) overviewed the BECRE task and contributed some credible benchmarks, as fol-
lows: Rule-based Model manually summarizes some causative verbs from the corpus and designs rules
to predict the event causal relation based on causative verbs. Graph state LSTM models the docu-
ment as a graph and captures a variety of dependencies among the input words which are represented
by nodes of the graph. Multiview-CNN integrates feature representations of context calculated from
three different sizes of convolution kernels. BILSTM-ATTENTION utilizes BiLSTM to calculate the
word representation of tokens and obtain the representation of texts by fusing representation of each
token with attention mechanism. ELMO-LSTM simply applies ELMO as a word representation layer,
and feeds representation result into a LSTM module. BioBERT-MVC uses four BioBERT (denoted
as BioBERT1, BioBERT?2, BioBERT3 and BioBERT4 below) that pre-trained on four different public

Table 1: Statistics of datasets used for the experiments.

The implemention we used can be found at https://www.github.com/thunlp/Fast—-TransX
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biomedical repositories to obtain the representation of each token, respectively and employs Multiview-
CNN as the inference layer. In addition, GECANet (Zhang et al., 2023) introduces knowledge triplets
from an external knowledge base and calculates the edge representation, node representation, and graph
representation of the triplet set separately. Then it integrates them with context representation to predict
event causal relations. For the above methods, Akkasi and Moens (2021) and Zhang et al. (2023) have
both detailed the experimental results utilizing both raw data and oversampled data. Within this section,
our focus is solely on comparing these methods under the oversampling strategy.

4.2 Experimental Results

Hpowell BioCause
P(%) R(%) Fi(%) P(%) R(%) Fi(%)
Rule-based Model - - - 33.0 21.0 25.0
Graph state LSTM 570 450 500 54.0 36.0 43.0

Source Model

Multiview-CNN 60.0 440 520 770 20.0 320

BiLSTM-ATTENTION 540 490 520 590 350 440

Akkasi and Moens (2021) ELMO-LSTM 55.0 520 540 270 240 260
BioBERT1-MVC 65.0 530 58.0 690 180 29.0

BioBERT2-MVC 59.0 540 570 670 20.0 31.0

BioBERT3-MVC 63.0 53.0 580 70.0 29.0 41.0

BioBERT4-MVC 60.0 51.0 550 79.0 31.0 440

Zhang et al. (2023) GECANet 64.6 605 625 782 32.0 455
ours PRRN 657 615 63.6 758 44.0 557

Table 2: Experimental results on Hpowell and BioCause, where best results are bolded, and suboptimal
results are underlined.

Tab.2 shows the results on the Hpowell and BioCause datasets, respectively. Overall, our method
outperforms the methods proposed in previous works on both datasets in terms of Fl-score. It can
be seen that pre-trained language model based method like BioBERT3-MVC significantly outperforms
Multiview-CNN model by 6.0% on Hpowell dataset. This is because the quite large parameter scale and
the process of pre-training on large-scale corpora offer pre-trained language model stronger semantic
representation ability than the small scale network. However, the method of solely utilizing the semantic
representation ability of pre-trained language models ignores the causal cues stemmed from biomedical
entities interactions. Therefore, the results of BioBERT3-MVC method on two datasets are 5.6% and
11.7% lower than our method, respectively, highlighting the effectiveness of learning to capturing deep
cues with entity relation paths. In addition, our method surpasses the GECANet by 1.1% and 10.2% on
the two datasets, respectively. This indicates that instead of directly incorporating external knowledge,
delving into the entity relation path between biomedical events to discover the causal cues is a more
beneficial method for BECRE.

Furthermore, in terms of recall and precision, our approach exhibits substantial enhancements over
previous methods on the Hpowell dataset. On the BioCause dataset, while our method falls slightly be-
hind Multiview-CNN, BioBERT-MVC and GECANet in precision, 1.2%, 3.2% and 2.4%, respectively,
it achieves a remarkable enhancement in recall, which ensuring the reliability of our proposed method.

4.3 Ablation Study

In this section, we aim to ablate the major components in our model and evaluate the performance of
the remaining model to understand contribution of each component. We examine the following ablated
models: (1) “-=PRRN,, /o g, ” and “-PRRN,, /, g, exclude the reward components Ry, and R¢ (respec-
tively) from the overall reward when training the agent. (2) “-PRRN,, o pasr” indicates the model predicts
event causal relations without the entity relation path. (3) “-PRRN,,/, r;” indicates the model predicts
event causal relations with the entity relation path obtained from the breadth-first searching algorithm.
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Tab.3 reports the performance of ablated mod-

els on the Hpowell dataset. As can be seen, re- Method P(%) R(%) Fi(%) A
moving the entity relation path or any reward -PRRN,, / patn | 602 574 588 -
components significantly hurts the overall per- -PRRN,, /0, 659 590 622 434
formance of the model. The largest performance -PRRN, /o r. | 669 563 6L1 +2.3
drop is due to the elimination of the entity rela- PRRN,,,, z;, | 67.3 574 619 +3.1
tion path, suggesting that the entity relation path PRRN(ours) 657 61.6 63.6 +4.7

is critical to reveal the cues for predicting event

causal relations. In addition, compared to the  yple 3. Results of ablation study on reinforcement

breadth-first searching algorithm, the superior  joapine A denotes improvements of F; compared
performance of reinforcement learning clearly () _prRN Jopath
w/o.path

highlights the advantage to reason the entity re-
lation path with reinforcement learning for BE-
CRE.

4.4 Entity Relation Path Encoding Strategy Analysis

Model P(%) R(%) Fi(%) Method Hpowell BioCause
LSTM 61.8 579 59.8 ERP&Node 61.5¢22 52.1¢3.6
BiLSTM 643 60.5 62.3 ERP&Edge 61.1¢2.69 53.9q 15
GRU 68.1 574 62.6 ERP&Full 63.6 55.7

BiGRU 65.7 61.6 63.6

Table 5: Experimental results (F;) of retaining
Table 4: Experimental results using different en-  only edges and nodes in ERP(Entity Relation
tity relation path encoders on the Hpowell dataset. ~ Path) separately. | means the decrease compared
to ERP&Full.

Effect of Entity Relation Path Encoder. To analyze the effect of different entity relation path en-
coders on experimental results, we utilize four different path encoders, LSTM, BiLSTM, GRU, and
BiGRU. The results are shown in Tab.4. From the results, we can observe that the best performing path
encoders is BIGRU. This suggest that BiGRU has the capability to utilize the sequence information in the
entity relation path more effectively, enabling more accurate aggregation of information from edges and
nodes. In addition, the results also indicates that adopting bidirectional encoding for the entity relation
path is more effective than unidirectional encoding.

Effect of Nodes and Edges in the entity relation path. To better know the effect of different path en-
coding strategies, we examine another two encoding strategies, “ERP&Node” and “ERP&Edge”, which
keeps only nodes and edges respectively in the paths in the phase of encoding. The results are shown
in Tab.5, compared to using both edges and nodes simultaneously, eliminating each of them showed a
reduced effect, indicating that both edge sequences and node sequences contain causal information be-
tween biomedical events. However, the complete path including both edges and nodes is more effective
in predicting event causal relations.

4.5 The effect of hyper-parameter o

In Path Reasoning Module, the hyper-parameter « is a 64.0
adjustment term in Eq.(4), controlling the attention of 635
the agent to length and contextual relevance of paths, 63.0
respectively. To analyze the impact of & on model per- S 25
formance, we set « to different values to observe the B 62.0
F,. 61.5
As shown in Fig.3, the F; score peaks when o« = 0.5, 61.0
indicating that giving the same weight to the contex- 603 00 01 02 03 04 05 06 07 08 09 10

tual relevance and length of the path can yield the best

benefits on the Hpowell dataset. Moreover, there is a Figure 3: The effect of hyper-parameter o
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discernible downward trend in the trendline, demonstrating that contextual relevance is more important
than length of the path for capturing causal cues.

Conclusion

In this paper, we emphasize the importance of the entity relation path for predicting event causal relations
between biomedical events and present a novel model, namely, PRRN for Biomedical Event Causal
Relation Extraction. For obtaining the valuable entity relation path, we propose a path reasoning module
based on reinforcement learning and design length-optimized reward and contextual relevance reward
to evaluate the performance of reinforcement learning agent. Our extensive experiments show that the
PRRN outperforms the previous state-of-the-art model, demonstrating the advantage of the entity relation
path reasoned under the control of two reward components. In the future, we will extend our proposed
method to other related tasks in events relation extraction (e.g., for event causal relation extraction in
universal domain).
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