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Abstract

Neural Machine Translation (NMT) models are typically trained using Maximum Likelihood
Estimation (MLE). However, this approach has a limitation: while it might select the best
word for the immediate context, it does not generally optimize for the entire sentence. To
mitigate this issue, we propose a simple yet effective training method called SimCLNMT.
This method is designed to select words that fit well in the immediate context and also en-
hance the overall translation quality over time. During training, SimCLNMT scores multiple
system-generated (candidate) translations using the logarithm of conditional probabilities. It
then employs a ranking loss function to learn and adjust these probabilities to align with the
corresponding quality scores. Our experimental results demonstrate that SimCLNMT consis-
tently outperforms traditional MLE training on both the NIST English-Chinese and WMT’14
English-German datasets. Further analysis also indicates that the translations generated by our
model are more closely aligned with the corresponding quality scores. We release our code at
https://github.com/chaos130/fairseq_SimCLNMT.

1 Introduction

Neural machine translation (NMT) (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015) is a pivotal task within the field of natural language processing. It focuses on translat-
ing text from one language (source) to another (target) using end-to-end neural network models. This
task has garnered increasing attention in both academia and industry (Shen et al., 2016; Vaswani et al.,
2017; Kreutzer et al., 2018; Yang et al., 2018). Notably, the emergence of the Transformer architecture
(Vaswani et al., 2017) marks a paradigm shift in NMT. Characterized by its innovative self-attention
mechanism, the Transformer enables the model to variably prioritize the significance of words within
the input sentence. This results in more effectively capturing the context compared to previous mod-
els, such as the Recurrent Neural Network (RNN) (Bahdanau et al., 2015) and Convolutional Neural
Network (CNN) (Gehring et al., 2017). Despite the advancements of the Transformer, it still relies on
the Maximum Likelihood Estimation (MLE) for word prediction at each time step. While this practice
optimizes for immediate word selection probability, it may not consistently enhance the overall transla-
tion quality. This discrepancy between probabilistic optimality and actual translation quality highlights
a critical limitation in current NMT approaches. To assess the practical impact of this limitation, we
conducted a preliminary study using a pre-trained NMT model (MLE baseline). Our process involves
generating two candidate translations for each input and analyzing whether higher probability correlates
with higher BLEU scores (Papineni et al., 2002). As depicted in Table 1, the results indicate that the
accuracy is far from ideal, suggesting that there is room for improvement in how NMT models select
words for translation.

As suggested by Kreutzer et al. (2018), one primary strategy to mitigate the mentioned issues involves
adopting Reinforcement Learning (RL). RL training allows models to be fine-tuned with reward mecha-
nisms that assess the overall quality of predictions. This technique focuses on the result of the translation
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process rather than just the immediate predictions of the next word. However, it introduces common
challenges to deep RL, including noisy gradient estimation (Greensmith et al., 2004), which can result in
unstable training and high sensitivity of hyperparameter settings. Moura Ramos et al. (2023) further ex-
plores this concept by incorporating evaluation metrics learned from human quality annotations as reward
models within the NMT framework. This approach enhances translation quality through data filtering,
RL training, and re-ranking techniques. As an alternative strategy, Minimum Risk Training (MRT) has
been adopted for language generation tasks to overcome the MLE training challenge (Shen et al., 2016).
Despite its potential, the accuracy of the MRT is limited by the number of output samples. Yang et al.
(2018) introduces a novel method leveraging Generative Adversarial Network (GAN) for NMT, aiming
to train the model to generate sentences indistinguishable from human translations. Additionally, Liu et
al. (2022) and Yuan et al. (2023) have demonstrated that contrastive learning techniques can effectively
improve the quality of model output.

Dataset(dev) Bleu Acc(%)
NIST en-ch 45.61 58.54
WMT14 en-de 25.93 54.10

Table 1: Accuracy of pre-trained NMT models w.r.t ranking the quality of candidate translations on NIST
en-ch dataset (dev) and WMT14 en-de (dev). Acc. stands for the frequency of the model that assigns
higher probabilities to better candidate translations. The candidate translations are generated by a pre-
trained model. Bleu are the evaluation metric scores in the development data set. The pre-trained model
only achieves 58.54% and 54.10% precision on both development data sets.

In this paper, we seek to address the mentioned issues by incorporating contrastive learning into the
NMT framework. Inspired by Liu et al. (2022) and Yuan et al. (2023), we introduce SimCLNMT, a
simple yet effective approach that aligns the probabilities of various candidate translations with their cor-
responding quality scores via a ranking loss mechanism. Our methodology is divided into two phases:
pre-training and fine-tuning. During the pre-training phase, we train a NMT model using a comprehen-
sive data set, which serves as a strong MLE baseline for the fine-tuning stage. In the fine-tuning phase,
we generate several candidate translations from the MLE baseline model. Each candidate is then eval-
uated using an automated metric to determine its quality score, yielding pairs of candidate translations
and quality scores for every source sentence. SimCLNMT computes the log probability for each can-
didate and uses a ranking loss mechanism to align these probabilities with their corresponding quality
scores, ensuring that the model predictions are consistent with the evaluations provided by the metric. In
summary, we mainly make the following contributions:

• To the best of our knowledge, this work is among the first efforts to leverage contrastive learning as
a strategy to mitigate the limitations inherently caused by the MLE training in the context of Neural
Machine Translation.

• Our model shows a significant performance enhancement when either BLEU or COMET is used as
the designated evaluation metric for ranking candidate translations. This suggests that our approach
can optimize any desired target metric and serve as an alternative to RL and MRT.

• We conduct extensive experiments on NIST English-Chinese and WMT’14 English-German
datasets, and the results show that our approach can achieve consistent improvements.

2 Related Work

The training of NMT models typically relies on MLE. While MLE excels at selecting contextually ap-
propriate words, it often falls short of optimizing overall sentence performance, which can result in
suboptimal translation outputs. Several previous works have aimed to mitigate this issue. Kreutzer et
al. (2018) explores the use of Reinforcement Learning (RL) to improve machine translation with human
feedback. This approach fine-tunes NMT models using RL techniques and rewards that assess the overall
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quality of translations, rather than focusing solely on predicting the next word. However, it also faces
the inherent challenges of deep RL, including the problem of noisy gradient estimation. Moura Ramos
et al. (2023) extends the exploration of using RL for NMT by integrating evaluation metrics derived
from human feedback as reward models within the NMT framework. This methodology encompasses
multiple strategies that include data filtering to refine the training corpus, RL training to adjust the NMT
model based on rewards reflecting translation quality, and re-ranking techniques at inference time. This
comprehensive approach seeks to enhance translation quality by ensuring that the outputs of the NMT
model are more closely aligned with human judgments. Shen et al. (2016) presents a significant shift
in NMT training methodologies by incorporating evaluation metrics as loss functions. This allows the
model to learn patterns that better align with the quality of the final translation output, rather than just
the likelihood of word sequences. Yang et al. (2018) introduces a novel method that utilizes GAN for
NMT. In this approach, the NMT model acts as the generator, producing human-like translations, while
a discriminator is trained to distinguish between machine and human translations. The goal is to iter-
atively improve the NMT model based on discriminator feedback, training it to generate translations
indistinguishable from human ones and directly optimizing the output quality.

In addition to the above methodologies, contrastive learning has gained traction, particularly in ab-
stractive summarization and large language models. Liu and Liu (2021) and Liu et al. (2022) introduce
contrastive learning to the domain of abstractive summarization, focusing on learning from higher-quality
sentences rather than those with high model probabilities. This approach shifts the focus towards gen-
erating summaries that are statistically likely and of higher relevance and quality. Yuan et al. (2023)
further refines the integration of human feedback into language model fine-tuning through a novel train-
ing paradigm called RRHF. This method evaluates sampled responses from various sources using the
logarithm of conditional probabilities and employs a ranking loss mechanism to align these probabilities
with human preferences.

3 SimCLNMT

This section breaks down the holistic training process into two stages: pretraining (Section 3.1) and
finetuning (Section 3.2).

3.1 Pretraining
In this phase, our goal is to pre-train a MLE based model π that results in good translations. MLE is the
standard training method. It aims to maximize the likelihood of the reference translation y, i.e.,

θ∗ = argmax
θ

∑
i

log pπθ

(
y∗(i) | x(i); θ

)
(1)

where θ denotes the parameters of π and pπθ
denotes the probability distribution entailed by these pa-

rameters. The summation is over the training set and
{
x(i), y∗(i)

}
is the i-th training sample.

For a specific sample
{
x(i), y∗(i)

}
, Eq. 1 is equal to minimizing the sum of negative log-likelihoods

of the tokens
{
y∗1, . . . , y

∗
j , . . . , y

∗
l

}
in the reference translation y∗ whose length is l, which is the cross-

entropy loss:

Lxent = −
l∑

j=1

∑
y

ptrue
(
y | x, y∗<j

)
log pπθ

(
y | x, y∗<j ; θ

)
(2)

where y∗<j denotes the preceding reference sequence. In practice, ptrue is a label-smoothing distribution
under the standard MLE framework by assigning probability mass β to other tokens:

ptrue
(
y | x, y∗<j

)
=

{
1− β y = y∗j
β

N−1 y ̸= y∗j
(3)

3.2 Finetuning
In this section, we first introduce the methods of candidate generation and evaluation. Subsequently, the
section provides a detailed explanation of the ultimate training objectives of the proposed model.
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Candidate Generation NMT typically uses beam search (Freitag and Al-Onaizan, 2017) or diverse
beam search (Vijayakumar et al., 2016) to generate candidate translations. Both are approximate algo-
rithms to identify the maximum a-posteriori (MAP) output, i.e., the sentence with the largest estimated
probability given an input (Edunov et al., 2018a). Beam search generally finds the high probability
outputs (Ott et al., 2018).

However, MAP prediction can lead to less rich translations (Ott et al., 2018) since it aims to select
the output sequence with the highest probability given the input. As a result, the model may generate
accurate translations, but they may lack the nuances and unique expressions present in the source text.

As an alternative, we consider sampling-based approaches for generating candidate translations. This
approach allows the model to explore less frequent, potentially more interesting, or contextually appro-
priate translations that deterministic methods (beam search) might overlook. First, we consider exploring
pure sampling, which leads to higher variability in generation but may also result in less coherent transla-
tions due to the random selection of words with lower probabilities. Second, we employ Top-k sampling,
which limits the sampling pool to the k most probable words at each time step. This reduces the chance of
selecting highly improbable words, leading to more coherence while maintaining some level of diversity
(Graves, 2013; Ott et al., 2018; Fan et al., 2018).

Candidate Evaluation Evaluation metrics are indispensable tools in the field of machine translation.
They serve two critical functions: measuring the quality of translations produced by a model and guiding
the iterative improvement of the NMT system through training. Previous work predominantly use BLEU
(Papineni et al., 2002) to guide the training of the NMT system (Shen et al., 2016; Yang et al., 2018).
However, BLEU relies on word overlap and n-gram matching, making them ineffective for translations
that have the same meaning but are substantially different from the reference. To address these shortcom-
ings, we use robust neural metrics to evaluate candidate translations, such as reference-based COMET
(Rei et al., 2022).

Training Objective After the two mentioned stages, we engage n candidate-translation and quality-
score pairs (yi, ri) for a source sentence x, in which ri equals the evaluation metrics score M(x, yi). In
this context, n serves as a hyperparameter. As the Figure 1 shows, to align with the quality scores {ri}k,
our pre-trained NMT model π generates the model scores pi for every yi, according to the following
formula:

pi =

∑
t logPπ (yi,t | x, yi,<t)

||yi||α
(4)

Here, pi denotes the conditional logarithmic probability normalized in the length of yi in the model
π, with α as the length normalization coefficient. Our approach is straightforward: we configure the
model π to assign higher probabilities to the superior candidate translations and lower probabilities to
the inferior ones. To refine model performance towards this goal, we employ a ranking loss:

Lrank =
N∑
i=1

N∑
j=1

θ(ri < rj) ·max(0, pi − pj) (5)

This equation introduces the indicator function θ(ri < rj), which equals 1 when the condition ri < rj ,
and 0 otherwise.

Following Edunov et al. (2018b), we combine the ranking loss (Eq. 5) with the cross-entropy (Eq. 2)
losses to enhance the generative ability of the pre-trained NMT model. The total loss, as defined by (Eq.
6), is the weighted sum of these two losses.

L = Lrank + λLxent (6)

4 Experiments and Results

We evaluate our SimCLNMT on the NIST English-Chinese and the WMT’14 English-German transla-
tion tasks. We experiment SimCLNMT on transformer-base model.
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Transformer Encoder

(y1, r1) (y2, r2)

…

Transformer Decoder

Source sentence x

(p1, r1) (p2, r2)

Transformer Encoder Transformer Decoder

Source sentence x

π

π

Lxent

Lrank

…

(pn, rn)

(yn, rn)

y∗

Figure 1: The π refers to the model trained in the pre-training phase. y∗ denotes the reference translation
of source sentence x

4.1 Data Sets and Preprocessing

English-Chinese For English-Chinese translation, our training data comprises 1.6 million sentence
pairs. These are randomly extracted from LDC corpora1. Both the source and target sentences are
encoded with byte-pair encoding (BPE) (Sennrich et al., 2016). The vocabulary for the source and target
language consists of approximately 32000 tokens respectively2. We choose the NIST02 dataset as our
development set, which includes 878 sentences. For testing, we utilize the NIST03, NIST04, NIST05,
and NIST06 datasets, which contain 919, 1788, 1082, and 1664 sentences, respectively.

English-German In our English-German translation experiments, we use the WMT’14 English-
German corpus. This publicly available dataset is widely recognized as a benchmark for NMT systems
and contains 4.5 million sentence pairs3. Sentences are encoded with BPE, which employs a shared
source-target vocabulary of about 37000 tokens. We report results on newstest2014. The newstest2013
is used as validation. These datasets contain 3003 and 3000 sentences, respectively.

4.2 Model Parameters and Evaluation

For the Transformer model, following the base model in Vaswani et al. (2017), we set the dimension of
the word embedding as 512, the dropout rate as 0.1, and the number of attention heads to 8. Both the
encoder and decoder have a stack of 6 layers. During testing, We use beam search with a beam size of 4
and a length penalty of 0.6.

We reimplement the Transformer model in Pytorch using the fairseq (Ott et al., 2019) toolkit4 and
train it synchronously across four GTX 3090 GPUs in a multi-GPU setup on a single machine. To
assess the performance of each NMT system, we utilize well-established evaluation metrics, including
case-sensitive detokenized BLEU with SacreBLEU 5 (Post, 2018) and ChrF (Popović, 2015).

1LDC2002L27, LDC2002T01, LDC2002E18, LDC2003E07, LDC2004T08, LDC2004E12, LDC2005T10
2When doing BPE for Chinese, we need to do word segmentation first using jieba and the following steps are the same with

BPE for English.
3http://nlp.stanford.edu/projects/nmt
4Code available at https://github.com/pytorch/fairseq
5https://github.com/mjpost/sacrebleu
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Model Metric
English-Chinese Enlish-German

newstest2014NIST03 NIST04 NIST05 NIST06 average

MLE
BLEU 39.05 37.53 36.18 37.31 37.52 26.21
ChrF 33.81 32.39 31.50 32.27 32.49 57.19

SimCLNMT
(diverse beam search)

BLEU 39.79 38.56 36.86 38.57 38.45 26.84
ChrF 34.10 32.96 31.75 33.03 32.96 57.85

SimCLNMT
(pure sampling)

BLEU 39.66 38.11 36.97 38.59 38.33 26.64
ChrF 33.95 32.67 31.77 32.96 32.84 57.60

SimCLNMT
(top-10 Sampling)

BLEU 39.81 38.16 37.04 38.39 38.35 26.74
ChrF 34.08 32.63 31.87 32.83 32.85 57.61

Table 2: BLEU and ChrF score on English-Chinese and English-German translation tasks. diverse
beam search, pure sampling, top-10 sampling represents different methods for generating candidate
translations in Section 3.2.

4.3 Training Details

During the fine-tuning phase, We randomly select 1,000 examples from the NIST training set and 2000
examples from the WMT14 training set. To ensure the reliability and broad applicability of our findings,
we use three different random seeds for the sample selection process and report the average results from
the test set. To generate candidate translations for each source sentence, we employ various methods,
including diverse beam search, pure sampling, and Top-10 sampling. Our experiments indicate that the
hyper-parameter n had a negligible impact on the results. Consequently, based on the performance of
the development set, we set the value of n to 32. We then fine-tune the pre-trained NMT model using the
Adam optimizer, adjusting the learning rate as necessary. We train the model for fifteen epochs, selecting
the best-performing model on the development set for further evaluation. For more details, please refer
to Appendix A.

4.4 Main Results

Table 2 presents the main results of English-Chinese and English-German test sets. Employing diverse
beam search, our model (i.e., the line of SimCLNMT (diverse beam search) in Table 2) achieves an
average improvement of +0.93 points in BLEU and +0.47 points in ChrF for the English-Chinese test
set. For the English-German test set, the gains are +0.63 points in BLEU and +0.66 points in ChrF.
Using pure sampling, the model (the line of SimCLNMT (pure sampling)) shows improvements up to
+0.81 points in BLEU and +0.35 points in ChrF on the English-Chinese test set. For the English-German
test set, the gains are +0.43 points in BLEU and +0.41 points in ChrF. With top-10 sampling, the model
(the line of SimCLNMT (top-10 sampling)) achieves an average improvement of +0.83 points in BLEU
and +0.36 points in ChrF on the English-Chinese test set. For the English-German test set, the gains are
+0.53 points in BLEU and +0.42 points in ChrF.

These findings demonstrate that our proposed model consistently outperforms MLE baseline, with
optimal results observed when using diverse beam search. Notably, when employing sampling-based
methods to generate candidate translations, the performance of our model does not decline significantly
compared to diverse beam search. This robustness across different data distributions underscores the
utility and effectiveness of our model.

5 Analysis

5.1 Ablation Study

In our investigation, we perform an ablation study to assess the effectiveness of the SimCLNMT ap-
proach. We train two distinct models under identical conditions, with the only difference being the
loss function used. The first model is trained using the Maximum Likelihood Estimation (MLE) method,
with the loss function as defined in Equation 2. In contrast, the second model integrates the SimCLNMT
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technique, using the loss function introduced in Equation 5. As shown in Table 3, the SimCLNMT(5)
model exhibits a significant improvement over the SimCLNMT(2) model. This comparison underscores
the effectiveness of our proposed method. In the subsequent subsection, we uniformly employ diverse
beam search to generate candidate translations across all our experiments.

Model Metric
English-Chinese English-German

NIST03 NIST04 NIST05 NIST06 average Newstest2014

SimCLNMT(2)
BLEU 39.00 37.57 36.08 37.37 37.51 26.20
ChrF 33.76 32.40 31.40 32.28 32.46 57.26

SimCLNMT(5) BLEU 39.87 38.51 36.80 38.71 38.47 26.84
ChrF 34.15 32.90 31.69 33.14 32.97 57.80

Table 3: SimCLNMT(2) is trained using the loss function presented in Equation 2, whereas Sim-
CLNMT(5) utilizes the loss function detailed in Equation 5. These results focus on the candidate trans-
lations obtained through diverse beam search.

Model BLEU ChrF COMET

MLE 37.52 32.46 84.99
SimCLNMT(B) 38.45 32.96 85.18
SimCLNMT(C) 38.46 32.95 85.50

a

Table 4: Results on NIST English-Chinese using different evaluation metrics as M in Section 3.2. Sim-
CLNMT (B) is trained with candidate translations scored by BLEU, while SimCLNMT (C) is trained
with candidate translations scored by COMET. The reported results represent the average scores across
the test sets

5.2 Training with Different Evaluation Metrics
In our preceding experiments, BLEU is the primary metric for assessing the quality of candidate trans-
lations during the finetuning phase. To broaden the evaluation of our methodology beyond BLEU, we
introduce a reference-based neural metric, COMET6 (Rei et al., 2022), as the evaluation metric M in
Section 3.2. Subsequently, we train another version of SimCLNMT, leveraging the scores of candidate
translations as calculated by COMET.

The results in Table 4 indicate that (1) Our model significantly enhances performance when BLEU
or COMET is utilized as the target evaluation metric for ranking candidate translations. This suggests
that our method can be optimized for any specific target metric, offering an alternative to reinforcement
learning or minimum-risk training. (2) The model trained on one evaluation metric (e.g., COMET) also
shows improvement on another metric (e.g., BLEU) compared with the MLE baseline model. This indi-
cates that the enhancements from our model are not solely due to the potential weaknesses of individual
metrics. Furthermore, it highlights a significant correlation between BLEU and COMET, reinforcing the
generalization abilities of the model across different evaluation metrics.

5.3 Ranking Correlation
We evaluate the correlation between the model-calculated probabilities of candidate translations and their
quality scores. We use Eq. 2 to estimate probabilities, using BLEU as the metric for the quality scores
of the candidate translations. The Spearman rank correlation is calculated for each instance, with these
scores then averaged to obtain the overall correlation. Using a total of 32 candidates for calculation, Ta-
ble 5 shows that SimCLNMT exhibits a better rank correlation among candidate translations compared

6https://github.com/Unbabel/COMET
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to the MLE baseline model. This signifies that our model more accurately assigns higher probabilities to
better candidate translations and lower probabilities to the less favorable ones.

Model
English-Chinese

NIST03 NIST04 NIST05 NIST06 average
MLE 0.0812 0.0911 0.0583 0.0855 0.0790
SimCLNMT 0.1567 0.1449 0.1201 0.1240 0.1364

Table 5: Rank Correlation between the model’s estimated probabilities of the candidate translations and
the quality scores (BLEU) of the candidate translations on NIST (English-Chinese). We calculate the
Spearman rank correlation between Transformer and SimCLNMT.

5.4 Statistical Significance Testing

In neural machine translation models, significance tests are crucial for evaluating the statistical sig-
nificance of performance differences between model variations or different models. These tests help
researchers determine whether observed performance improvements are due to random fluctuations or
genuine enhancements in the model. We conduct statistical significance tests using the t-test to compare
SimCLNMT with the MLE baseline model. The experimental results in Table 6 show that the p-value
of the t-test is significantly less than 0.05, indicating a statistically significant difference. These findings
further confirm that the performance of SimCLNMT is superior to that of the MLE baseline model.

Dataset NIST-ench WMT14-ende
t-test 0.0002842 0.001517

Table 6: The results of statistical significance testing

6 Limitation and Future Work

Table 7 offers a comprehensive statistical comparison between the MLE baseline and SimCLNMT mod-
els on the English-Chinese and English-German test sets. Specifically, for the NIST03 English-Chinese
test set, both models generated 919 candidate translations, with their BLEU scores subsequently mea-
sured for evaluation. Upon analysis, in 33 cases, which represent 3.59% of the total instances, the BLEU
scores for the SimCLNMT model were found to be lower than those of the MLE baseline. This percent-
age, termed the ”decrease rate,” indicates a decline in performance for the SimCLNMT model in certain
sentences.

We hypothesize that this performance decline is attributable to the phenomenon of ”forgetting,”
where the model loses some of the original knowledge post full-parameter fine-tuning. This insight
has prompted us to consider strategies for future work aimed at enhancing translation quality and mit-
igating this forgetting effect. To address the issue, we plan to explore methods that include selectively
freezing certain parameters within the MLE baseline model or incorporating adapter modules (Houlsby
et al., 2019). These strategies are designed to preserve the model’s previously acquired knowledge and
prevent its loss, thereby potentially improving the stability and quality of translations produced by the
SimCLNMT model.

Dataset
English-Chinese English-German

newstest2014NIST03 NIST04 NIST05 NIST06
decrease rate 3.59% 3.28% 3.30% 3.09% 3.21%

Table 7: The results of decrease rate.
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7 Conclusion

In this study, we introduce a straightforward yet effective training method termed SimCLNMT. The
objective of this approach is to select words that not only fit well in the immediate context but also en-
hance the overall translation quality over time. Through extensive experimentation on translation tasks
between English-Chinese and English-German, we demonstrate that our SimCLNMT method consis-
tently achieves substantial improvements. These results underscore the effectiveness of our approach in
the domain of machine translation.
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Appendix

A Training Details

During the pretraining phase, for the English-Chinese translation task, we adjust the learning rate to
5 × 10−4, setting the warm-up steps at 4,000. We train the transformer-base model, as defined by
Vaswani et al. (2017), for a total of 60,000 steps. We select the model checkpoint that achieves the best
performance on the development dataset for further analysis. For the English-German translation task,
we follow the configurations specified by Vaswani et al. (2017).

In the fine-tuning phase, we use FP16 to accelerate our training. The average training time for NIST
and WMT14 is about 10 minutes. We use Adam optimizer with the learning rate set to 2 × 10−4. The
original development set is used for hyper-parameter optimization. Table 8 outlines the specific hyper-
parameter configurations used during the fine-tuning phase.

Datasets α (Eq. 4) λ (Eq. 5)
NIST English-Chinese 0 0.1
WMT14 English-German 1.5 1

Table 8: Hyper-parameter Setting

CC
L 
20
24

Proceedings of the 23rd China National Conference on Computational Linguistics, pages 1047-1058, Taiyuan, China, July 25 - 28, 2024.
Volume 1: Main Conference Papers

(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China 1058


