
LREC-COLING 2024

Proceedings of the Second Workshop on
Computation and Written Language (CAWL 2024)

@LREC-COLING-2024

Workshop Proceedings

Editors
Kyle Gorman

May 21, 2024
Torino, Italia

Proceedings of Second Workshop on Computation and Written Language (CAWL
2024) @LREC-COLING-2024

Copyright ELRA Language Resources Association (ELRA), 2024
These proceedings are licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

ISBN 978-2-493814-28-9
ISSN 2951-2093 (COLING); 2522-2686 (LREC)

Jointly organized by the ELRA Language Resources Association
and the International Committee on Computational Linguistics

ii

Message from the Chairs

Welcome to the second meeting of the CAWL workshop, featuring eight original paper
presentations, an invited talk by Nizar Habash, and an invited lecture by Jalal Maleki.

This year’s workshop is sponsored by Google; we thank them for their support.

Since our first meeting in Toronto in July 2023, we have formed a special interest group: the
ACL Special Interest Group on Writing Systems and Written Language, or SIGWrit for short.
This SIG will be responsible for organizing future meetings of CAWL, and may pursue other
objectives as decided by the officers and members of the SIG.

The current pro tempore officers of SIGWrit are president Richard Sproat, vice president Emily
Prud’hommeaux, secretary-treasurer Kyle Gorman, and student member Noah Hermalin. As
per ACL policy, we will organize an election for new officers in fall 2024. More information about
the SIG, including its constitution, can be found at https://sigwrit.org/.

iii

Invited Talks and Lectures

Nizar Habash: On Writing Arabic

The Arabic language, broadly defined, encompasses a diverse collection of varieties that are
tied together historically and linguistically, but with a high degree of variations in terms of
phonology, morphology, lexicon, and naturally orthography. In this talk we present a condensed
summary of the challenges of writing Arabic and the evolution of different orthographic solutions
to address them. The accumulation and persistence of different conventions have led to many
co-existing orthographies today creating a complex space of challenges for computational
modeling. Among the examples we discuss are subtle differences in Standard Arabic spelling
across Arab countries, using scripts other than Arabic for writing Arabic dialects, and, most
recently, social media experimentation with reverting to ancient orthographic conventions to
fight AI censorship algorithms.

Jalal Maleki: Balancing Linguistic Integrity and Practicality: The Design Journey of Dabire, a
Romanized Writing System for Persian

Developing a new writing system, like the romanized Dabire for Persian, requires a nuanced
balance between adhering to orthographic principles and making pragmatic compromises. At
the core of Dabire’s design is the principle of linguistic soundness, with phonemicity as a
cornerstone, ensuring a direct, systematic encoding of sounds to simplify the learning process
and enhance teaching efficacy. The focus on phonemicity, crucial for the script’s ease of
use and learning, particularly benefits young learners and non-native speakers. However,
the design process also involves balancing phonemic and morphophonemic considerations,
acknowledging the complex interplay between adjacent morphemes on sound realization.
In practice, rigorous maintenance of both phonemicity and morphophonemic consistency is
impossible and concessions are sometimes necessary. Other properties of the Dabire writing
system that will be discussed are faithfulness, transparency, completeness and orthographic
depth. This talk will highlight the considerations and compromises in designing Dabire, revealing
the challenges and opportunities of developing a practical, efficient, and linguistically sound
writing system for Persian.

iv

Organizing Committee

• Kyle Gorman, Graduate Center, City University of New York and Google, USA
• Emily Prud’hommeaux, Boston College, USA
• Brian Roark, Google, USA
• Richard Sproat, Google DeepMind, Japan

Program Committee

• David Ifeoluwa Adelani
• Manex Agirrezabal
• Sina Ahmadi
• Cecilia Alm
• Mark Aronoff
• Steven Bedrick
• Taylor Berg-Kirkpatrick
• Amalia Gnanadesikan
• Christian Gold
• Alexander Gutkin
• Nizar Habash
• Yannis Haralambous
• Cassandra Jacobs
• Martin Jansche
• Kathryn Kelley
• George Kiraz
• Christo Kirov
• Jordan Kodner
• Anoop Kunchukuttan
• Yang Li
• Constantine Lignos
• Zoey Liu
• Jalal Maleki
• M. Willis Monroe
• Gerald Penn
• Yuval Pinter
• William Poser
• Shruti Rijhwani
• Maria Ryskina
• Anoop Sarkar
• Lane Schwartz
• Djamé Seddah
• Shuming Shi
• Claytone Sikasote
• Fabio Tamburini
• Kumiko Tanaka-Ishii
• Lawrence Wolf-Sonkin
• Martha Yifiru Tachbelie

v

Table of Contents

ParsText: A Digraphic Corpus for Tajik-Farsi Transliteration
Rayyan Merchant and Kevin Tang . 1

A Joint Approach for Automatic Analysis of Reading and Writing Errors
Wieke Harmsen, Catia Cucchiarini, Roeland van Hout and Helmer Strik 8

Tool for Constructing a Large-Scale Corpus of Code Comments and Other Source Code Anno-
tations

Luna Peck and Susan Brown. .18

Tokenization via Language Modeling: the Role of Preceding Text
Rastislav Hronsky and Emmanuel Keuleers . 23

Abbreviation Across the World’s Languages and Scripts
Kyle Gorman and Brian Roark . 36

Now You See Me, Now You Don’t: ‘Poverty of the Stimulus’ Problems and Arbitrary Correspon-
dences in End-to-End Speech Models

Daan van Esch . 43

Towards Fast Cognate Alignment on Imbalanced Data
Logan Born, M. Willis Monroe, Kathryn Kelley and Anoop Sarkar . 53

Simplified Chinese Character Distance Based on Ideographic Description Sequences
Yixia Wang and Emmanuel Keuleers . 59

vi

vii

Tutorial Program

Tuesday, May 21, 2024

09:00–
09:10

Opening remarks

Organizers

09:10–
10:10

Invited talk: On Writing Arabic

Nizar Habash

10:10–
10:30

ParsText: A Digraphic Corpus for Tajik-Farsi Transliteration

Rayyan Merchant and Kevin Tang

10:30–
11:00

Coffee break

11:30–
12:00

A Joint Approach for Automatic Analysis of Reading and Writing Errors

Wieke Harmsen, Catia Cucchiarini, Roeland van Hout and Helmer Strik

12:00–
12:20

Tool for Constructing a Large-Scale Corpus of Code Comments and Other
Source Code Annotations
Luna Peck and Susan Brown

12:20–
14:00

Lunch break

14:00–
14:30

Tokenization via Language Modeling: the Role of Preceding Text

Rastislav Hronsky and Emmanuel Keuleers

14:30–
14:50

Abbreviation Across the World’s Languages and Scripts

Kyle Gorman and Brian Roark

14:50–
15:20

Now You See Me, Now You Don’t: ‘Poverty of the Stimulus’ Problems and
Arbitrary Correspondences in End-to-End Speech Models
Daan van Esch

15:20–
15:40

Towards Fast Cognate Alignment on Imbalanced Data

Logan Born, M. Willis Monroe, Kathryn Kelley and Anoop Sarkar

15:40–
16:00

Business meeting

Organizers

viii

Tuesday, May 21, 2024 (continued)

16:00–
16:30

Coffee break

16:30–
16:50

Simplified Chinese Character Distance Based on Ideographic Description
Sequences
Yixia Wang and Emmanuel Keuleers

ix

Second Workshop on Computation and Written Language (CAWL 2024) @LREC-COLING-2024, pages 1–7
May 21, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

ParsText: A Digraphic Corpus for Tajik-Farsi Transliteration

Rayyan Merchant∗, Kevin Tang ∗
∗University of Florida

Department of Linguistics, College of Liberal Arts and Sciences
rayyan.merchant@gmail.com

Heinrich Heine University Düsseldorf
Department of English Language and Linguistics, Faculty of Arts and Humanities

kevin.tang@hhu.de
Abstract

Despite speaking dialects of the same language, Persian speakers from Tajikistan cannot read Persian texts from
Iran and Afghanistan. This is due to the fact that Tajik Persian is written in the Tajik-Cyrillic script, while Iranian and
Afghan Persian are written in the Perso-Arabic script. As the formal registers of these dialects all maintain high
levels of mutual intelligibility with each other, machine transliteration has been proposed as a more practical and
appropriate solution than machine translation. Unfortunately, Persian texts written in both scripts are much more
common in print in Tajikistan than online. This paper introduces a novel corpus meant to remedy that gap: ParsText.
ParsText contains 2,813 Persian sentences written in both Tajik-Cyrillic and Perso-Arabic manually collected from
blog pages and news articles online. This paper presents the need for such a corpus, previous and related work,
data collection and alignment procedures, corpus statistics, and discusses directions for future work.

Keywords: parallel text, Persian, Tajik, Farsi, orthography, transliteration, Cyrillic, Perso-Arabic

1. Introduction

ParsText is a new digraphic Persian corpus cre-
ated for the express purpose of transliteration
between two Persian dialects and their scripts:
Tajik-Cyrillic in Tajikistan and Perso-Arabic in Iran
and Afghanistan. The corpus consists of 2,813
sentences, with average Tajik-Cyrillic and Perso-
Arabic sentence lengths of 15.00 and 15.57 words,
respectively.

To the best of our knowledge, only two previ-
ous efforts have investigated machine translitera-
tion between these two scripts thus far, and both of
them lacked parallel corpora with which to directly
evaluate their models (Davis, 2012; Megerdoo-
mian and Parvaz, 2008). While digraphic texts are
available within Tajikistan in print form, similar texts
rarely make appearances online, even on the web-
site of Tajikistan’s embassy in Iran.1 ParsText fills
this gap as a corpus made up of blog posts and
news articles written by native Persian speakers in
both scripts. The goal of ParsText is to enable fu-
ture efforts to train or evaluate their transliteration
systems. In an independent study (under review),
we use ParsText to train Tajik-Farsi transliteration
models. This data will be made available on OSF2

and Github3.
In Section 2, the importance of Tajik-Farsi

transliteration and why ParsText, a digraphic

1https://mfa.tj/tg/tehran
2https://doi.org/10.17605/OSF.IO/37GZX
3https://github.com/merchantrayyan/

ParsText

parallel-text corpus at the sentence level, is prefer-
able to lists with word pairs in isolation is discussed.
Section 3 introduces previous and related work.
Section 4 describes how the corpus was devel-
oped. Section 5 provides corpus statistics and ob-
servations. Finally, Section 6 concludes the paper.

2. Background

2.1. Motivation
Tajik Persian (henceforth, Tajik) is the formal regis-
ter of Modern Persian spoken in Tajikistan. While
spoken Tajik has evolved separately for centuries,
the formal register retains extremely high levels of
mutual intelligibility with the formal Persian of Iran
and Afghanistan (both henceforth referred to as
Farsi) (Perry, 2005). Unlike these two countries
which use the traditional Perso-Arabic script, Tajik-
istan uses the relatively new Tajik-Cyrillic script
due to its Soviet heritage. Proposals have been
made to shift Tajik back to the Perso-Arabic script,
but any significant shift will likely not occur soon
as Tajikistan’s former Minister of Culture stated in
2008 that “...some 90-95% of Tajikistan’s popula-
tion is not familiar with Arabic script...” (Ghufronov,
2008). As a result, the vast majority of the 10 mil-
lion Persian speakers in Tajikistan cannot read writ-
ten Persian media produced by the 100 million Per-
sian speakers in Iran and Afghanistan. This restric-
tion extends to the Internet, where Farsi dominates.
For example, as of September 2023, the Tajik
Wikipedia had 269,857 articles and 10.5 million

1

words across all content pages compared to the
Farsi Wikipedia’s 5.5 million articles and 194 mil-
lion words (Wikimedia Foundation, 2023b). These
two scripts are highly incongruous (Perry, 2005).
The Perso-Arabic script, as an impure abjad, of-
ten omits vowels, and those that are written are
ambiguous. Meanwhile, the Tajik-Cyrillic script, as
an alphabet, writes out all vowels, making it a bet-
ter phonetic representation of the language than
the Perso-Arabic script. Table 1 illustrates how the
same sentence is represented in both scripts, with
a Latin transliteration and an English translation
provided for clarity.

Script Sentence
Farsi (Perso-Arabic) فارسی‘ ’زبان
Tajik (Tajik-Cyrillic) ‘забони форcӣ’
Latin Translit. ‘zaboni forsī’
English Translation ‘The Persian language’

Table 1: Example sentence written in Farsi and
Tajik with Latin transliteration and English transla-
tion

2.2. Challenges with Typical Tajik-Farsi
Parallel Corpora

Although Tajik and Farsi descend from a common
root, they have nonetheless diverged in several as-
pects, including grammar, lexicon, and pronuncia-
tion (Perry, 2005). As a result, Tajik and Farsi ver-
sions of the same text made in isolation from each
other, such as the United Nations Declaration of
Human Rights, are often quite divergent (Gacek,
2015). As a result, they do not align on a word-
to-word basis and cannot be used for the task of
transliteration, the conversion of text in one script
to another. Additionally, several discrepancies be-
tween Tajik and Farsi mean that any transliteration
system must take into account features at the in-
terword level.

The Persian ‘Ezafe’ is one example of such an in-
terword feature, as a grammatical feature that links
a modifier to a preceding head noun (or preced-
ing modifier) (Perry, 2005). In accordance with its
phonetic nature, the Tajik standard typically writes
the Ezafe as an -и attached to the previous word.
In contrast, the Perso-Arabic script often omits the
Ezafe, so the reader must infer its location from the
surrounding context. Typically, the Ezafe is only
written when added to the plural marker ھا (‘ho’).
Otherwise, usually if needed to disambiguate a
phrase, it is written as a diacritic at the end of the
head noun.
As the Ezafe has the potential to drastically

change a sentence’s phrasal boundaries, and thus
its meaning, detection of the Ezafe is an important
step in a Natural Language Processing pipeline for

Persian (Asghari et al., 2014; Doostmohammadi
et al., 2020).
On a basic level, several affixes are always at-

tached to the stem word in Tajik, but written either
separately or conjoined with a Zero Width Non-
joiner character (ZWNJ) in Farsi (Megerdoomian
and Parvaz, 2008). These discrepancies are what
make the transliteration task challenging. Further
challenges are described in Appendix A.

3. Related Work

Previous investigations of Tajik-Farsi translitera-
tion systems have made use of non-digraphic
datasets, resulting in indirect methods of system
evaluation. Megerdoomian and Parvaz (2008)
created a Tajik-only dataset from the news site
Radio Ozodi, judging performance of Tajik to
Farsi transliteration through detection of correctly-
spelled Farsi words. Davis (2012) utilized a Tajik-
Farsi word list of 3,503 pairs as training data for a
statistical transliteration system. To evaluate said
system, two unrelated Tajik and Farsi datasets
were used. None of these datasets or transliter-
ation systems have been made public.
To the authors’ knowledge, only one other

dataset has been made publicly available for the
same purpose as ParsText: the training data re-
leased by Github user stibiumghost4 for a Tajik-to-
Farsi transliteration project5 based on work by Ta-
lafha et al. (2021). These data were uploaded to
Github on December 2022, well after the ParsText
corpus was created in February 2022.
This dataset consists of a 43,535 word dic-

tionary and collection of poetry and news with
404,755 Farsi tokens and 392,562 Tajik tokens.
We note that in-depth exploration of this corpus
and comparison to our own present avenues for
further research. We also believe that our corpus,
despite its smaller size, would be appropriate for
use as an evaluation dataset in combination with
the larger stibiumghost dataset.
Beyond Persian, there exist several datasets

made for machine transliteration of a single lan-
guage. For Jordanian Arabic, Talafha et al. (2021)
created a dataset in Arabic and a non-standard ro-
manization known as Arabizi. Ahmadi et al. (2022)
compiled a corpus of Kurdish news articles written
in the Sorani (Arabic-based) and Kurmanji (Latin-
based) orthographies. More recently, Gow-Smith
et al. (2022) reconstructed part of a 16th-century
Scottish Gaelic manuscript in modern orthogra-
phy. These corpora all focus on low-resource lan-

4https://github.com/stibiumghost/
tajik-to-persian-transliteration/tree/
main/training_data

5https://github.com/stibiumghost/
tajik-to-persian-transliteration

2

guages and tackle similar challenges in transliter-
ation due to non-phonetic orthographies.

4. The Corpus

4.1. Data Collection
After an extensive online search, twomain sources
of parallel data presented themselves: blog pages
and British Broadcasting Corporation (BBC) News
articles. The two blogs we found were written by
native Persian speakers who knew both orthogra-
phies and dealt with a wide variety of topics rang-
ing from poetry to politics.67 Latin orthographies
for Persian, such as Dabire, were not considered
as they are not standard in any Persian-speaking
country (Maleki, 2008). These blogs and articles,
as opposed to individual word lists, provide inter-
word details such as the aforementioned affixes
and ezafe which are critical to Tajik-Farsi transliter-
ation. Moreover, they deal with a variety of formal
topics, and are therefore written in a formal regis-
ter of Persian.
To filter out posts that lacked such sentence

alignment, as well as those written in only one
script or in other languages (usually Russian), we
opted to manually collect these data rather than
use an automatic website scraping tool.
We were also able to find 23 BBC News arti-

cles written in both orthographies8910 during the
time BBC Tajik operated from 1993 to 2015 (BBC,
2015). These articles almost exclusively deal with
politics, and exhibited a similar degree of word-to-
word alignment. Due to the small number of arti-
cles, we decided to collect these manually.
As the first author is a non-native speaker of Per-

sian, he conducted manual inspection of texts for
word-to-word alignment during collection, along
with spot checking at later points. In this manner,
texts that did not meet this standard were filtered
out as well. A few sample sentences from Pars-
Text are available in Appendix B.

4.2. Data Processing
As the corpus that we compiled was not aligned
on a sentence-to-sentence basis, we aligned each
individual source document with GaChalign11, a
Python implementation of the Gale-Church align-
ment algorithm (Tan and Bond, 2014; Gale and

6http://dariussthoughtland.blogspot.
com/

7http://jaamjam.blogspot.com/
8https://www.bbc.com/tajik
9https://www.bbc.com/persian/indepth/

cluster_tajikistan_page
10https://www.bbc.com/persian
11https://github.com/alvations/

gachalign

Church, 1993). We note that our corpus presents
some inconsistencies due to differences in the
authors’ word choice, and has not undergone in-
depth analysis from native speakers to be cor-
rected. Experimentation with the data uploaded
on Github by stibiumghost revealed that those
present similar inconsistencies. Creation of a di-
graphic corpus rigorously checked by native Per-
sian speakers therefore presents another avenue
for further research.

5. Statistics and Observations

In the absence of lemmatization tools for Tajik, to-
ken - rather than lemma - statistics of the corpus
are presented in this paper. Table 2 lists corpus
statistics, while Table 3 provides the top ten most
frequent tokens in both scripts.

Statistics Farsi Tajik
of sentences 2,813 2,813
of word tokens 43,846 42,226
of characters 186,414 222,986
Avg. # of tokens in a sentence 15.57 15.00
Avg. # of characters in a token 66.15 79.13

Table 2: ParsText Statistics. Note that any char-
acter statistic does not include whitespace charac-
ters.

In accordance with the fact that Farsi does not
have a phonetic orthography, the Farsi character
statistics are lower than the Tajik character statis-
tics. However, the token measures are larger,
likely reflecting how several Persian affixes and
function words are written attached to the preced-
ing word in Tajik, but separately in Farsi.
From Table 3, several observations can be

made. First, the top 10 most frequent tokens in
Tajik and Farsi are the exact same Persian words.
Furthermore, the order of these tokens is also
mostly shared with the exceptions of ва / و (En-
glish: ‘and’) and аст / است (English: ‘is’). These
likely differ in frequency as both words are ex-
pressed in multiple ways in both orthographies.
For example, аст است/ can be attached to the pre-
vious word in Tajik but is always written separately
in Farsi. Meanwhile, و can be written either sepa-
rately or attached to the previous word in Farsi. Its
two Tajik equivalents, ва and у, are written sepa-
rately or attached, respectively.
We also note that all but one of the top ten most

frequent Tajik and Farsi tokens in ParsText are
stop words, with the ninth most frequent token be-
ing тоҷикистон/تاجیکستان (English: ‘Tajikistan’).
While stop words typically do not indicate align-
ment, in the case of our digraphic, word-to-word
corpus, the fact that the Farsi token frequencies
are generally very close to their Tajik equivalents

3

Farsi Tajik
Token Transliteration Translation Frequency Token Transliteration Translation Frequency
و va, u ‘and’ 2,096 дар dar ‘in’ 1,495
در dar ‘in’ 1,498 ба ba ‘to’ 1,323
به ba ‘to’ 1,307 ва va ‘and’ 1,230
که ki ‘that’ (Conj.) 1,212 ки ki ‘that’ (Conj.) 1,216
از az ‘from 1,154 аз az ‘from’ 1,149
این in ‘this’ 883 ин in ‘this’ 910
است ast ‘is’ 636 бо bo ‘with’ 448
با bo ‘with’ 458 аст ast ‘is’ 394

تاجیکستان tojikiston ‘Tajikistan’ 428 тоҷикистон tojikiston ‘Tajikistan’ 393
بود bud ‘was’ 290 буд bud ‘was’ 285

Table 3: Top 10 Most Frequent Farsi and Tajik Tokens in ParsText

indicate that the same wording is being used. As
under-resourced languages, few Farsi stop word
lists exist, and we know of only one for Tajik. En-
suring removal of the exact same stop words re-
quires a digraphic list of Tajik/Farsi stop words.
This task is best left to native speakers.
Additionally, although one would expect the fre-

quency of ’Tajikistan’ to indicate abnormalities, fur-
ther manual inspection revealed no unnatural oc-
currences of the word. As such, we believe this
is a natural reflection of the provenance of these
texts. As the sources all focus on Tajikistan, it ap-
pears that the frequency of this proper noun has
become similar to that of a pronoun.
To analyze ParsText on a character level, the

most frequent trigraphs (character trigrams) were
also calculated. To ensure that three-letter tokens
did not overpopulate this list, trigraph frequency
was conducted over all word types, rather than to-
kens. The character ’#’ is inserted at word-initial
and word-final postion. These data are presented
in Tables 4 and 5.

Trigraph Transliteration Frequency
а н д a n d 534
р о # r o # 519
т а # t a 506
н и # n i # 463
м а # m a 410
о и # o i # 403
н а # n a 351
о н и o n i 319
м у # m u 296
и и # i i # 217

Table 4: Top 10 Most Frequent Tajik Trigraphs in
ParsText (Calculated Over Word Types)

Based on the above trigraphs, several more ob-
servations can be made. First, the Persian sub-
ject marker ’ро’ / ’را’ (’ro’) appears to be well repre-
sented, being present as (’r o #’) among the Tajik
trigraphs and (’r a #’) and ’r a _’) among the Farsi tri-
graphs. The two Farsi forms demonstrate that the
ZWNJ is not always used by native speakers. The
Ezafe also appears to be present in the Tajik list as

Trigraph Transliteration Frequency
ن ا a n # 528
ا# ر r a # 528
_ ا ر _ r a 431
ی# ا a i # 424
ی ا ه h a i 420
_ ا ه h a _ 392
د ن n d # 392
_ ی م m i _ 384
ی م # # m i 356
- ی i - # 343

Table 5: Top 10 Most Frequent Farsi Trigraphs in
ParsText (Calculated over Word Types)
Note: The Perso-Arabic text must be read right-to-
left and the ZWNJ is denoted with ’_’.

(’n i #’, ’o n i’, and ’i i #’) and the Farsi list as (’a i #’
and ’h a i’). Altogther, these trigraph frequencies
greatly differ, demonstrating the large contrasts
between the Tajik-Cyrillic and Perso-Arabic script.
To provide a different picture, we conduct a differ-
ent set of trigraph frequencies without any vowels,
included Appendix C. However, as several Tajik
consonants have multiple (up to four) equivalents
in Farsi, this does necessarily result in a clearer
picture.

6. Conclusion and Future Work

This paper presented ParsText, a corpus of
2,813 digraphic Persian sentences written by
native speakers in the Tajik-Cyrillic and Perso-
Arabic orthographies. ParsText containsmanually-
collected data from blog pages and BBC news arti-
cles. Based on manual inspection by a non-native
speaker and analysis of most frequent tokens, we
confirmed ParsText exhibits word-to-word align-
ment, a crucial requirement for direct evaluation of
Tajik-Farsi transliteration systems that is unavail-
able in other parallel corpora. As such, it enables
direct evaluation of Tajik-Farsi machine translitera-
tion efforts. The corpus is available on OSF.12

12https://doi.org/10.17605/OSF.IO/37GZX

4

7. Bibliographical References

Sina Ahmadi, Hossein Hassani, and DabanQ. Jaff.
2022. Leveraging Multilingual News Websites
for Building a Kurdish Parallel Corpus. ACM
Trans. Asian Low-Resour. Lang. Inf. Process.,
21(5).

Habibollah Asghari, Jalal Maleki, and Heshaam
Faili. 2014. A probabilistic approach to Persian
ezafe recognition. In Proceedings of the 14th
Conference of the European Chapter of the As-
sociation for Computational Linguistics, volume
2: Short Papers, pages 138–142, Gothenburg,
Sweden. Association for Computational Linguis-
tics.

BBC. 2015. Поёни фаъъолияти сафҳаи
сириллики бахши форсии Би-би-сī.

Chris Irwin Davis. 2012. Tajik-Farsi Persian
transliteration using statistical machine transla-
tion. In Proceedings of the Eighth International
Conference on Language Resources and Eval-
uation (LREC’12), pages 3988–3995, Istanbul,
Turkey. European Language Resources Associ-
ation (ELRA).

Ehsan Doostmohammadi, Minoo Nassajian, and
Adel Rahimi. 2020. Persian Ezafe Recogni-
tion Using Transformers and Its Role in Part-
Of-Speech Tagging. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP
2020, pages 961–971, Online. Association for
Computational Linguistics.

Tomasz Gacek. 2015. Some comments on a par-
allel text in Dari, Tojiki and Farsi. In Anna Kras-
nowolska and Renata Rusek-Kowalska, editors,
Studies on the Iranian World, volume 2, chap-
ter Medieval and Modern, pages 23–34. Jagiel-
lonian University Press, Kraków.

William A. Gale and Kenneth W. Church. 1993. A
program for aligning sentences in bilingual cor-
pora. Computational Linguistics, 19(1):75–102.

Daler Ghufronov. 2008. Shifting Tajik writing sys-
tem to Arabic script takes a lot of time, says min-
ister. ASIA-Plus.

Edward Gow-Smith, Mark McConville, William
Gillies, Jade Scott, and Roibeard Ó Maolalaigh.
2022. Use of Transformer-Based Models for
Word-Level Transliteration of the Book of the
Dean of Lismore. In Proceedings of the 4th
Celtic Language Technology Workshop within
LREC2022, pages 94–98, Marseille, France.
European Language Resources Association.

Jalal Maleki. 2008. A romanized transcription for
persian.

Karine Megerdoomian and Dan Parvaz. 2008.
Low-density language bootstrapping: the case
of tajiki Persian. In Proceedings of the
Sixth International Conference on Language Re-
sources and Evaluation (LREC’08), Marrakech,
Morocco. European Language Resources Asso-
ciation (ELRA).

John R. Perry. 2005. A Tajik Persian Reference
Grammar . Brill, Leiden, The Netherlands.

Bashar Talafha, Analle Abuammar, and Mahmoud
Al-Ayyoub. 2021. Atar: Attention-based LSTM
for Arabizi transliteration. International Journal
of Electrical and Computer Engineering (IJECE),
11(3):2327–2334. Number: 3.

Liling Tan and Francis Bond. 2014. NTU-MC
Toolkit: Annotating a Linguistically Diverse Cor-
pus. In Proceedings of COLING 2014, the 25th
International Conference on Computational Lin-
guistics: System Demonstrations, pages 86–89,
Dublin, Ireland. Dublin City University and Asso-
ciation for Computational Linguistics.

Wikimedia Foundation. 2023a. List of wikipedias.

Wikimedia Foundation. 2023b. Statistics.

A. Challenges in Tajik-Farsi
Transliteration

As previously described, Farsi and Tajik diverge in
a number of ways which render one-to-one letter
conversion largely ineffective. An example translit-
eration employing such a technique can be seen
in Table 6.

Farsi Farsi Translit. Tajik Tajik Translit.
خواندم را کتاب من mn ktob ro xwondm ман китобро хондам man kitobro xondam

Table 6: One-to-one Transliteration of Farsi and
Tajik

Owing to the incongruous natures of the two
scripts, Perso-Arabic an imperfect abjad and Tajik-
Cyrillic an alphabet, many characters map to a sin-
gle character and vice versa.

A.1. Vowels
The character ,ا known as alef, can represent sev-
eral different vowels as demonstrated in Table 7.
The letter ,و known as vav, can map to the vow-

5

Farsi Farsi Translit. Tajik Tajik Translit. English
انجمن anjmn анҷуман anjuman ‘organization’
انتخاب antxob интихоб intixob ‘choice’
امید amyd умед umed ‘hope’
او aw ӯ ü ‘(s)he’
آهنگ ohng оҳанг ohang ‘song’
خاردن xoridn хоридан xoridan ‘to itch’

Table 7: Examples of Alef mapping to various vow-
els

Farsi Farsi Translit. Tajik Tajik Translit. English
ولایت wlayt вилоят viloyat ‘oblast’
آورد owrd овард ovard ‘brought’
گاو gaw гов gov ‘cow’
بود bwd буд bud ‘was’
امروز amrwz имрӯз imrüz ‘today’

Table 8: Examples of Vav mapping to vowels and
consonants

els у and ӯ, or the consonant в, as shown in Table
8.
The letter ,ی known as ye, maps to several dif-

ferent vowels, as seen in Table 9.

Farsi Farsi Translit. Tajik Tajik Translit. English
یراق yroq яроқ yaroq ‘weapon’
دریا drya дарё daryo ‘river/sea’
چای çay чой çoy ‘tea’
ایران ayran Эрон Eron ‘Iran’
خیلی xyly хеле xele ‘very’
عالی ’aly олӣ olī ‘great’
حتی hty ҳатто hatto ‘even’

Table 9: Examples of Ye mappings

The consonant ,ه known as he (do cheshm),
maps to either the consonant ҳ or to vowels when
in word final position, as shown in Table 10.
The character ,ع or ayn, can map to any vowel

(see Table 11), and is also inconsistently written.
The ,ء or hamza, exhibits similar behavior to ayn

by mapping to both vowels and the Tajik glottal
stop sign. It can be written as a standalone letter,
or over alif, vav, or ye. However, this character is
often replaced with a ye or simply removed from
the letter it is written over.
Vowel diacritics are often unwritten in the Perso-

Arabic script, further obfuscating short vowel de-
termination. Without vowel diacritics, the word گرد
may represent either гард /gard/ (’dust’), гирд
/gird/ (’round’), or гурд /gurd/ (’hero’).

A.1.1. Consonants

As the Perso-Arabic script retains many redundant
Arabic consonants from Arabic, some Cyrillic let-
ters each have multiple Perso-Arabic letter equiv-
alents. Table 12 provides an overview of these.
Outside of these redundant consonants and the

vowels mentioned previously, consonant to conso-
nant mapping between the two scripts is one-to-
one and can be considered trivial.

Farsi Farsi Translit. Tajik Tajik Translit. English
به bh ба ba ‘to’
که kh ки ki ‘that (conj.)’
چه çh чи çi ‘what’
قاعده qa’dh қоида qoida ‘rule’
سیاه syah сиёҳ siyoh ‘black’
ده dh даҳ dah ‘ten’
فربه frbh фарбеҳ farbeh ‘fat’

Table 10: Examples of He Mapping

Farsi Farsi Translit. Tajik Tajik Translit. English
عضو ’zw узв uzw ‘limb’
عل؝مت ’lamt аломат alomat ‘sign’
فعالیت f’alyt фаъолият fa’oliyat ‘activity’
ساعت sa’t соат soat ‘hour’
تاریخ taryx таърих/торих ta’rix/torix ‘history’
قرآن qron Қуръон Qur’on ‘Quran’

Table 11: Examples of Ayn mapping

B. ParsText Sample Sentences

These example sentences have been lowercased.

(1) вай гуфтааст ки донишгоҳҳои
табрез низ омодаи пазириши
донишҷӯёни тоҷик ҳастанд

تبریز دانشگاههای که است گفته وی
هستند تاجیک دانشجویان پذیرش آماده نیز

(2) як сол пеш аз таваллуди мирзо
фатҳъалӣ падараш аз ин мақом
барканор шуда буд

از پدرش فتحعلی میرزا تولد از پیش سال یک
بود شده برکنار مقام این

(3) мутмаъинам ки мардуми
тоҷикистон ҳам аз аҳволи эрон
нигарон ҳастанд

ایران احوال از هم تاجیکستان مردم که مطمئنم
هستند نگران

C. Trigraphy Frequencies with
Vowels Removed

We provide trigraph frequencies excluding all in
Tajik and Farsi in this appendix. For Tajik, the let-
ters removed were у, е, ҳ, ъ, а, о, э, я, и, й, ӣ
and ю. For Farsi, the letters removed were ,ا ,آ ,و
,ع and .ی Tables 13 and 14 show the trigraph fre-
quencies in Tajik and Farsi.

6

Phoneme Tajik Farsi
/z/ з ز

ذ
ض
ظ

/s/ с س
ص
ث

/t/ т ت
ط

/h/ ҳ ح
ه

Table 12: One to many Mappings of Consonants
from Tajik to Farsi

Trigraph Transliteration Frequency
н д # n d # 329
с т # s t # 219
т р # t r # 140
б р # b r 134
р н # r n # 124
т н # t n # 107
с т н s t n 94
ф р # f r 94
с р # c r 94
м р # m r 94
д н # d n # 94

Table 13: Most Frequent Tajik Trigraphs in Pars-
Text (Without Vowels)

Trigraph Transliteration Frequency
ر _ _ r # 395
د ن n d # 346
_ م # # m _ 204
ست s t # 140
ر ب # # b r 139
ن ر r n # 118
م ن # # n m 104
ر ف # # f r 104
ن ت t n # 97
ر ت t r # 96

Table 14: Most Frequent Farsi Trigraphs in Pars-
Text (Without Vowels)
Note: The Perso-Arabic text must be read right-to-
left and the ZWNJ is denoted with ’_’.

7

Second Workshop on Computation and Written Language (CAWL 2024) @LREC-COLING-2024, pages 8–17
May 21, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

A Joint Approach for Automatic Analysis of
Reading and Writing Errors

Wieke Harmsen, Catia Cucchiarini, Roeland van Hout, Helmer Strik
Centre for Language Studies

Radboud University Nijmegen, The Netherlands
{wieke.harmsen, catia.cucchiarini, roeland.vanhout, helmer.strik}@ru.nl

Abstract
Analyzing the errors that children make on their ways to becoming fluent readers and writers can provide invaluable
scientific insights into the processes that underlie literacy acquisition. To this end, we present in this paper an
extension of an earlier developed spelling error detection and classification algorithm for Dutch, so that reading
errors can also be automatically detected. The strength of this algorithm lies in its ability to detect errors at Phoneme-
Corresponding Unit (PCU) level, where a PCU is a sequence of letters corresponding to one phoneme. We validated
this algorithm and found good agreement between manual and automatic reading error classifications. We also
used the algorithm to analyze words written by second graders and words read by first graders. The most frequent
PCU errors were ei, eu, g, ij and ch for writing, and v, ui, ng, a and g for reading. This study shows how a joint
approach for the automatic analysis of reading and writing errors can be implemented. In future research the value of
this algorithm could be tested by analyzing corpora containing initial reading and writing data from the same children.

Keywords:Automatic spelling and reading error detection, Reading and writing instruction, Child read speech
corpora, Child written language corpora, Phoneme-grapheme alignment, Dutch

1. Introduction
Reading and writing are both skills that children
acquire after long periods of intensive instruction
and practice. In this sense, reading and writing
are essentially different from speaking and listen-
ing, which are skills that children spontaneously
acquire in daily interaction. The processes of
learning to read and write require children to en-
gage in long and sustained practice, preferably un-
der teachers’ guidance. During practice, children
inevitably make reading and writing errors that
teachers need to correct to make children aware of
their gaps in knowledge and to help them improve
their reading aloud and writing skills. Analyzing
the errors that children make on their ways to be-
coming fluent readers and writers can provide in-
valuable scientific insights into the processes that
underlie literacy acquisition.
Analyzing the child development of reading and
spelling errors is not an easy task. There are three
important reasons that make this task challeng-
ing. Firstly, there is no corpus available that con-
tains longitudinal reading and writing data from the
same children. Secondly, a classification scheme
that can capture a large variety of both reading
and writing errors has not yet been developed.
Thirdly, the task of detecting and classifying read-
ing and writing errors manually is laborious and
time-consuming.
Recent developments in the field of language and
speech technology have made it possible to over-
come these challenges partially. For Dutch, a
medium-sized language, there are four corpora

available that can be used for either reading er-
ror or writing error analysis. These are JASMIN,
a small corpus of Dutch and Flemish child speech
(Cucchiarini et al., 2006), CHOREC, a corpus of
Dutch speech by Flemish elementary school chil-
dren (Cleuren et al., 2008), BasiScript, a corpus
of written texts and dictations produced by chil-
dren in primary school (Tellings et al., 2018a),
and DART, a larger corpus of child read speech
by first graders (6-7 years old) (Bai et al., 2022).
These corporamake it possible to develop scientif-
ically and pedagogically sound error classification
schemes, as well as algorithms that apply these
schemes to analyze both reading aloud and writ-
ing data automatically.
Using a joint classification scheme opens up op-
portunities for research on literacy acquisition in
which reading and writing development are inves-
tigated in combination to gain insight into their dif-
ferences and their interaction. This type of re-
search would profit enormously from longitudinally
collected data collections on reading and writing of
course, but such databases are not available for
Dutch, although we hope that thesemight be come
about in the near future. In any case, an impor-
tant prerequisite for comparing reading and writ-
ing skills is the development of a joint classifica-
tion scheme that captures both reading aloud and
spelling errors. For developing such a scheme, it
is not necessary to have reading and writing data
of the same children.
Our aim is to present a joint classification scheme
for Dutch reading and spelling errors, together

8

with an algorithm that can automatically detect and
classify these errors in corpora of read speech
and written language. As a first step in this direc-
tion, we expanded an existing spelling error detec-
tion and classification algorithm (Harmsen et al.,
2021b,a) so that it can also detect and classify
reading errors. In addition, we applied this ex-
panded algorithm to separate corpora of reading
and spelling data from children in Dutch primary
school. We describe the type and frequency of
reading and spelling errors that we found.

2. Background
2.1. Three essential competences for

reading and spelling in Dutch
When children learn to read and write, three com-
petences become relevant. In the first place,
phonological awareness (e.g., van Druenen et al.
(2019)), which is knowing that words are built from
phonemes (i.e., sounds). Phonologically aware
learners are able to segment words into phonemes
(auditory analysis) and to combine phonemes into
words (auditory synthesis).
Written Dutch uses the Latin alphabet, so the
second competence involved is knowledge of the
alphabetical principle: a grapheme (i.e., single
letter) or sequence of graphemes represents a
phoneme and vice versa. Borgwaldt et al. (2004)
compared the orthographic transparency of five
languages that use the Latin alphabet. A trans-
parent orthography is defined as an orthography
with both a high feedforward consistency (one-to-
one grapheme to phoneme mappings) and high
feedback consistency (one-to-one phoneme to
grapheme mappings). They conclude that Dutch
orthography has as intermediate transparency. In
addition, Dutch has a higher feedforward consis-
tency than feedback consistency. This is one rea-
son why reading in Dutch is considered to be less
difficult than spelling (Bosman and Van Orden,
1997).
Finally, the child has to acquire an explicit mor-
phological awareness, since Dutch morpholog-
ical principles are part of the writing system.
This may result in the phenomenon that words
are pronounced differently than one would ex-
pect based on their written form and the set of
learned phoneme-grapheme mappings. For ex-
ample, the verb hij vindt (he finds) consists of two
morphemes: vind and t, since it is constructed by
taking the root vind and adding the third person
singular suffix t. In this verb, the dt is pronounced
as a single /t/1, which means that the pronuncia-
tions of vind and vindt are exactly the same: /v I n

1All phonetic transcriptions in this paper are written
between slashes and in the computer phonetic alphabet
CGN2 (Gillis, 2001).

t/ (due to final devoicing, the d in the root vind is
pronounced as /t/).

2.2. Existing classification schemes
So far, each study researching reading or spelling
errors in Dutch used its own classification scheme.
Most classification schemes manually labeled
each misspelled word with a label describing the
reading or spelling error (e.g. Kleijnen (1997);
Cleuren et al. (2008); Tellings et al. (2018b);
Limonard et al. (2020)). A disadvantage of this ap-
proach is that it is not clear which part of the word
is written incorrectly, and which letters are substi-
tuted, deleted or inserted in comparison with the
target word.
Another type of classification scheme that was
mainly used in research on automatic pronunci-
ation assessment in alphabetic languages, de-
fined reading errors as phonemes that are in-
serted, deleted or substituted in comparison with
the phonetic transcription of the target word (e.g.,
Zhang et al. (2021); Lin and Wang (2022); Gelin
et al. (2023)). These studies were able to return
the phoneme that was read incorrectly, but not
the letters in the target word that represented this
phoneme. That means that important diagnostic
information was missing.

2.3. Phoneme-Corresponding Units
In Dutch, a single phoneme can be represented
by one or a sequence of two or even more
graphemes. In line with Laarmann-Quante (2016),
we refer to these grapheme representations as
Phoneme-Corresponding Units (PCUs). For ex-
ample, the Dutch word maan (moon) consists of
three phonemes /m a n/, and thus three PCUs:
m, aa and n. The Dutch word bureau (desk) con-
sists of four phonemes /b y r o/, and thus four
PCUs: b, u, r and eau. Unfortunately the num-
ber of phonemes and the PCUs a word consists
of are not always equal. Sometimes, a word can
have more PCUs than phonemes. This is possible
because some graphemes in Dutch are not pro-
nounced. An example is the diminutive name of
cupboard kastje (kast (noun) + je (diminutive suf-
fix), little cupboard) with phonetic transcription /k A
s j @/ and PCU segmentation k, a, s, t, j, e. In this
example, the PCU t is not pronounced.

2.4. Primary PCU-phoneme mappings
and sound pure words

A distinction can be made between primary and
secondary PCU-phoneme mappings. The primary
PCU-mappings mark a fixed, unique link between
a PCU and a phoneme. They are the PCU-
phoneme mappings that are taught initially to be-
ginning readers and writers in first grade of primary
school. The primary PCU-phoneme mappings are

9

VOWELS CONSONANTS
Phoneme PCU Phoneme PCU

/a/ aa /b/ b
/o/ oo /d/ d
/y/ uu /f/ f
/e/ ee /h/ h
/i/ ie /j/ j
/A/ a /k/ k
/O/ o /l/ l
/U/ u /m/ m
/E/ e /n/ n
/I/ i /N/ ng

/EI/ ei /p/ p
/EI/ ij /r/ r
/EU/ eu /s/ s
/UI/ ui /t/ t
/u/ oe /v/ v

/AU/ au /w/ w
/AU/ ou /x/ g
/@/ e (schwa) /x/ ch

/z/ z

Table 1: Dutch primary PCU-phoneme mappings.

presented in Table 1. This table contains for each
phoneme just one way to write it, except for the
phonemes /EI/ and /OU/, which can be written in
two ways. Words containing only primary PCU-
phoneme mappings are called sound pure words
(klankzuiver in Dutch).
Not all words can be written correctly using only
primary PCU-phoneme mappings. For exam-
ple, the Dutch language also contains loanwords,
words containing a schwa, and words whose
spelling depends on morphology. In these cases,
secondary PCU-phoneme mappings are used to
write these words correctly. Examples of sec-
ondary PCU-phoneme mappings are: e-/@/ in
bestaan (to exist) and eau-/o/ in bureau (desk).

2.5. Dutch PCU-based spelling error
detection and classification

In an earlier study (Harmsen et al., 2021a,b), an
algorithm was presented that could detect spelling
errors by aligning the realized spelling (including
spelling errors) with the target spelling using the
phonetic transcription of the target spelling. In this
algorithm, a spelling error was defined as an in-
serted, deleted or substituted PCU.
We illustrate the strength of this algorithm with an
example. Where a Levenshtein-based alignment
algorithm would most likely detect two errors in the
misspelling lag of the word lach (laugh), namely
a substitution of c with g and a deletion of h, the
newly presented algorithm that also uses the pho-
netic transcription of the target (i.e., /l A x/) could
recognize that both the ch and g correspond to the
same phoneme /x/ and align them with each other.

In this way, the detected spelling error is defined
as a substitution of the PCU ch pronounced as /x/)
with g, which is more informative.

2.6. The current research
Given that our aim is to develop a joint classifica-
tion scheme for reading aloud and spelling, we ad-
dress the following more specific research ques-
tions:

1. To what extent can we accommodate and
expand an automatic spelling error detection
and classification algorithm (Harmsen et al.,
2021a,b) in such a way that it is able to de-
tect sound pure reading errors on the basis of
phonetic transcriptions of audio recordings?

2. We address three subquestions to make a
comparison between reading and spelling:

(a) Which sound pure PCUs are most fre-
quently written incorrectly by initial writ-
ers?

(b) Which sound pure PCUs are most fre-
quently read incorrectly by initial read-
ers?

(c) How do these patterns compare?

3. Method
3.1. Data sets
The reading data set consists of phonetic tran-
scriptions of audio that were collected within the
project Dutch Automatic Reading Tutor (DART)
(Bai et al., 2020). In this project, grade 1 pupils (6-
7 years old) practiced reading for six weeks (twice
a week for 10 minutes) with a system that provided
feedback on their reading aloud. Before and after
these practice weeks, each pupil had to take three
pretests and three posttests. Each test consisted
of a list of 24 words that the pupils had to read in
one go while their speech was recorded.
For the current study, we selected phonetic tran-
scriptions of 28 audio recordings from the DART
pretest and posttest dataset. An annotator made
the phonetic transcriptions of the audio. In total,
the reading data consisted of phonetic transcrip-
tions of 672 words.
The written data set used in this study consists
of 2352 dictations from the BasiScript corpus
(Tellings et. al., 2015) that were written by grade 2
pupils (7-8 years old). Each pupil wrote the same
dictation, consisting of 25 words. The dictations
were originally handwritten by the pupils, digitized
(typed) and stored in the BasiScript corpus. In to-
tal, the writing data consisted of 58,800 words.

10

Figure 1: An example of application of the spelling and reading error detection algorithm on the word
schrik (fright), spelled incorrectly as sgrik and read incorrectly as /s x I k/.

3.2. Spelling and reading error detection

To automatically detect reading and spelling er-
rors at PCU-level in the realized readings and
spellings, we extended an earlier presented algo-
rithm developed for automatic spelling error detec-
tion (Harmsen et al., 2021a). This spelling error
detection algorithm consists of four parts. To be
able to detect reading errors at PCU-level, we had
to create separate variants of parts 3 and 4 of the
algorithm. Figure 1 visualizes the four parts in the
analysis using an example.
First, the phonetic transcription of the target
spelling was obtained automatically using a Dutch
grapheme-to-phoneme converter (G2P) webser-
vice (Ten Bosch, 2019). This is the target reading.
Secondly, the target reading and target spelling
are aligned. This is done using a dictionary that
defines all possible ways a phoneme can be writ-
ten in Dutch. For example, the phoneme /x/ can be
written as g and as ch. Starting from the third step,
the analysis procedure is different for the spelling
and reading error detection. With respect to read-
ing error detection, the order of the phonemes of
the target reading and realized reading is first re-
versed, and subsequently aligned using the Al-
gorithm for Dynamic Alignment of Phonetic Tran-
scriptions (ADAPT) (Elffers et al., 2013). In this
algorithm, articulatory features are incorporated to
define the distance between two phonemes (Cuc-
chiarini, 1993, 1996). The resulting alignment is
again reversed, so that the phonemes are in the
correct order again. The readings are reversed,
because we want the target reading to match with
the final attempt of the speaker to read a word.
For spelling error detection, step three consists of
aligning the graphemes of the target spelling and
realized spelling with each other using the Algo-
rithm for Dynamic Alignment of Graphemic Tran-
scriptions (ADAGT) (Bai et al., 2021; Harmsen
et al., 2021a). This is an adaptation of ADAPT,
made suitable for grapheme alignment. This al-
gorithm aligns vowels only with vowels and con-
sonants only with consonants. In the fourth step,

multi-sequence alignment is performed. The out-
put alignments of step 2 and 3 are combined
based on their overlapping transcription: the target
spelling for spelling error detection and the target
reading for reading error detection. In this way,
the PCU-segmentation of the realized spelling is
deduced. In this final spelling alignment, spelling
errors can be detected as PCUs that are spelled in-
correctly. In the final alignment output of the read-
ing error detection pipeline, reading errors can be
detected as PCUs that are read incorrectly.
We found that the phonetic transcriptions provided
by the G2P webservice were not always consis-
tent. To overcome this problem, we made the fol-
lowing decisions. Words with a grapheme tran-
scription ending in -en (e.g., kijken (to watch)) get
a phonetic transcription ending in /@/ (schwa). In
addition, we specified that words ending in the
graphemes -auw or -ouw get the phonetic tran-
scription /OU/ and not /OU w/. Finally, we decided
to make no distinction between /x/ (unvoiced) and
/G/ (voiced), since the G2P output is not conse-
quent in making this decision, and Dutch speak-
ers do not consistently pronounce them as either
voiced or unvoiced either.

3.3. Annotation
Phoneme-PCU transparency The result of step
two of the error detection algorithm was the align-
ment of target graphemes and phonemes, which
resulted in a sequence of PCU-phoneme map-
pings the word consists of. In this step, we
labeled each PCU-phoneme mapping as either
sound pure (in case it occurred in Table 1), or not
sound pure. When a target word only contained
primary PCU-phoneme mappings, the word was
annotated as sound pure. This annotation layer
was called SoundPure.

Multiple attempts A frequently occurring phe-
nomenon in initial readers is that they need mul-
tiple attempts to read the target word. In the
aligned target graphemes, target phonemes and
realized phonemes, this is visible as one or more

11

insertions at the beginning of the alignment. Us-
ing a search function, we automatically annotated
multiple attempts at the word level. The results
were stored in the annotation layer MultipleAt-
tempts_Automatic.

Reading error type The next step is to la-
bel each aligned target phoneme and realized
phoneme with an error type: insertion (a phoneme
was added), deletion (a target phoneme was not
read), substitution (a target phoneme was sub-
stituted). This is done by comparing each target
phoneme and realized phoneme pair one-by-one.
After that, from these alignments on phoneme
level, a classification at word level is computed:
correct, insertion (only one phoneme was inserted
in the complete word), deletion (only one phoneme
was deleted in the complete word), substitution
(only one phoneme was substituted in the com-
plete word), multi (there are multiple phonemes
inserted, deleted and/or substituted) and delWord
(the complete word is not read). These classifi-
cations were saved in the categorical annotation
layer ErrorType_Automatic.

3.4. Analysis 1: Validation
The spelling error detection algorithm was vali-
dated in an earlier study (Harmsen et al., 2021a).
To validate the performance of the automatic read-
ing error detection algorithm, one annotator manu-
ally annotated all readings from the selected DART
data in two layers. The first layer contains for
each target reading a boolean value which indi-
cates whether there are multiple attempts or not
(MultipleAttempts_Manual). The second layer, Er-
rorType_Manual, contains a categorical value for
each reading. This value describes the read-
ing error type using the following values: cor-
rect, insertion, deletion, substitution, multi and del-
Word. To validate the performance of the read-
ing error detection and classification algorithm,
we computed Matthew’s Correlation Coefficient
(MCC) between the automatic andmanual annota-
tion layers of MultipleAttempts and ErrorType. We
used the MCC metric since our dataset is unbal-
anced, as it has more correct than incorrect read-
ings. The MCC is proven to be more trustwor-
thy than Cohen’s Kappa on imbalanced datasets
(Chicco et al., 2021).

3.5. Analysis 2: Application
From both the reading data set (phonetic transcrip-
tions of 672 read words) and the spelling data
set (digitized writings of 58,800 dictation words),
we automatically selected the sound pure target
words, using the annotation layerSoundPure. The
sound pure target readings and spellings are listed
in Table 2.

Corpus Sound pure target words
BasiScript fee huis keus ligt lip monteur
(N=9) rijst schrik steil
DART bal blauw boomstam buik deuk
(N=51) dof flits fop gat geit hout jaap

jong juicht keelpijn klets koen
kous lach lift lijn lus markt meetlat
melk mug muis muur nicht proost
reis saus schoen schraal schrift
schrik schroef schroot schuur
specht spierkracht sportpark
sterk stoep strik toch vang
vorst vuur warmst zwart

Table 2: The sound pure target words from the
DART reading tests and BasiScript dictations.

The spelling and reading error detection pipeline
yields for each realized spelling an alignment of
the target graphemes, target phonemes and real-
ized phonemes, and for each realized reading, an
alignment of target graphemes, target phonemes
and realized phonemes. From these two multi-
sequence alignments, we extract a list of target
PCUs that are spelled at least one time incorrectly,
and a list of target PCUs that are read at least one
time incorrectly. For each PCU in each list, we
compute the following measures:

Number of different targets The number of dif-
ferent target words in which the target PCU
occurs. If this number is small, the target
words themselves are printed.

Number of realized writings/readings (N)
How often the target words that contain the
selected target PCU are spelled/read in the
complete dataset.

Absolute incorrect count How often the target
PCU was spelled/read incorrectly.

Relative incorrect percentage How often the
target PCU was spelled/read incorrectly with
respect to how often this target PCU had to
be spelled/read in total.

Aligned realized PCUs/phonemes A list of in-
correct realized PCUs (in case of spelling er-
rors) or phonemes (in case of reading errors)
of the target PCU. The list is sorted from most
to least frequently occurring realization

4. Results
4.1. Validation of the reading error

algorithm
We computed the agreement between MultipleAt-
tempts_Manual and MultipleAttempts_Automatic

12

Corpus Total Correct Incorrect
BasiScript 21168 15323 (72%) 5845 (28%)
DART 321 207 (64%) 114 (36%)

Table 3: The number of analyzed realized writings
(BasiScript) and readings (DART) of sound pure
target words, together with their classification as
either correctly or incorrectly read/spelled.

and found MCC = 0.87. In addition, we com-
puted the agreement between ErrorType_Manual
and ErrorType_Automatic and we found MCC =
0.92. So, for bothMultipleAttempts and ErrorType,
we found a high agreement between the manually
and automatically obtained values.

4.2. Application
4.2.1. Description of the data
Table 3 presents the number of times a sound pure
target word is read or written in the two data sets.
The sound pure target words from BasiScript are
written 21168 times by 2352 different writers. 28%
of these written words contain at least one error.
The sound pure words from DART are read 321
times by 28 different readers. From these read
words, 36% contains at least one reading error.

4.2.2. Frequently made errors
Table 4 and Table 5 present respectively all incor-
rectly spelled target PCUs and all incorrectly read
target PCUs, together with measures computed
from the multi-sequence alignments. The results
in Table 4 and 5 are ordered in descending abso-
lute incorrect count, and in the right column per
row in descending percentage.
In Table 4, we can observe that the primary PCU ei
that represents the phoneme /EI/ is the PCU that
is most frequently written incorrectly, i.e. in more
than 80% of the times that this phoneme had to
be written. In almost half of the times (49.91%)
it was misspelled as ij and in 24.0% as e. Four
other PCUs with a relative error percentage higher
than 10% are eu (substituted most often with u), g
(substituted with ch), ij (substituted with ei) and ch
(deleted). In addition, we see that the * appears
relatively high in the left column of the table (rep-
resenting an insertion of a PCU), since it occurred
439 times in the selected data. The PCU e is most
often (48.3%) inserted, followed by the PCU u.
Table 5 presents all incorrectly read target PCUs.
The target PCUs that are relatively most frequently
read incorrectly are v (33.33% of 9 readings), ui
(23.53% of 17 readings), ng (22.22% of 9 read-
ings), a (18.06% of 72 readings) and g (15.79% of
9 readings). These PCUs have the highest relative
incorrect percentage.

5. Discussion
In this paper, we have presented an extension of
the automatic spelling error detection and classi-
fication algorithm (Harmsen et al., 2021a,b) that
is capable of detecting reading errors in phonetic
transcriptions of audio recordings, in such a way
that they are comparable with spelling errors. For
reading error detection, the inputs to the algorithm
are the target spelling and a realized (incorrect)
phonetic transcription. For spelling error detec-
tion the inputs are the target spelling and the re-
alized (incorrect) spelling. The output of the joint
algorithm consists both in the reading and writ-
ing condition of a PCU-segmentation of the tar-
get spelling. In addition, each target PCU from
the PCU-segmentation is aligned with its target
phoneme and has a marking indicating whether it
was read or spelled correctly in the realized read-
ing or spelling. In case of a reading error, the sub-
stituted or inserted phoneme is returned. In the
case of a spelling error, the substituted or inserted
PCU is returned.
To answer research question 1, the reading error
detection algorithm was evaluated by comparing
automatically detected reading errors with manu-
ally annotated reading errors in a selection of pho-
netic transcriptions of read words from the DART
corpus. We found a high level of agreement be-
tween the automatic and the manual scores.
Next, we applied the reading and spelling error de-
tection algorithm to analyze reading and spelling
errors in a selection of sound pure words in two
separate corpora, one containing read words by
first graders and one containing written words by
second graders. To answer research question 2a,
we analyzed the realized writings. We found that
the PCUs that are more often written incorrectly
are ei, eu, g, ij and ch. We observed that ij and
ei are often exchanged, most probably because
they sound the same (as /EI/). In addition, these
target PCUs were presented in the target words
steil (steep) and rijst (rice), in which substitution
of the ei or ij results in the words stijl (style) and
reist ((he) travels), which are both existing Dutch
words. Earlier studies have proven that these two
aspects make spelling more difficult (Bosman and
de Groot, 1996; van Assche et al., 2014), which
explains the fact that children make this specific
error in writing this word. The same two expla-
nations seem to hold for the finding that g in the
word ligt ((he) lays) was substituted by ch in al-
most one fourth of the cases it had to be written. g
and ch correspond to the same phoneme (i.e. /x/)
and licht (light) is also an existing word in Dutch.
The frequent misspelling of the PCU eu occur-
ring in the words monteur (mechanic) and keus
(choice) might have another explanation. The
PCU eu (with primary phoneme /EU/) is a vowel

13

Incorrect
Target Absolute Relative
PCU Target words N (#) (%) Realized PCUs (%)
ei steil 2342 1875 80.06 ij (49.91), e (24.0), ei (19.94),

ee (2.73), 11 others
eu monteur, keus 4663 1401 30.05 eu (69.95), u (17.39), e (4.61)

uu (3.0), ui (2.06), 17 others
g ligt 2345 616 26.27 g (73.73), ch (24.48), 8 others
ij rijst 2331 590 25.31 ij (74.69), ei (22.35), ie (1.29),

ui (0.3), 18 others
∗ 9 different words - 439 - e (48.3), u (14.29), j (6.58), i (5.9),

t (3.85), n (3.17), 19 others
t rijst, steil, 9362 314 3.35 t (96.65), * (1.52), d (1.04), dt (0.34)

monteur, ligt tt (0.12), h (0.1), 10 others
ch schrik 2332 250 10.72 ch (89.28), * (7.59), g (2.02), 7 oth.
r rijst, monteur, schrik 7007 225 3.21 r (96.79), * (2.88), l (0.1), 8 others
f fee 2323 181 7.79 f (92.21), v (7.06), t (0.13),

* (0.13), 9 others
s schrik, steil, keus, 11640 144 1.24 s (98.76), * (0.69), z (0.44),

huis, rijst 8 others
l steil, lip, ligt 7029 81 1.15 l (98.85), * (0.53), j (0.17)

b (0.11), s (0.1), 9 others
i schrik, lip, ligt 7018 69 0.98 i (99.02), ie (0.3), * (0.2)

ee (0.19), e (0.13), 5 others
ui huis 2316 63 2.72 ui (97.28), i (2.07), 9 others
p lip 2341 59 2.52 p (97.48), b (1.28), 7 others
ee fee 2323 57 2.45 ee (97.55), e (1.68), 6 others
k schrik, keus 4651 33 0.71 k (99.29), * (0.34), h (0.19), 6 oth.
o monteur 2344 30 1.28 o (98.72), oo (0.51) * (0.3)

a (0.26), 2 others
m monteur 2344 8 0.34 m (99.66), 3 others
h huis 2316 3 0.13 h (99.87), 2 others

Table 4: Results of the BasiScript spelling error analysis. For each target PCU that is written incorrectly
at least one time, we present the measures described in Section 3.5. An asterisk in the first column
represents an insertion of a PCU. An asterisk in the last column represents a deletion of the target PCU.

and is written using two graphemes: e and u.
These graphemes figure in as many as nine other
PCUs: e, ee, ei, u, uu, ui, eu, ou, au and oe, which
might be confusing for initial writers. This expla-
nation is supported by the fact that the PCUs that
initial writers write instead of the eu are u, e, uu
and ui, which all contain an e or u.
With respect to the analyzed readings (research
question 2b), we observed that the PCUs v, ui, ng,
a and g are relatively most frequently read incor-
rectly. For most of these cases, the absolute num-
ber of errors is rather small. The errors for a are
probably caused by the following complex but sys-
tematic vowel distinction in Dutch. In Dutch there
is a phonological distinction between tense (’long’)
and lax (’short’) vowels, as in the case of oo and o.
In Dutch, letter doubling is used to distinguish be-
tween tense and lax vowel phonemes in monosyl-
lables. The lax vowel o is written with one letter o,
but the tense vowel oo is written with a single letter
in open syllables (bo-men (=trees)) and with dou-

ble letters oo in closed syllables (boom (= tree))
. This distinction can of course be confusing for
beginning learners.
To answer research question 2c, we investigated
the overlap between spelling and reading errors.
This overlap seems to be limited. We found that ch
is often deleted, both in spelling and reading, and
that a g is often substituted by ch and /g/ respec-
tively. However, there seem to be no clear rea-
sons that can explain these specific errors. The
limited overlap between spelling and reading er-
rors could be explained by the fact that Dutch
has a higher feedforward consistency than feed-
back consistency (Bosman and Van Orden, 1997).
However, since several variables were not con-
trolled for (i.e., the target words that had to be read
and spelled, the participants, and the size of the
datasets), we are not able to make a strong claim
on this aspect. However, the joint spelling and
reading error analysis method we presented in this
study enables further research in this direction.

14

Incorrect
Target Absolute Relative
PCU # Diff. targets N (#) (%) Realized phonemes (%)
* 28 - 208 - s (12.02), t (10.58), x (7.69), @ (7.21)

r (6.73), p (6.25), k (4.81), , 25 others
t 24 175 17 9.71 t (90.29), * (4.0), s (2.29), l (1.71), f (0.57)

k (0.57), p (0.57)
r 18 139 14 10.07 r (89.93), * (5.76), l (2.16), x (0.72),

d (0.72), w (0.72)
a 11 72 13 18.06 A (81.9), a (12.5), O (2.8), E (1.4), e (1.4)
l 12 80 10 12.5 l (87.5), r (3.75), * (2.5), p (1.25),

d (1.25), k (1.25), m (1.25), h (1.25)
ch 13 86 8 9.3 x (90.7), * (4.65), k (1.16), r (1.16),

N (1.16), h (1.16)
s 24 152 7 4.61 s (95.39), t (0.66), p (0.66), S (0.66),

b (0.66), z (0.66), * (0.66), v (0.66)
k 13 86 6 6.98 k (93.0), * (3.5), r (1.2), p (1.2), t (1.2)
i 6 43 4 9.3 I (90.7), i (4.65), y (2.33), u (2.33)
ui 3 17 4 23.53 UI (76.47), U (11.76), EU (5.88), I (5.88)
o 6 34 4 11.76 O (88.24), o (5.88), A (2.94), UI (2.94)
g 3 19 3 15.79 x (84.21), g (10.53), S (5.26)
v 3 9 3 33.33 v (66.67), f (22.22), s (11.11)
m 8 63 3 4.76 m (95.24), b (1.59), h (1.59), p (1.59)
p 9 63 3 4.76 p (95.24), r (1.59), * (1.59), b (1.59)
ei 2 18 2 11.11 EI (88.89), UI (5.56), i (5.56)
ng 2 9 2 22.22 N (77.78), x (11.11), n (11.11)
f 6 44 2 4.55 f (95.45), * (4.55)
n 5 21 2 9.52 n (90.48), l (4.76), * (4.76)
ee 2 14 1 7.14 e (92.86), @ (7.14)
uu 3 16 1 6.25 y (93.75), U (6.25)
oo 3 16 1 6.25 o (93.75), AU (6.25)
ou 2 5 1 20.0 AU (80.0), UI (20.0)
e 4 25 1 4.0 E (96.0), @ (4.0)
b 4 24 1 4.17 b (95.83), d (4.17)

Table 5: Results of the DART reading error analysis. For each target PCU that is read incorrectly at least
one time, we present the measures described in Section 3.5. An asterisk in the first column represents
an insertion of a PCU. An asterisk in the last column represents a deletion of the target PCU.

6. Future Directions
In the introduction to this paper we made clear that
this is only the beginning of a research endeavour
that will certainly require more suitable data and
optimized algorithms. The present study has in-
deed some limitations that were imposed by the
complexity of the task and the scarcity of available
data. For a first attempt, we decided to constrain
ourselves to analyzing the so-called sound pure
words. In a following step, we would like to extend
this approach to other, more complex words, but
then it is clear that we are likely to get an explosion
of phoneme-grapheme mappings that will require
a more complex classification scheme. This clas-
sification scheme should capture some character-
istics that are specific for the speech of initial read-
ers, like multiple attempts to read a word or inser-
tion of vowels (Harmsen et al., 2023). In addition,
to gain insight into specific individual difficulties,

we would like to study reading and spelling data
of one and the same child, preferably longitudinal
data, in which children read and write the same
words. So one important task for future research
could be the collection of reading and spelling data
of the same children. Another future direction is to
use Automatic Speech Recognition (ASR) to au-
tomatically obtain phonetic transcriptions of child
read speech. Currently, ASR models for auto-
matic word correctness assessment are available
for Dutch (e.g., Molenaar et al. (2023); Harmsen
et al. (2023)), but a well performing and evalu-
ated ASR model for phoneme recognition in child
read speech has not yet been published. Such a
model could be inspired by research by Gelin et al.
(2023), who have recently published about devel-
oping such models for automatic phoneme recog-
nition in French.

15

7. Ethical statement
The present research and its results may have a
major societal impact as they contribute to signifi-
cantly increasing the reliability and validity of read-
ing and writing assessment and ultimately paving
the way to improving and personalizing learning-
to-read-and-write trajectories.

8. Acknowledgements
We would like to thank Stéphanie Kremer for
making phonetic transcriptions of the child audio
recordings. This publication is part of the ASTLA
project with project number 406.20.TW.009, which
is (partly) financed by the Dutch Research Council
(NWO).

9. Bibliographical References

Y. Bai, F. Hubers, C. Cucchiarini, and H. Strik.
2021. An ASR-based reading tutor for practic-
ing reading skills in the first grade: Improving
performance through threshold adjustment. In
Proc. IberSPEECH 2021, pages 11–15.

Y. Bai, F. Hubers, C. Cucchiarini, R. van Hout, and
H. Strik. 2022. The effects of implicit and ex-
plicit feedback in an ASR-based reading tutor for
Dutch first-graders. In Proc. Interspeech 2022,
pages 4476–4480.

S.R. Borgwaldt, F. Hellwig, and A.M.B. De Groot.
2004. Word-initial entropy in five languages:
Letter to sound and sound to letter. Written Lan-
guage and Literacy, 7:165–184.

A. M. T. Bosman and A. de Groot. 1996. Phono-
logic mediation is fundamental to reading: Ev-
idence from beginning readers. The Quarterly
Journal of Experimental Psychology Section A,
49(3):715–744.

A. M. T. Bosman and G. C. Van Orden. 1997. Why
Spelling is More Difficult than Reading, pages
173–194. Lawrence Erlbaum Associates Pub-
lishers, Mahwah, NJ, US.

D. Chicco, M.J. Warrens, and G. Jurman. 2021.
The Matthews Correlation Coefficient (MCC) is
more informative than Cohen’s Kappa and Brier
Score in binary classification assessment. IEEE
Access, 9:78368–78381.

L. Cleuren, J. Duchateau, P. Ghesquière, and
H. Van Hamme. 2008. Children’s oral read-
ing corpus (CHOREC): Description and assess-
ment of annotator agreement. In Proceedings
of the Sixth International Conference on Lan-
guage Resources and Evaluation (LREC’08),
Marrakech, Morocco. European Language Re-
sources Association (ELRA).

C. Cucchiarini. 1993. Phonetic transcription: A
methodological and empirical study. Ph.D. the-
sis, Nijmegen, The Netherlands.

C. Cucchiarini. 1996. Assessing transcription
agreement: Methodological aspects. Clinical
Linguistics and Phonetics, 10:131–155.

C. Cucchiarini, H. van Hamme, O. van Herwijnen,
and F. Smits. 2006. JASMIN-CGN: Extension of
the Spoken Dutch Corpus with speech of elderly
people, children and non-natives in the human-
machine interaction modality. In Proceedings of
the Fifth International Conference on Language
Resources and Evaluation (LREC’06), Genoa,
Italy. European Language Resources Associa-
tion (ELRA).

L. Gelin, M. Daniel, T. Pellegrini, and J. Pinquier.
2023. Comparing phoneme recognition systems
on the detection and diagnosis of reading mis-
takes for young children’s oral reading evalua-
tion. In Proc. 9th Workshop on Speech and Lan-
guage Technology in Education (SLaTE), pages
6–10.

W. Harmsen, C. Cucchiarini, and H. Strik. 2021a.
Automatic detection and annotation of spelling
errors and orthographic properties in the Dutch
BasiScript corpus. Computational Linguistics in
the Netherlands Journal, 11:281–306.

W. Harmsen, C. Cucchiarini, and H. Strik. 2021b.
Automatic quantitative analysis of spelling er-
rors in texts written by sixth graders. In
EDULEARN21 Proceedings, 13th International
Conference on Education and New Learning
Technologies, pages 8937–8945. IATED.

W. Harmsen, F. Hubers, R. van Hout, C. Cuc-
chiarini, and H. Strik. 2023. Measuring word
correctness in young initial readers: Compar-
ing assessments from teachers, phoneticians,
and ASR models. In Proc. 9th Workshop on
Speech and Language Technology in Education
(SLaTE), pages 11–15.

J. Keuning and L. Verhoeven. 2008. Spelling de-
velopment throughout the elementary grades:
The Dutch case. Learning and Individual Dif-
ferences, 18(4):459–470.

M.H.L. Kleijnen. 1997. Strategieën van zwakke
lezers en spellers in het voorgezet onder-
wijs. Ph.D. thesis, Vrije Universiteit Amsterdam,
Lisse.

R. Laarmann-Quante. 2016. Automating multi-
level annotations of orthographic properties of
German words and children’s spelling errors. In
Proc. Language Teaching, Learning and Tech-
nology (LTLT 2016), pages 14–22.

16

K. Landerl and P. Reitsma. 2005. Phonological
and morphological consistency in the acquisi-
tion of vowel duration spelling in Dutch and Ger-
man. Journal of Experimental Child Psychology,
92(4):322–344.

S. Limonard, C. Cucchiarini, R.W.N.M. van Hout,
and H. Strik. 2020. Analyzing read aloud speech
by primary school pupils: Insights for research
and development. In Proc. Interspeech 2020,
pages 3710–3714.

B. Lin and L. Wang. 2022. Phoneme mispronun-
ciation detection by jointly learning to align. In
ICASSP 2022 - 2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 6822–6826.

B. Molenaar, C. Tejedor-Garcia, C. Cucchiarini,
and H. Strik. 2023. Automatic assessment of
oral reading accuracy for reading diagnostics. In
Proc. Interspeech 2023, pages 5232–5236.

A. Nunn. 1998. Dutch orthography: A systematic
investigation of the spelling of Dutch words. Hol-
land Academic Graphics, Den Haag.

A. Tellings, N. Oostdijk, I. Monster, F. Grootjen,
and A. van den Bosch. 2018a. BasiScript: : A
corpus of contemporary Dutch texts written by
primary school children. International Journal of
Corpus Linguistics, 23(4):494–508.

A. Tellings, N. Oostdijk, I. Monster, F. Grootjen,
and A. van den Bosch. 2018b. Spelling errors
of 24 cohorts of children across primary school
2012-2015: A BasiScript corpus study. Compu-
tational Linguistics in the Netherlands Journal,
8:83–98.

E. van Assche, W. Duyck, and R.J. Hartsuiker.
2014. Phonological recoding in error detection:
A cross-sectional study in beginning readers of
Dutch. PLOS ONE, 8(12).

M. van Druenen, M. Gijsel, F. Scheltinga, and
L. Verhoeven. 2019. Leesproblemen en
dyslexie in het basisonderwijs: Handreiking
voor aankomende leerkrachten, 3rd edition.
Masterplan Dyslexie Expertisecentrum Neder-
lands, ’s-Hertogenbosch.

Z. Zhang, Y. Wang, and J. Yang. 2021. Text-
conditioned transformer for automatic pronunci-
ation error detection. Speech Communication,
130:55–63.

10. Language Resource References

Bai et al. 2020. Dutch Automatic Reading Tutor
(DART) Corpus. Radboud University.

Elffers et al. 2013. ADAPT: Algorithm for Dynamic
Alignment of Phonetic Transcriptions. Radboud
University. [link].

Gillis. 2001. Protocol for Broad Phonetic Tran-
scriptions. Corpus Gesproken Nederlands
(CGN) Project. [link].

Tellings et. al. 2015. BasiScript-corpus. Radboud
University. Dutch Language Institute, 1.0. [link].

Ten Bosch. 2019. Grapheme to Phoneme Con-
verter. Centre for Language and Speech Tech-
nology, 0.3.4. [link].

17

Second Workshop on Computation and Written Language (CAWL 2024) @LREC-COLING-2024, pages 18–22
May 21, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

Tool for Constructing a Large-Scale Corpus of Code Comments and
Other Source Code Annotations

Luna Peck, Susan Windisch Brown
University of Colorado Boulder

{luna.peck, susan.brown}@colorado.edu
Abstract

The sublanguage of source code annotations—explanatory natural language writing that accompanies programming
source code—is little-studied in linguistics. To facilitate research into this domain, we have developed a program
prototype that can extract code comments and changelogs (i.e. commit messages) from public, open-source code
repositories, with automatic tokenization and part-of-speech tagging on the extracted text. The program can also
automatically detect and discard "commented-out" source code in data from Python repositories, to prevent it from
polluting the corpus, demonstrating that such sanitization is likely feasible for other programming languages as well.
With the current tool, we have produced a 6-million word corpus of English-language comments extracted from three
different programming languages: Python, C, and C++.

Keywords: text extraction, corpora, code comments

1. Introduction

Within the already-dizzying number of human lan-
guages spoken around the world, one can find an
even greater number of sublanguages: niche sub-
sets of a language that emerge for specialized pur-
poses. While some sublanguages, such as cook-
ing recipes (e.g. Brdar-Szabó and Brdar, 2009;
Gerhardt et al., 2013; DiMeo and Pennell, 2018),
have received widespread linguistic attention, oth-
ers, such as source code annotations, remain woe-
fully understudied.

To the end of eventually developing a large, well-
curated corpus of source code annotations, we
have developed a tool1 for automatically extract-
ing such data from source code repositories. By
"source code annotation," we are referring to ex-
planatory natural language writing that accompa-
nies formal language programming source code.
Examples include comments, changelogs (commit
messages)2, and documentation.

The current version of the program builds a
corpus of approximately 6-million words, across
90,461 changelogs and 76,445 comments, taken
from three English-language repositories written in
the program’s supported programming languages:

1https://github.com/lunaria-bee/ccc-
tools/tree/cawl2024-docs

2"Changelog" is a generic term we have chosen to
refer to any description of changes made to the source
code. In the current version of the tool and its result-
ing corpus, "changelog" is synonymous with "commit
message." However, some codebases, such as those
that are not under version control, may log changes in
other ways, e.g. simply with comments. The use of
"changelog" anticipates a possible future version of this
tool that extracts data from such repositories.

Python (django3), C (libvirt4), and C++ (dlib5).
These repositories were chosen as they host code
for well-established, widely-used software imple-
mented in the languages currently supported by
the program. The program automatically performs
tokenization and part-of-speech tagging on the ex-
tracted data. The program does not currently spe-
cially extract documentation, and documentation
that is encoded as comments (e.g., Doxygen) is
not differentiated from other comments.

We have discovered that code comments in par-
ticular are a very messy domain, requiring much
sanitization, such as:

1. Resolving inconsistent encoding and stripping
invalid characters (e.g., a changelog contained
a bell character, unicode 0x07).

2. Identifying and discarding source code that
has been disabled by "commenting it out."

3. Identifying snippets of code embedded in nat-
ural language comments and preprocessing
them before annotation (e.g., part-of-speech
tagging).

The program currently performs (1)6 and (2) au-
tomatically7. (3) will be handled in a future version
of the program. Due to space constraints, we have
only devoted significant discussion to how we have

3https://github.com/django/django
4https://github.com/libvirt/libvirt
5https://github.com/davisking/dlib
6Although we are handling this somewhat reactively,

with special handling added for each new inconsistency
as it is encountered.

7Although (2) currently only functions for comments
in Python code.

18

approached (3), as we consider it the most inter-
esting of the challenges to which we have some
solutions.

2. Motivations and Prior Work

This project was inspired by previous (unpub-
lished) work in which we made basic analyses of
source code annotations from a small, largely hand-
collected dataset. While the smaller dataset was
adequate for primarily qualitative analysis, substan-
tive statistical linguistic analysis demands larger
datasets.

Source code annotations are particularly inter-
esting in that they exist almost purely in written
form. While they interact with the often-spoken
sublanguage of software development jargon, com-
ments themselves are both constructed and inter-
preted overwhelmingly as written language. Fur-
ther, source code annotations offer an unusual op-
portunity to study the ways natural language inter-
acts with formal languages: How does writing about
formal language influence our production choices in
natural language? Are such influences consistent
or varied across different formal + natural language
pairings?

There is little existing purely linguistic research
into this domain. Much existing work has focused
on instrumental tasks, like automatically generating
comments from source code (Song et al., 2019), au-
tomatically generating changelog messages from
source code (e.g. Cortés-Coy et al., 2014), and
automatically generating source code from natu-
ral language prompts (e.g. Barone and Sennrich,
2017; Wei et al., 2019). Even for such instrumental
purposes, having a linguistic corpus of source code
annotations should prove valuable; the better we
understand how programmers write about code,
the better we can create tools to translate between
natural language and source code.

The small amount of purely linguistic research on
the topic has primarily involved Letha Etzkorn (Et-
zkorn et al., 2001; Vinz and Etzkorn, 2008). This re-
search studied the linguistics of code comments in
11 C++ packages, as opposed to this project, which
aims to construct a corpus of multiple annotation
types extracted from multiple different programming
languages. To our knowledge, the corpus used in
Etzkorn et al.’s research has not been published.

A similar project to automatically extract source
code annotations from source repositories has
been conducted (Barone and Sennrich, 2017), al-
though that project was much more limited in scope
than this current project. The Barone & Sennrich
project focused only on extracting docstrings8 from
Python programs. This current project, on the other

8In-source documentation, see
https://peps.python.org/pep-0257/.

hand, aims to extract a broad range of annotations
from source code, including comments, changel-
ogs, and eventually documentation.

Automatically filtering comments for linguistic
use has been previously explored (Matskevich and
Gordon, 2022). Similarly to Barone and Sennrich
(2017), this research focused only on comments,
excluding other forms of source code annotations.
Nonetheless, the preprocessing techniques de-
scribed by Matskevich and Gordon (2022) will al-
most certainly be useful for data sanitization in fu-
ture versions of this tool.

3. Data Structure

Corpus data is stored as XML. Each source code
annotation, be it a changelog or comment, is gener-
ically referred to as a "note." The XML structure
for each corpus file contains a root node, named
<notes>, that in turn contains a series of <note>
elements, each representing a single source code
annotation.

Each <note> element contains the raw text of
the annotation, its tokenization and part-of-speech
tags, and assorted metadata, represented by the
following subelements:

• <author>: First 8 bytes of the SHA-256
hash of the author’s version control username.
When an annotation has multiple authors,
there is one author subelement per author.

• <repo>: Name of the repository the data
came from.

• <revision>: First 7 nibbles9 of the revision
hash, as provided by Git. The first 7 nib-
bles of the hash is the same ID scheme used
by GitHub. When an annotation was edited
across multiple revisions, there is one revi-
sion subelement per revision.

• <note-type>: One of ’changelog’ or ’com-
ment’.

• <language>: Programming language the
data was extracted from. Only applicable for
comments, not changelogs.

• <file>, <first-line>, & <last-line>:
Path to the file a note was extracted from, and
the span of lines within that file on which it
appears. Only applicable for comments, not
changelogs. Facilitates finding the source
code associated with a comment.

• <raw>: Raw text of the annotation, in which
comment delimiters (if applicable) and new-
lines & other whitespace are preserved.

9A half-byte, i.e. four bits.‘

19

<note >
<repo > d l i b </ repo >
<author >0e8171ad9c374e5d </ author >
< rev i s i on >754da0e </ rev i s i on >
<note − type >comment</ note − type >
< f i l e >repos / d l i b / d l i b / a lgs . h </ f i l e >
< f i r s t − l i n e >205</ f i r s t − l i n e >< l as t − l i n e >206</ l as t − l i n e >
<language >c </ language ><
raw > / / se t the i n i t i a l guess f o r what the roo t i s depending on

/ / how big value i s
</ raw><

tokens >set the i n i t i a l guess f o r what the roo t i s depending on how big value i s
</ tokens >
<pos>VB DT JJ NN IN WP DT NN VBZ VBG IN WRB JJ NN VBZ</ pos>

</ note >

Figure 1: An example <note> element.

• <tokens>: Tokenized text. Comment delim-
iters (if applicable) and original whitespace are
stripped from the data. Spaces represent word
token separators, and newlines represent sen-
tence token separators.

• <pos>: Part-of-speech annotations aligned to
the tokenized text. Like in the <tokens> subele-
ment, spaces represent word token separators,
and newlines represent sentence token sepa-
rators. The tags are those assigned by NLTK’s
nltk.tag.pos_tag() function (Bird et al.,
2009). A future version of the program may in-
clude a part-of-speech tagger designed for the
specific domain of source code annotations.

4. Data Extraction

4.1. Comments
The program checks each file in each repository
against parsers10 for each supported programming

10Python’s built-in ast.parse() method for Python,
libclang for C and C++.

Actual
Natural Code

Predicted Natural 50 0
Code 40 10

Figure 2: Confusion matrix showing efficacy of
our approach to identifying commented-out Python
code on random samples of 50 comments pre-
dicted to be natural language and 50 comments
predicted to be code. Taking Natural Language
(i.e. inclusion in the corpus) as the positive label:
Precision=1.0, Recall=0.56.

language. If a file validates as a valid source file in a
supported language, the contents of the file will be
tokenized by an appropriate parser11. If two or more
comment tokens appear across consecutive lines,
those tokens are grouped into a single comment.

As the purpose of this corpus is to study natural
language text, programming code that has been dis-
abled by "commenting it out" should not be included
in the dataset. Automated detection of commented-
out source code proved somewhat tricky. It is not
sufficient to discard any comment that could be in-
terpreted as valid code, as there are many possible
natural language comments that look like source
code to the right parser. For example, all of the
following are valid Python code:

• Single words: e.g., deprecated

• A word followed by another word in parenthe-
ses: e.g., Tests (Final)

• Words separated by mathematical operators
like +, -, *, or /: e.g., Pre-increment/decrement

Naïvely discarding any comment that parses as
programming code risks removing valuable data
from the corpus, and so a smarter approach is in
order.

After experimenting with several different ap-
proaches, for Python we settled on the following
policy: A comment is discarded as commented-out
code if (1) its contents are valid Python code and (2)
it contains parentheses, square brackets, equals
signs, periods, or the word "return".

These rules work quite well, discarding:
• Function calls and object construction: e.g.,

Color(0, 0.56789, 0, .5).

11Python’s built-in tokenize library for Python, lib-
clang for C and C++.

20

I d e n t i f i e d using the f o l l o w i n g command :

$ g i t grep − I ’ \ (\ < [_a−zA−Z0 − 9] \ + \ > \) ∗= ∗ \1 ∗[−+/∗^%&|<>@] ’

Figure 3: Bash snippet with git command embedded in a changelog.

• Indexing: e.g., text[col-1].

• Assignments: e.g., ay += node.y.

• Subscripting: e.g., self._trigger_layout.

• Return statements: e.g., return None.

. . .while keeping many natural language com-
ments that coincidentally resemble source code:

• Initialize

• todo: remove

• --Save/Cancel

This approach does sometimes discard natu-
ral language comments we would probably want
to keep, such as return everything in strings, dis-
carded due to the presence of the keyword "return",
causing this to resemble an instruction to return
whether everything is present in some collection
strings. Although discarding such data is unfor-
tunate, we have decided to prioritize precision over
recall in this task, as we deem polluting the dataset
with source code more damaging than discarding
some potentially useful data. This over-discarding
could likely be ameliorated by augmenting these
symbolic rules with a learned model that classifies
strings into code and non-code.

The program currently does not attempt to iden-
tify commented-out C/C++ code. libclang is not
designed for parsing fragments of C/C++, expect-
ing to produce a full translation unit from any input.
One option for overcoming this limitation would be
to attempt to parse the AST output by libclang12

against a simplified C++ grammar. Another option
would be to rely entirely on a learned model for
identifying commented-out C/C++ code.

Author and revision information for each com-
ment are retrieved using the git blame com-
mand, which provides the most-recent commit mod-
ifying each line of a file.

4.2. Changelogs
Currently, all data included in the corpus comes
from Git repositories, so the program can trivially

12libclang’s parse() method produces an AST even
for invalid input.

extract revision information from each repository’s
commit history. The raw text of the changelog note
is simply the commit message, the author is the
author of the commit, and the revision is the revision
created by the commit.

5. NLTK Reader

The demonstration corpus may be explored using
the CccReader() class, an extension of NLTK’s Cat-
egorizedCorpusReader and XMLCorpusReader
classes (Bird et al., 2009). It provides the general
functions one expects of an NLTK reader: words(),
sents(), etc.

6. Future Work

6.1. Handling Code Snippets
While comments that consist entirely of source
code should be removed from the corpus, com-
ments and changelogs that include snippets of
code embedded within natural language text (of-
ten for illustrative purposes) are quite common and
should be included in the corpus. However, these
source code snippets tend to confuse automated
annotation functions (such as those responsible for
part-of-speech tagging), as natural language con-
cepts such as part of speech do not map cleanly
to source code. Therefore, such snippets must be
identified and given special handling.

Identifying code snippets in source annota-
tions is much more challenging than identifying
commented-out code, for two main reasons:

• As commented-out code is discarded, and dis-
carding some potentially-useful data is more
acceptable than polluting the corpus with
source code, that algorithm can simply err on
the side of over-discarding. This algorithm,
however, would need to identify source code
snippets in data that has already been included
in the corpus, demanding much higher accu-
racy.

• The algorithm for discarding commented-out
code examines each comment in its entirety.
Identifying code snippets, however, would re-
quire identifying all spans of text that should be
considered source code. Thus, the algorithm

21

doesn’t have to be run against one string, but
many substrings of each source annotation.

• Source code snippets are not guaranteed to be
written in the same language as the surround-
ing source code. Consider the Bash snippet
in Figure 3.

6.2. Tracking Repositories Across Time
Currently, the program takes a snapshot of each
repository at a particular revision level, to ensure
that all users invoking the program receive the
same corpus as output. However, tracking repos-
itories across multiple revisions could potentially
provide useful data regarding how programmers
revise comments as code evolves, and allow di-
achronic analysis of source code annotations.

7. Conclusions

Based on the work completed here, it seems quite
feasible to build a corpus of source code annota-
tions much larger than the 6-million-word corpus
produced at this time. Although not all of the nec-
essary work can be automated, in our opinion the
task is automatable enough to justify pursuing the
project further. We intend to continue developing
this project, with the goal of building a larger, more
diverse corpus of source code annotations, to fur-
ther develop our understanding of this little-studied
domain of human language.

8. Bibliographical References

Antonio Valerio Miceli Barone and Rico Sennrich.
2017. A parallel corpus of python functions and
documentation strings for automated code docu-
mentation and code generation. ArXiv.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: an-
alyzing text with the natural language toolkit. "
O’Reilly Media, Inc.".

Rita Brdar-Szabó and Mario Brdar. 2009. Indirect di-
rectives in recipes: a cross-linguistic perspective.
Lodz Papers in Pragmatics, 5(1):107–131.

Luis Fernando Cortés-Coy, Mario Linares-Vásques,
Jairo Aponte, and Denys Poshyvaynk. 2014. On
automatically generating commit messages via
summarization of source code changes. In 2014
IEEE 14th International Working Conference on
Source Code Analysis and Manipulation, Victoria,
BC, Canada.

Michelle DiMeo and Sara Pennell. 2018. Reading
and writing recipe books, 1550–1800:. Manch-
ester University Press, Manchester, England.

Letha H. Etzkorn, Carl G. Davis, and Lisa L. Bowen.
2001. The language of comments in computer
software: A sublanguage of english. Journal of
Pragmatics, 33(11):1731–1756.

Cornelia Gerhardt, Maximiliane Frobenius, and Su-
sanne Ley, editors. 2013. Culinary Linguistics.
John Benjamins.

Sergey Matskevich and Colin S. Gordon. 2022. Pre-
processing source code comments for linguistic
models.

Xiaotao Song, Hailong Sun, Xu Wang, and Jiafei
Yan. 2019. A survey of automatic generation of
source code comments: Algorithms and tech-
niques. IEEE Access, 7:111411–111428.

Bradley Vinz and Letha Etzkorn. 2008. Comments
as a sublanguage: A study of comment gram-
mar and purpose. In Proceedings of the 2008
International Conference on Software Engineer-
ing Research and Practice, SERP 2008, pages
17–23.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin.
2019. Code generation as a dual task of code
summarization.

22

Second Workshop on Computation and Written Language (CAWL 2024) @LREC-COLING-2024, pages 23–35
May 21, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

Tokenization via Language Modeling: the Role of Preceding Text

Rastislav Hronsky, Emmanuel Keuleers
Jheronimus Academy of Data Science, Tilburg University

Sint Janssingel 92 5211 DA ’s-Hertogenbosch, Warandelaan 2 5037 AB Tilburg
r.hronsky@tue.nl, E.A.Keuleers@tilburguniversity.edu

Abstract
While language models benefit immensely from their capacity to model large context (i.e., sequence of preceding
tokens), the role of context is unclear in text tokenization, which is, in many cases, language model-driven to begin
with. In this paper, we attempt to explore the role in three different writing systems and using three different text
tokenization strategies (word-based, Morfessor, and BPE). In the first experiment, we examined how the size of
context used for predicting the next token affects the ranking of the segmentation strategies i.t.o. language model
surprisal. This effect was very writing system specific: minimal in case of English, and rank-reversing due to
increased context size and token granularity in case of Turkish and Chinese. In the second experiment, we examined
how context alters segmentation hypotheses when using language models to identify word boundaries. In this case,
the effect was subtle: using context-aware, rather than context-free segment scores improved boundary recognition
accuracy by up to 0.5%, once baseline effects were exploited.

Keywords: language modeling, tokenization, word segmentation

1. Introduction

The most basic unit of computer-stored written lan-
guage is typically the character. Despite that neu-
ral network based systems are capable of taking
characters as input, it is still common practice to
divide the signal into linguistically more meaningful
chunks (i.e., tokens). Most writing systems include
conventions, such as whitespace and punctuation,
that can help with segmentation. However, rely-
ing on these conventions to tokenize text is fragile:
(1) there are many writing systems with different
conventions, (2) even if explicit cues for word sep-
aration are available, further division, for instance
of compound words, remains problematic, and (3)
the noisiness and openness of natural language
make dictionary-based string matching unreliable.

Therefore, modern systems pre-process text
via pipelines that, in addition to using manually
described rules, employ statistical segmentation,
which is robust, language independent, and data
driven. The idea is similar to how speech seg-
mentation is described in studies on spoken lan-
guage acquisition: a standalone token (word) is one
where, within the boundaries, the regularity (mu-
tual information) between neighboring elements
(phonemes) is disproportionately stronger than at
the boundaries (Saffran et al., 1996a).

This principle can be formulated more generally
as a search for the set of segments that, by scoring
the probability of each segment in isolation, max-
imizes the sequence generation probability (dis-
counting any between-segment dependencies). In
this form, it has been adopted as the decoding
strategy for many text tokenization implementations
(Creutz and Lagus, 2005; Virpioja et al., 2013; Sen-

nrich et al., 2016; Kudo, 2018; Kudo and Richard-
son, 2018).

While these systems produce satisfactory tokens
for their intended purposes, there is a lack of atten-
tion to the role of context in tokenization in natural
language processing research. This is surprising,
because statistical text segmentation is an applica-
tion of probabilistic language models and modern
language models have a capacity to model context
extending to thousands of preceding tokens.

As a simple example of how context can affect
segmentation, consider the sequence ’ishe’. Given
a unigram model, the segmentation ’i-she’ may be
optimal because ’i’ is a high frequency token in
English. However, since ’is-he’ co-occurs often,
the increased probability of ’he’ in the context of
’is’ may result in an overall higher probability of the
’is-he’ segmentation according to a bigram model.
This way, it is conceivable how such a context-free
(unigram) and context-sensitive (bigram) approach
to segmentation would be in disagreement with
each other.

Research on language acquisition confirms that
context can affect segmentation. Language learn-
ers who make the independence assumption,
hence ignore context, tend to identify words less
accurately than ones that include the dependency
to the preceding word (Goldwater et al., 2009).

A further indication of context utility comes from
word segmentation research on writing systems
without explicit word boundary notation: several
systems employ contextual features to improve
word segmentation performance (Meknawin, 1995;
Kudo, 2006; Huor et al., 2004a; Durrani and Hus-
sain, 2010).

To the best of our knowledge, the extent to

23

which unigram and higher-order n-gram segmenta-
tion models correctly recover linguistic units, e.g.,
words, has not been studied in detail. Our first
research question is:
(1) How does using a higher-order language

model (i.e., bigram or trigram as opposed to
unigram) affect the performance of statistical
word segmentation?

To answer this question, we simulate word segmen-
tation by deleting explicit word boundary notation
and testing how well a uni-, bi-, and trigram model
re-discover the reference word boundaries. We dis-
cuss the effects of increased n-gram model order in
the context of merely using a more representative
language model (i.e., inferred using a larger body
of text), a baseline effect.

Given a particular segmentation of a corpus, we
can derive a language model based on it and com-
pute the average language model surprisal, a met-
ric reflecting segmentation optimality. This is a com-
mon way to intrinsically assess segmentation, both
between competing segmentation algorithms and
within the decoding process of a single segmen-
tation method, and it is the basis for our second,
more general research question:
(2) How does changing the order of the language

model change the assessment of surprisal-
based segmentation optimality?

To answer this question, we present simulations
examining the extent to which a particular corpus
segmentation, e.g., a reference word segmentation,
Morfessor, or BPE segmentation, ranks as con-
sistently optimal (i.t.o. bits-per-sentence) across
language models set to include increasingly long
dependencies. If the ranking stays constant, this
indicates a weak role of context.

We conducted both experiments with text in En-
glish (a morphologically poor language), Turkish
(a very agglutinative language), and Chinese (a
language with a logographic writing system). The
corpus used was based on movie subtitles and
aligned such that for each language it contains sub-
titles for the same set of movies.

One difficulty that we faced during this research
was the lack of accessible scientific libraries to per-
form higher order segmentation. Therefore, we
describe the process in Section 3, and also pub-
licly release the code as a Python package 1 that
we used to solve first, second, and third order se-
quence segmentation problems. The package is
built on top of NetworkX (Hagberg et al., 2008), a
popular network analysis library, providing direct
access to a wide range of tools that can be used
to manipulate and visualize the segmentation prob-
lems.

1https://github.com/hrasto/segmentgraph

2. Related Work

2.1. Word Recognition in Spoken
Language

While certain acoustic features help with word seg-
mentation in speech recognition (Jusczyk et al.,
1993; Mattys et al., 1999), the exact mechanics are
non-trivial: the signal is often noisy and contains
hardly any explicit word boundary signature (Cole
et al., 1980; Reddy, 1976). Tasking humans with
word identification from spectrograms of continu-
ous speech is problematic itself (Klatt and Stevens,
1973). Unsurprisingly, modern automatic speech
recognition (ASR) omit manual feature engineering
and learn to transcribe speech to words end-to-
end (Anusuya and Katti, 2009; Hannun et al., 2014;
Amodei et al., 2016).

The challenges associated with ASR naturally
transfer to language acquisition research: how do
language learners identify words? A prominent
finding from this literature is that the expectation of
a phoneme pair at a word boundary to have a lower
transition probability than one within a word is a
reliable cue for word segmentation (Saffran et al.,
1996a,b). As a result, the idea of exploiting statisti-
cal properties to segment speech into words has
gained prominence (Brent, 1999; Venkataraman,
2001; Batchelder, 2002). Relatedly, computational
models capitalizing on regularities between words,
in addition to within words, improve word boundary
recognition (Goldwater et al., 2009), especially by
reducing undersegmentation (falsely omitting word
boundaries).

2.2. Writing Systems without Whitespace
Word segmentation is an important topic for lan-
guages employing writing systems without explicit
word delimiters (e.g., Chinese, Japanese, Thai or
Khmer). Using word units was mainly needed for ef-
ficient functioning of traditional information retrieval
systems (Nie et al., 1996; Chen et al., 1997; Leong
and Zhou, 1997; Foo and Li, 2004). Simplifying
matters somewhat, the word segmentation meth-
ods related to statistical segmentation were based
on: (1) variants of dictionary based string match-
ing for Chinese (Chen and Liu, 1992; Sproat and
Emerson, 2003), Thai (Rarunrom, 1991; Virach,
1993), Khmer (Bi and Taing, 2014a), Japanese
(Sato, 1999); (2) statistical approaches for Chi-
nese (Sproat and Shih, 1990; Ge et al., 1999; Sun
et al., 1998), Thai (Pornprasertkul, 1994; Meknawin,
1995), Khmer (Huor et al., 2004a), Japanese (Mat-
sumoto et al., 2000; Kudo, 2006); (3) pipelines in-
volving the statistics and several other rules and
features (Meknavin et al., 1997). However, recent
research questions the necessity for word segmen-
tation by arguing that modern models based on

24

characters, instead of words, generalize better and
reduce overfitting (Li et al., 2019).

2.3. Vocabularies in modern NLP
In English-centric research, the traditional unit –
word or lemma – was just about rejected in favor
of subwords once neural networks became main-
stream (Mikolov et al., 2012). This shift was mainly
motivated by conveniences such as reduction of
vocabulary size and robustness in handling out-of-
vocabulary situations. Discounting linguistic rigor
and aiming for robust engineering, several algo-
rithms were developed to segment text into short
subword units. The methods were typically based
on a greedy compression algorithm: byte-pair en-
coding (BPE) (Gage, 1994; Sennrich et al., 2016),
and its derivatives (Schuster and Nakajima, 2012;
Kudo and Richardson, 2018).

Several studies further examined the effects of
segmentation on language modeling and related
tasks. Huck et al. (2017) found that using lin-
guistically informed segmentation (e.g., compound
splitting, prefix splitting, etc.) can improve ma-
chine translation (MT) performance over purely
compression-based segmentation. Domingo et al.
(2019) concluded that, while segmentation affects
MT performance, there is no clear winner in terms
of algorithms, as performance varies across lan-
guage pairs. In language modeling experiments,
Liu et al. (2019) found that there was a small advan-
tage in using BPE-derived tokens from characters
rather than bytes, and Gallé (2019) report that to-
kenizers producing fewer (thus longer) segments
perform better.

Lastly, research suggests that there are advan-
tages in using morphologically aligned subwords.
Bostrom and Durrett (2020) compared segmen-
tation produced by BPE to the Unigram method
(Kudo, 2018), and found the latter to produce more
morpheme-like tokens and ultimately outperform-
ing BPE. Similarly, Park et al. (2021) report advan-
tages in using segmentations produced by Morfes-
sor (Creutz and Lagus, 2005), an unsupervised
morphological segmentation system, over the BPE-
based segmentations. Both methods, Unigram
(Kudo, 2018) and Morfessor (Creutz and Lagus,
2005), try to maximize the probability of sequences
assuming the tokens are generated independently
of each other.

3. Background

In this section, we describe how language model
based sequence segmentation can be conceptu-
alized via graphs in three parts: (1) constructing a
graph where all possible segmentations (i.e., so-
lutions) correspond with paths from a source to a

Figure 1: Illustrated unigram (a) and bigram (b)
segmentation graphs for the example sequence
ABC. In bold, we indicate how an example pair of
neighboring nodes, namely B and C, corresponds
with a single node in the bigram graph, B-C. Notice
how, in the bigram graph, the production of the
subsequence C is scored separately in the context
of B and AB (dashed box).

sink node, (2) equating the shortest path search to
the maximum likelihood model, (3) and extending
the graph to reflect higher order probability models.

3.1. From Sequences to Graphs
Suppose a sentence S of length m is the set of
atoms a, each being a tuple (position, character):

S = {a1, ..., am} = {(p1, c1), ..., (pn, cm)}

To segment the sentence means to divide it into
n subsets π = {w1, ...,wn}, which are (1) pairwise
disjoint (non-overlapping), (2) exhaustive (spanning
the entire sequence), and (3) subsequences, i.e.,
it must be possible to arrange the atoms of each
w such that the difference between any two suc-
cessive positions is equal to 1. We will denote by
Subseq(S) the set of all candidate subsequences
which can be formed from the original sentence.

Consider the example atomic sequence:

S = ABC = {(1,A), (2,B), (3,C)}.

To build the unigram segmentation graph, we first
enumerate all w ∈ Subseq(S), namely:

Subseq(S) = {A,B,C,AB,BC,ABC}.

These form the basis for the graph vertices V. We
create the edges E by connecting each vertex wi

to an other vertex wj, if they are adjacent in S, i.e.
the maximal atom position in wi is exactly one less
than the minimal position in wj. The graph is then
completed by including a special begin and end

25

Word Morfessor BERT
EN TR ZH EN TR ZH EN TR ZH

tokens 61.9M 41.0M 51.6M 69.2M 58.4M 67.4M 64.9M 59.1M 79.7M
types 262.8K 774.9K 476.4K 33.6K 180.6K 37.3K 24.7K 20.7K 10.5K
tokens/sent. 5.6 4.0 5.1 6.3 5.8 6.6 5.9 5.8 7.9
char./token 3.8 5.7 1.6 3.4 4.0 1.2 3.6 3.9 1.0

Table 1: Corpus statistics. Notice that, using the Huggingface BERT tokenizer, (1) the segmentation was
nearly equivalent to character segmentation in case of Chinese (ZH; char./token=1), (2) on average, the
tokens were almost one third shorter than words in Turkish (TR), (3) and, in English (EN), the tokens
were only marginally shorter than words on average. A similar analysis holds for the case of Morfessor
based segmentations, the main difference to the BERT segmentations being that Turkish and Chinese
tokens were slightly longer, while English tokens were shorter, on average. The subword vocabularies
were roughly an order of magnitude more compact than word vocabularies, the largest ones emerging in
case of Turkish.

vertex, vB and vE, and (1) connecting the former to
all vertices where the minimal position is 1 (thus
A, AB, ABC), and (2) connecting vertices where the
maximal position is |S| = 3 (thus C, BC, ABC) to vE,
the end vertex. See Figure 1a for an illustration.

Solving the segmentation problem now corre-
sponds with finding the best path from vB to vE
among the set of all such paths – the solution set –
which we denote Paths(V,E).

3.2. Shortest Path and Maximum
Likelihood

The data structure is now suitable for the decoding
of the most likely sequence of segments according
to a probabilistic language model. Interpreting the
subsequences associated with the graph nodes
as the outcomes of a categorical random variable,
which is identically distributed (but not necessar-
ily independent across position), we can assign
each edge a weight that is based on the generation
probability of the node it points to.

Scoring any particular segmentation, i.e. path
π ∈ Paths(G), thus translates to computing the prod-
uct of edge weights:

L(π) =
∏

w∈π

p(w). (1)

In practice, we maximize likelihood by minimizing
its negative logarithm (NLL):

πbest = argmin
π∈Paths(V,E)

−log(L(π)) (2)

allowing us to score a candidate path as the sum
of log-probabilities, because of this equivalence:

log(
∏

w∈π

p(w)) =
∑

w∈π

log(p(w)).

The problem formulation in terms of NLL is conve-
nient, because conventional pathfinding algorithms
are designed with the objective of minimizing the
sum of edge weights.

3.3. Higher-Order Graphs
One way to create a higher order graph is by re-
cursively creating a linegraph-like version of its
previous-order graph, starting from the unigram
version (similarly to how higher-order state-spaces
are created in Markov models). Doing so once
transforms each pair of adjacent nodes into a new
node, now representing a bigram. An illustration
of such a bigram graph can be seen in Figure 1b.
The final shortest path in such a graph corresponds
with a probability model involving a single additional
dependency at every position in the sequence:

L(π) = p(w1|vB)...p(wm|wm−1)p(vE|wm) (3)
where the special vertices vB and vE can be inter-
preted as beginning-, and end-of-sentence tokens.
By repeating the procedure, any n-gram graph can
be derived.

4. Corpus

In the next sections, we present two experiments,
both of which were conducted on the basis of Open-
Subtitles 2 (Lison and Tiedemann, 2016), a movie
subtitle corpus, which is part of the OPUS corpus
(Tiedemann, 2012). We adapted the corpus by
taking the overlapping set of documents (movies)
between the English, Turkish and (simplified) Chi-
nese subtitles. The resulting intersection was then
pre-processed with the objective of keeping the
alphabet minimal and language specific: (1) low-
ercasing, (2) removing punctuation, (3) removing
characters that are not from the processed lan-
guage, (4) and replacing all digit strings with the
hashkey (#) character.

Lastly, we divided the corpus into a training and
testing portion, using 90% of the subtitle lines for
the former and 10% for the latter.

See the corpus statistics in Table 1.

2http://www.opensubtitles.org/

26

5. Experiment 1

The first experiment compares language model-
ing performance of three (sub-)word segmentation
strategies as a function of context size.

5.1. Segmentation Strategies
We selected three competing types of segmenta-
tion: word segmentation, Morfessor based sub-
word segmentation, and segmentation produced
by popular tokenizers from the Huggingface python
library 3.

Word segmentation was obtained by simply tak-
ing the tokenized versions of the subtitle corpus.
According to Lison and Tiedemann (2016), the En-
glish subtitles were tokenized by the Moses toolkit
(Koehn et al., 2007) and the Chinese subtitles were
tokenized by the KyTea library (Neubig et al., 2011).

Morphologically similar subword segmentation
was obtained via the Morfessor library (Virpioja
et al., 2013). For English and Turkish, we trained
the unsupervised baseline model on word counts
provided by the latest edition of the MorphoChal-
lenge (Kurimo et al., 2010); for Chinese, we trained
on word counts derived from the training split of the
subtitle corpus.

BERT tokenizer subword segmentations were
obtained from the following pre-trained Hugging-
face models: ’bert-base-uncased’ for English,
’dbmdz/bert-base-turkish-uncased’ for Turkish, and
’bert-base-chinese’ for Chinese. These tokenizers
are variants of the BPE (Sennrich et al., 2016) al-
gorithm and are arguably the most widely used
text segmenters in industry and academic research
related to modern language models.

5.2. Evaluation
For every combination of language and segmen-
tation type, we fitted an n-gram count-based lan-
guage model of order up to 5 on the training split
of the dataset, and evaluated it on the testing split.

The results are reported as average values of
bits-per-sentence (BPS), i.e. the sum of negative
log-probabilities of tokens in one line of the test
corpus:

BPS(π) = −log(L(π))

where L(π) is defined by Equation 1 for unigram
models, and Equation 3 for n-gram models where
n > 1. We used BPS rather than BPC4 (bits-per-
character), because the former allows for easier

3https://huggingface.co
4BPC = BPS/|S|

comparison between languages and, in this case,
only skews the results negligibly since the informa-
tion content was roughly controlled for by using the
same set of movies for each language.

Merely reporting the n-gram order as context
size would be misleading, because the size of a
particular n-gram with respect to the sentence size
depends on the segmentation strategy and lan-
guage. To account for this variability, we report the
context size as the fraction of sentence length (in
characters) that the portion of the n-gram used as
context amounts to on average. The exact value
was computed according to the following formula:

(n− 1) ∗ TL/(SL+ n− 1)

where n denotes the order of the n-gram, andTL,SL
denote the mean token and sentence length in
characters. The term n− 1 is added to the mean
sentence length in the denominator because we
pre-pended one single-character padding token for
every n-gram order increase above 1 to every sen-
tence.

We used the NLTK (Bird et al., 2009) implementa-
tion and the back-off strategy (Katz, 1987) to score
unseen words and n-grams: if a particular n-gram
does not exist, an (n− 1)-gram (containing one less
context token) is attempted. If all of the attempts
– including the unigram – fail, a logscore derived
from frequency 1 is used.

5.3. Results

The results are visualized in Figure 2.
A shared pattern across settings is the reduction

of surprisal with higher amount of context.
In the case of English, the differences in scores

between the segmentation methods were very
small across the entire observed range of context
size, and, in contrast to Turkish and Chinese, the
word segmentation scored marginally but overall
better than the other segmentations.

With Turkish, there was a stronger difference
between segmentation methods in terms of sur-
prisal reduction rate. While the word segmentation
was still the most optimal at the unigram setting, at
around 20% of sentence length used as context,
the ranking reversed in favor of the segmentations
with shorter tokens: Morfessor and BERT. Between
these two, however, the difference was minimal to
none.

For Chinese, we observed a similar pattern of
ranking reversal at around 20% of context size. The
difference to the case of Turkish was mainly an
overall faster decline of surprisal values, and an
additional difference in rates between Morfessor
and BERT segmentations, the latter ranking as
most optimal and fastest declining.

27

Figure 2: Results of the Experiment 1. The y-axis represents bits-per-sentence on the same scale for
each language. The x-axis values correspond with context size measured as proportion of sentence
length, 0 implying the unigram language model. The change in model order that modulates this metric (1
to 5, in increments of 1) results in different sentence length proportions due to differently sized tokens: a
single Turkish token covers, on average, longer fractions of the sentence than an English or a Chinese
token.

5.4. Discussion
Our results indicate that the optimal elementary unit
of analysis for language modeling is not universal,
but that it depends on the specific characteristics
of the language and writing systems.

Previous experiments in language modeling with
Chinese text demonstrated better performance
for character-based models compared to their
word-based counterparts (Li et al., 2019; Mielke
et al., 2019), which aligns with our result of
word segmentation having higher surprisal rates
than character-based segmentation (BERT). Then
again, the slightly coarser Morfessor tokens did bet-
ter than character-based segmentation, indicating
that some chunking of Chinese characters might
be meaningful.

Similarly, in a study about the impact of Turk-
ish tokenization on language model performance,
Toraman et al. (2023) reported that models trained
on finer-grained BPE-based segmentations outper-
form more coarse morphological, word, and char-
acter based segmentations. Similarly, the BERT
and Morfessor-based segmentation outperformed
the word-based segmentation in our experiments.

Previous work comparing English tokenization
strategies mainly focused on subword segmen-
tations and recommends using morphologically
aligned segmentations over BPE-based techniques
(Mielke et al., 2019; Bostrom and Durrett, 2020;
Park et al., 2021). However, our results suggest
that the English word is not less optimal than other
subword units for segmentation. This may have
been overlooked in other studies in which the size
of context used to predict the next token was not
properly controlled for. Word-based segmentation
may also be less useful in practice because it re-

quires a larger vocabulary.
Our finding that subword segmentations in Turk-

ish and Chinese benefit from more context is some-
what puzzling, since both Morfessor and BPE dis-
card between-token dependencies during training.
In the case of Morfessor, the addition of a prior term
regulating vocabulary size in the training procedure
could be a contributing factor.

6. Experiment 2

In the second experiment, the goal was to assess
the benefits of using a higher-order language model
to detect word boundaries. To put the effect in
perspective, we compare it to a baseline effect of
using an increasingly large language sample as
the basis for the language model.

To simulate word segmentation, we deleted any
within-sentence word boundary notation (i.e. all
punctuation and whitespaces) from the test corpus
on a per-sentence basis. Every such sentence was
then segmented by, first, constructing a segmenta-
tion graph (as described in Sections 3.1 and 3.3)
and, second, finding the shortest path (defined by
Equation 2). The procedure was repeated using
uni-, bi-, and trigram language models fitted on
word counts derived from increasingly larger sam-
ples of sentences, i.e. movie subtitle lines, of the
training corpus. The sentences were sampled with-
out replacement and in quantities ranging from 102

to 107 with integer increments in order of magnitude.
The 7th order of magnitude was the full corpus; for
all orders of magnitude less than that, we collected
3 differently seeded samples to account for random
variation.

28

Figure 3: Illustrated results of Experiment 2. The x-axis depicts the corpus size as number of sentences
on a log-10 scale. Notice that, while the top value on the y-axis is always 100%, the bottom value is
language-specific due to widely different ranges overall. The points in green, corresponding with bigram
segmentation models, mostly overlap with the blue (trigram) points.

6.1. Evaluation

The solutions – paths in the segmentation graphs –
were converted to sequences of positive and neg-
ative labels that correspond with potential word
boundaries and indicate whether the position is a
boundary or not. The task was evaluated as bi-
nary classification, using accuracy, F1-score, recall
and precision as performance metrics. The labels
were not well balanced: more negative than pos-
itive cases are to be expected, but to a different
extent for each language. The proportion of cases
with the majority label determines our baseline ac-
curacy values.

We evaluated the results on a heldout test-set
containing 10000 sentences. The test set differed
slightly for each setting of the language model n-
gram order: for the unigram model, the sentences
were up to 100 characters long, for the bigram
model up to 40, and for the trigram model up to
30. We did this because of the different computa-
tional demands of the higher-order segmentation.
In practice, this means that the unigram models
were evaluated on a larger test-set, although only by
a little, because the distribution of sentence length

was skewed towards values within the 30 character
range.

6.2. Results

The results are listed in Table 2. Given the overall
trends in Figure 3, we decided to aggregate the
order effects separately for small and large mod-
els, corresponding with the left and right ranges of
corpus size in the figure’s plots.

One immediate observation in the Figure 3 is
that, in comparison to the baseline effect of sam-
ple size, the model order had minimal effect on
all performance metrics. The largest, among the
small model order effects, was that of bigram vs.
unigram model i.t.o. recall. The increment to tri-
gram model, mostly resulted in no further benefits.
Overall, the accuracy values closely approached
the 100% mark in all three languages when the
sample size was the largest. Another general trend
was that of rapid recall onset, but lagging rise in pre-
cision, which also manifested in F1-scores some-
what lagging behind accuracy scores. With recall,
although being high in general, there was a subtle
decreasing trend in case of all unigram models.

29

English Turkish Chinese
Order Effect (models sized 102 to 104)

1 to 2 1.53 ± .45 1.22 ± .96 0.21 ± .11
2 to 3 0.31 ± .22 1.15 ± 1.02 0.00 ± .02

Order Effect (models sized 105 to 107)
1 to 2 0.53 ± .08 0.54 ± .10 0.41 ± .17
2 to 3 -0.11 ± .06 0.23 ± .19 -0.05 ± .03

Sample Size Effect
2 to 3 12.55 ± 1.42 -9.06 ± 2.19 8.73 ± 0.78
3 to 4 11.14 ± 0.79 16.70 ± 1.33 4.07 ± 0.53
4 to 5 6.15 ± 0.47 11.48 ± 0.81 6.61 ± 0.55
5 to 6 1.39 ± 0.09 3.15 ± 0.24 3.51 ± 0.14
6 to 7 0.35 ± 0.08 0.77 ± 0.04 1.01 ± 0.14

Table 2: Results of the Experiment 2. The unit
value is percentage of accuracy in word boundary
classification. The upper portion of the table ag-
gregates the effects of increasing the model order
in language models trained on small corpora, the
center part on larger corpora. The lower part lists
the effects of corpus size i.t.o. increments in order
of magnitude.

In English, the increase in accuracy was largely
due to the sample size increments from 102 to 105.
From 106 on, the accuracy was > 99%. The effect
of increasing the model order from 1 to 2 in the
smaller models was dwarfed by the sample size
effect; with larger models, however, its value of
0.53% was non-negligible compared to the sample
size effects (1.39%, 0.35%).

In Turkish, we found the singular case of de-
crease in accuracy due to an increase in sample
size, namely from 102 to 103, matching a dip in
precision at this value. The baseline accuracy for
Turkish was the highest, and surpassed only by
models trained on 105 and more sentences. The
observations about the effect of model order in En-
glish also translate to Turkish.

In Chinese, although the accuracy values grew
the slowest, the difference to baseline values was
the largest. The pattern of quick onset of recall and
lagging precision was also the most marked. The
effect of model order was weak with the smaller
models, but, with larger models, the increment from
1 to 2 resulted in an accuracy increase of 0.41%,
which is non-negligible in comparison to the sample
size effect from 106 to 107 of 1.01%.

6.3. Discussion
The results indicate that, for statistical word seg-
mentation, working with a high quality language
sample is important. Segmenting the text with a
bigram instead of unigram model can result in fur-

ther increase in accuracy, although this effect is
subtle and only relevant once the language sample
is representative enough.

This finding supports the current trend of us-
ing unigram-decoder based text tokenizers, which
are convenient for their low computational require-
ments. However, for use-cases where accuracy
matters, such as recovering words or morphemes
– tokens with precise linguistic definitions –, bigram
model based segmentation is recommended. In fu-
ture work, it would be interesting to explore whether
higher-order segmentation aids in, e.g., morpho-
logical segmentation or syllabification.

The decline in recall between the unigram and
bigram based segmentations is in line with the find-
ings of Goldwater et al. (2009), who connected the
independence assumption to undersegmentation.
In our findings, larger unigram models did not have
problems over-diagnosing boundaries. Although
the sensitivity dropped somewhat for unigram mod-
els, the higher-order models did not suffer a decline.

7. General Discussion

The two presented experiments explore two differ-
ent aspects of the role of context in text segmen-
tation. The first experiment examined the differ-
ence context makes when evaluating competing
segmentation methods. The second experiment
looked at the effect of context on statistical word
segmentation.

The results suggest that context plays a defini-
tive role in evaluating segmentation methods: the
optimal way to encode language is specific to the
amount of context used for discovering the regular-
ities in token occurrence. However, we observed,
that this is language specific. Surprisingly, our find-
ings also revealed that English word segmentation
was on par with the two subword segmentations.

Looking at statistical word segmentation only,
the role of context was observable but in small
magnitude. While perhaps trivial, this observa-
tion is reassuring. It suggests that the inference of
distributions governing the sub-lexical regularities
(i.e., tokenizers) does not depend on jointly infer-
ring super-lexical regularities, which would severely
complicate the procedure. It further implies that,
to the extent that written text mirrors properties of
spoken language, this offers an explanation on how
children can learn to discern words while being un-
aware of higher-level dependencies between them
due to, e.g., syntax or semantics, which they learn
at later stages of development.

30

8. Conclusion

The role of preceding text in tokenization was man-
ifested in two ways. When comparing the difficulty
in modeling differently tokenized corpora, our re-
sults indicate that the assessment may fully reverse
when context is involved compared to when it is
absent. In light of a word segmentation experiment,
the role was more subtle: word boundaries were
only marginally more accurately recognized when
using context-sensitive, rather than context free,
methods to score the hypotheses.

9. Acknowledgements

This research was funded by ITK as part of the
SmartDATA (10028312) project as part of the KPN
Responsible AI lab. We also thank the reviewers
for their insightful comments.

10. Limitations

In this work, we only computed language modeling
surprisal values on the basis of count-based lan-
guage models. The extent to which these results
generalize to other types of language models (e.g.
neural network based) is unclear.

31

11. Bibliographical References

Dario Amodei, Sundaram Ananthanarayanan,
Rishita Anubhai, Jingliang Bai, Eric Battenberg,
Carl Case, Jared Casper, Bryan Catanzaro,
Qiang Cheng, Guoliang Chen, Jie Chen, Jing-
dong Chen, Zhijie Chen, Mike Chrzanowski,
Adam Coates, Greg Diamos, Ke Ding, Niandong
Du, Erich Elsen, Jesse Engel, Weiwei Fang, Linxi
Fan, Christopher Fougner, Liang Gao, Caixia
Gong, Awni Hannun, Tony Han, Lappi Johannes,
Bing Jiang, Cai Ju, Billy Jun, Patrick LeGresley,
Libby Lin, Junjie Liu, Yang Liu, Weigao Li, Xian-
gang Li, Dongpeng Ma, Sharan Narang, Andrew
Ng, Sherjil Ozair, Yiping Peng, Ryan Prenger,
Sheng Qian, Zongfeng Quan, Jonathan Raiman,
Vinay Rao, Sanjeev Satheesh, David Seetapun,
Shubho Sengupta, Kavya Srinet, Anuroop Sri-
ram, Haiyuan Tang, Liliang Tang, Chong Wang,
Jidong Wang, Kaifu Wang, Yi Wang, Zhijian
Wang, Zhiqian Wang, Shuang Wu, Likai Wei,
Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin
Yuan, Jun Zhan, and Zhenyao Zhu. 2016. Deep
speech 2 : End-to-end speech recognition in en-
glish and mandarin. In Proceedings of The 33rd
International Conference on Machine Learning,
volume 48 of Proceedings of Machine Learning
Research, pages 173–182, New York, New York,
USA. PMLR.

Rie Kubota Ando and Tong Zhang. 2005. A frame-
work for learning predictive structures from multi-
ple tasks and unlabeled data. Journal of Machine
Learning Research, 6:1817–1853.

M A Anusuya and S K Katti. 2009. Speech recogni-
tion by machine: A review. IJCSIS) International
Journal of Computer Science and Information
Security, 6.

Eleanor Olds Batchelder. 2002. Bootstrapping the
lexicon: A computational model of infant speech
segmentation. Cognition, 83:167–206.

Yves Bestgen. 2006. Improving text segmentation
using latent semantic analysis: A reanalysis of
choi, wiemer-hastings, and moore (2001). Com-
putational Linguistics, 32:5–12.

Narin Bi and Nguonly Taing. 2014a. Khmer word
segmentation based on bi-directional maximal
matching for plaintext and microsoft word doc-
ument. In Signal and Information Processing
Association Annual Summit and Conference (AP-
SIPA), 2014 Asia-Pacific, pages 1–9. IEEE.

Narin Bi and Nguonly Taing. 2014b. Khmer word
segmentation based on bi-directional maximal

matching for plaintext and microsoft word doc-
ument. In Signal and Information Processing
Association Annual Summit and Conference (AP-
SIPA), 2014 Asia-Pacific, pages 1–9.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: an-
alyzing text with the natural language toolkit. "
O’Reilly Media, Inc.".

Kaj Bostrom and Greg Durrett. 2020. Byte pair en-
coding is suboptimal for language model pretrain-
ing. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, pages 4617–
4624, Online. Association for Computational Lin-
guistics.

Michael R Brent. 1999. Speech segmentation and
word discovery: A computational perspective.
Trends in Cognitive Sciences, 3(8):294–301.

Vichet Chea, Ye Kyaw Thu, Chenchen Ding, Masao
Utiyama, Andrew Finch, and Eiichiro Sumita.
2015. Khmer word segmentation using condi-
tional random fields. Khmer Natural Language
Processing, pages 62–69.

Aitao Chen. 2003. Chinese word segmentation us-
ing minimal linguistic knowledge. In Proceedings
of the Second SIGHAN Workshop on Chinese
Language Processing, pages 148–151, Sapporo,
Japan. Association for Computational Linguis-
tics.

Aitao Chen, Jianzhang He, Liangjie Xu, Fredric C.
Gey, and Jason Meggs. 1997. Chinese text re-
trieval without using a dictionary. In Proceed-
ings of the 20th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, SIGIR ’97, page 42–49,
New York, NY, USA. Association for Computing
Machinery.

Keh-Jiann Chen and Shing-Huan Liu. 1992. Word
identification for mandarin chinese sentences.

Grzegorz Chrupała. 2023. Putting natural in
natural language processing. arXiv preprint
arXiv:2305.04572.

Ronald A Cole, Jola Jakimik, William E Cooper,
and Joia Jakimik. 1980. Segmenting speech into
words. J. Acoust. Soc. Am, 67:1323–1332.

Mathias Creutz and Krista Lagus. 2005. Unsuper-
vised morpheme segmentation and morphology
induction from text corpora using Morfessor 1.0.
Helsinki University of Technology Helsinki.

Mathias Creutz and Krista Lagus. 2007. Unsu-
pervised models for morpheme segmentation
and morphology learning. ACM Transactions on
Speech and Language Processing, 4.

32

Matthew H. Davis, William D. Marslen-Wilson, and
M. Gareth Gaskell. 2002. Leading up the lexi-
cal garden path: Segmentation and ambiguity in
spoken word recognition. Journal of Experimen-
tal Psychology: Human Perception and Perfor-
mance, 28:218–244.

Ke Deng, Peter K. Bol, Kate J. Li, and Jun S. Liu.
2016. On the unsupervised analysis of domain-
specific chinese texts. Proceedings of the Na-
tional Academy of Sciences of the United States
of America, 113:6154–6159.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training
of deep bidirectional transformers for language
understanding. CoRR, abs/1810.04805.

Miguel Domingo, Mercedes Garcıa-Martınez,
Alexandre Helle, Francisco Casacuberta, and
Manuel Herranz. 2019. How much does tok-
enization affect neural machine translation?

Nadir Durrani and Sarmad Hussain. 2010. Urdu
word segmentation. In Human Language Tech-
nologies: The 2010 Annual Conference of the
North American Chapter of the Association for
Computational Linguistics, pages 528–536.

Schubert Foo and Hui Li. 2004. Chinese word
segmentation and its effect on information re-
trieval. Information Processing and Management,
40(1):161–190.

Philip Gage. 1994. A new algorithm for data com-
pression. C Users J., 12(2):23–38.

Matthias Gallé. 2019. Investigating the effective-
ness of BPE: The power of shorter sequences. In
Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages
1375–1381, Hong Kong, China. Association for
Computational Linguistics.

Xianping Ge, Wanda Pratt, and Padhraic Smyth.
1999. Discovering chinese words from unseg-
mented text. Proceedings of the 22nd Annual In-
ternational ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
1999, pages 271–272.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2009. A bayesian framework for word
segmentation: Exploring the effects of context.
Cognition, 112:21–54.

Aric A. Hagberg, Daniel A. Schult, and Pieter J.
Swart. 2008. Exploring network structure, dynam-
ics, and function using networkx. In Proceedings
of the 7th Python in Science Conference, pages
11 – 15, Pasadena, CA USA.

Awni Y. Hannun, Carl Case, Jared Casper, Bryan
Catanzaro, Greg Diamos, Erich Elsen, Ryan
Prenger, Sanjeev Satheesh, Shubho Sengupta,
Adam Coates, and Andrew Y. Ng. 2014. Deep
speech: Scaling up end-to-end speech recogni-
tion. CoRR, abs/1412.5567.

Matthias Huck, Simon Riess, and Alexander Fraser.
2017. Target-side word segmentation strategies
for neural machine translation. In Proceedings of
the Second Conference on Machine Translation,
pages 56–67, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Chea Sok Huor, Top Rithy, Ros Pich Hemy, Vann
Navy, Chin Chanthirith, and Chhoeun Tola.
2004a. Word bigram vs orthographic syllable
bigram in khmer word segmentation. PAN Local-
ization Working Papers, 2007.

Chea Sok Huor, Top Rithy, Ros Pich Hemy, Vann
Navy, Chin Chanthirith, and Chhoeun Tola.
2004b. Word bigram vs orthographic syllable
bigram in khmer word segmentation. PAN Local-
ization Working Papers, 2007.

Peter W. Jusczyk, Anne Cutler, and Nancy J.
Redanz. 1993. Infants’ preference for the pre-
dominant stress patterns of english words. Child
Development, 64:675.

S. Katz. 1987. Estimation of probabilities from
sparse data for the language model component
of a speech recognizer. IEEE Transactions
on Acoustics, Speech, and Signal Processing,
35(3):400–401.

Dennis H. Klatt and Kenneth N. Stevens. 1973. On
the automatic recognition of continuous speech:
Implications from a spectrogram-reading experi-
ment. IEEE Transactions on Audio and Electroa-
coustics, 21:210–217.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, Chris Dyer, Ondřej Bojar,
Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open source toolkit for statistical ma-
chine translation. In Proceedings of the 45th
Annual Meeting of the Association for Computa-
tional Linguistics Companion Volume Proceed-
ings of the Demo and Poster Sessions, pages
177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Hideki Kozima. 1996. Text segmentation based on
similarity between words.

Taku Kudo. 2006. Mecab: Yet another part-of-
speech and morphological analyzer. https:

33

//taku910.github.io/mecab/. Accessed:
2023-12-04.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multi-
ple subword candidates. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 66–75, Melbourne, Australia. Association
for Computational Linguistics.

Taku Kudo and John Richardson. 2018. Senten-
cepiece: A simple and language independent
subword tokenizer and detokenizer for neural
text processing.

Mikko Kurimo, Sami Virpioja, Ville T. Turunen,
Graeme W. Blackwood, and William Byrne. 2010.
Overview and results of Morpho Challenge 2009.
In Multilingual Information Access Evaluation I.
Text Retrieval Experiments: 10th Workshop of
the Cross-Language Evaluation Forum, CLEF
2009, Corfu, Greece, September 30 – October
2, 2009, Revised Selected Papers, volume 6241
of Lecture Notes in Computer Science, pages
578–597. Springer Berlin / Heidelberg.

Mun-Kew Leong and Hong Zhou. 1997. Prelimi-
nary qualitative analysis of segmented vs bigram
indexing in chinese.

Xiaoya Li, Yuxian Meng, Xiaofei Sun, Qinghong
Han, Arianna Yuan, and Jiwei Li. 2019. Is word
segmentation necessary for deep learning of chi-
nese representations?

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized bert pre-
training approach.

Józef Maciuszek. 2018. Lexical access in the pro-
cessing of word boundary ambiguity. Social Psy-
chological Bulletin, 13.

Yuji Matsumoto, Akira Kitauchi, Tatsuo Yamashita,
Yoshitaka Hirano, Hiroshi Matsuda, Kazuma
Takaoka, and Masayuki Asahara. 2000. Mor-
phological analysis system chasen version 2.2.
1 manual. Nara Institute of Science and Technol-
ogy.

Sven L. Mattys, Peter W. Jusczyk, Paul A. Luce,
and James L. Morgan. 1999. Phonotactic and
prosodic effects on word segmentation in infants.
Cognitive Psychology, 38:465–494.

Surapant Meknavin, Paisarn Charoenpornsawat,
and Boonserm Kijsirikul. 1997. Feature-based
thai word segmentation.

S Meknawin. 1995. Towards 99.99% accuracy of
thai word segmentation. In Oral Presentation at
the Symposium on Natural Language Processing
in Thailand, volume 95.

Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky,
Colin Raffel, Manan Dey, Matthias Gallé, Arun
Raja, Chenglei Si, Wilson Y. Lee, Benoît Sagot,
and Samson Tan. 2021. Between words and
characters: A brief history of open-vocabulary
modeling and tokenization in nlp.

Sabrina J. Mielke, Ryan Cotterell, Kyle Gorman,
Brian Roark, and Jason Eisner. 2019. What kind
of language is hard to language-model? In Pro-
ceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages
4975–4989, Florence, Italy. Association for Com-
putational Linguistics.

Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-
Son Le, Stefan Kombrink, and Jan Cernocky.
2012. Subword language modeling with neu-
ral networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 8(67).

Graham Neubig, Yosuke Nakata, and Shinsuke
Mori. 2011. Pointwise prediction for robust,
adaptable Japanese morphological analysis. In
Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Hu-
man Language Technologies, pages 529–533,
Portland, Oregon, USA. Association for Compu-
tational Linguistics.

Jian Yun Nie, Martin Brisebois, and Xiaobo Ren.
1996. On chinese text retrieval. Annual Inter-
national ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
225–234.

Shu Okabe, Laurent Besacier, and François Yvon.
2022. Weakly supervised word segmentation
for computational language documentation. In
Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7385–7398, Dublin,
Ireland. Association for Computational Linguis-
tics.

Hyunji Hayley Park, Katherine J Zhang, Coleman
Haley, Kenneth Steimel, Han Liu, and Lane
Schwartz. 2021. Morphology matters: a multilin-
gual language modeling analysis. Transactions
of the Association for Computational Linguistics,
9:261–276.

Lawrence Phillips and Lisa Pearl. 2014. Bayesian
inference as a cross-linguistic word segmenta-
tion strategy: Always learning useful things. In
Proceedings of the 5th Workshop on Cognitive

34

Aspects of Computational Language Learning
(CogACLL), pages 9–13, Gothenburg, Sweden.
Association for Computational Linguistics.

Yuen Poowarawan. 1986. Dictionary-based thai
syllable separation. In Proc. Ninth Electronics
Engineering Conference (EECON-86), Thailand,
pages 409–418.

A Pornprasertkul. 1994. Thai syntactic analysis.
Ph.D. thesis, Ph. D Thesis, Asian Institute of
Technology.

S Rarunrom. 1991. Dictionary-based thai word
separation. Senior Project Report.

D. Raj Reddy. 1976. Speech recognition by ma-
chine: A review. Proceedings of the IEEE,
64:501–531.

Jenny R Saffran, Richard N Aslin, and Elissa L
Newport. 1996a. Statistical learning by 8-month-
old infants. New Series, 274:1926–1928.

Jenny R. Saffran, Elissa L. Newport, and Richard N.
Aslin. 1996b. Word segmentation: The role of
distributional cues. Journal of Memory and Lan-
guage, 35:606–621.

Masahiko Sato. 1999. Kakasi - kanji kana simple
inverter. http://kakasi.namazu.org. Ac-
cessed: 2023-12-04.

Mike Schuster and Kaisuke Nakajima. 2012.
Japanese and korean voice search. In 2012 IEEE
International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5149–
5152.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 1715–1725, Berlin, Germany. Association
for Computational Linguistics.

Richard Sproat and Thomas Emerson. 2003. The
first international Chinese word segmentation
bakeoff. In Proceedings of the Second SIGHAN
Workshop on Chinese Language Processing,
pages 133–143, Sapporo, Japan. Association
for Computational Linguistics.

Richard Sproat and Chilin Shih. 1990. A statistical
method for finding word boundaries in chinese
text. Computer Processing of Chinese and Ori-
ental Languages, 4:336–351.

Maosong Sun, Dayang Shen, and Benjamin K.
Tsou. 1998. Chinese word segmentation without
using lexicon and hand-crafted training data. In

36th Annual Meeting of the Association for Com-
putational Linguistics and 17th International Con-
ference on Computational Linguistics, Volume 2,
pages 1265–1271, Montreal, Quebec, Canada.
Association for Computational Linguistics.

Zhiqing Sun and Zhi Hong Deng. 2018. Unsu-
pervised neural word segmentation for chinese
via segmental language modeling. Proceedings
of the 2018 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2018,
pages 4915–4920.

Cagri Toraman, Eyup Halit Yilmaz, Furkan Şahinuç,
and Oguzhan Ozcelik. 2023. Impact of tokeniza-
tion on language models: An analysis for turkish.
ACM Trans. Asian Low-Resour. Lang. Inf. Pro-
cess., 22(4).

Channa Van and Wataru Kameyama. 2013. Khmer
word segmentation and out-of-vocabulary words
detection using collocation measurement of re-
peated characters subsequences. GITS/GITI
Research Bulletin, 2012-2013:21–31.

Anand Venkataraman. 2001. A statistical model for
word discovery in transcribed speech. Computa-
tional Linguistics, 27:351–372.

Sornlertlamvanich Virach. 1993. Word segmenta-
tion for thai in machine translation system. Ma-
chine translation.

Sami Virpioja, Peter Smit, Stig-Arne Grönroos,
Mikko Kurimo, et al. 2013. Morfessor 2.0: Python
implementation and extensions for morfessor
baseline. Technical report, Aalto University.

Hai Zhao, Deng Cai, Changning Huang, and
Chunyu Kit. 2019. Chinese word segmentation:
Another decade review (2007-2017).

Hai Zhao and Chunyu Kit. 2008. An empirical com-
parison of goodness measures for unsupervised
Chinese word segmentation with a unified frame-
work. In Proceedings of the Third International
Joint Conference on Natural Language Process-
ing: Volume-I.

12. Language Resource References

Lison, Pierre and Tiedemann, Jörg. 2016. Open-
subtitles2016: Extracting large parallel corpora
from movie and tv subtitles. European Language
Resources Association (ELRA).

Tiedemann, Jörg. 2012. Parallel Data, Tools and
Interfaces in OPUS. European Language Re-
sources Association (ELRA).

35

Second Workshop on Computation and Written Language (CAWL 2024) @LREC-COLING-2024, pages 36–42
May 21, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

Abbreviation across the world’s languages and scripts

Kyle Gorman & Brian Roark
Google Research

kbg@google.com, roark@google.com
Abstract

Detailed taxonomies for non-standard words, including abbreviations, have been developed for speech and
language processing, though mostly with reference to English. In this paper, we examine abbreviation formation
strategies in a diverse sample of more than 50 languages, dialects and scripts. The resulting taxonomy—and
data about which strategies are attested in which languages—provides key information needed to create mul-
tilingual systems for abbreviation expansion, an essential component for speech processing and text understanding.

Keywords: abbreviation, abbreviation expansion, text normalization, writing systems

1. Introduction

One of the oldest and most entrenched features
of written language, dating back to the dawn of
history, is the use of abbreviatory devices. Gor-
man et al. (2021) point out that nearly a third of the
Latin words inscribed at the base of Trajan’s Col-
umn in the Roman forum—completed early in the
second century CE—are abbreviations, such as
⟨TRIB POT⟩ for tribunicia potestate ‘power of the
tribune’. Though abbreviation seems to be gen-
eral feature of written language, most discussion
of this property in the speech and language pro-
cessing community has focused on English, and
to a lesser degree other languages written with the
Latin alphabet. Much less work has focused on ab-
breviation formation in other languages or writing
systems. In this work we take first steps towards
a more inclusive documentation of abbreviation in
the world’s languages and scripts.
Detailed—albeit dated—treatments of English

abbreviation formation are provided by Marchand
(1969, §9) and Cannon (1989). As Cannon’s ex-
tensive bibliography attests, there is a long and ro-
bust literature documenting English acronyms.
More recently, speech and language process-

ing specialists have developed data-driven abbre-
viation expansion engines for converting abbre-
viations to fully-expanded words, usually using
nearby linguistic context to resolve ambiguities
(e.g., Baldwin et al., 2015; Chrupała, 2014; Roark
and Sproat, 2014; Gorman et al., 2021). Unfor-
tunately, this literature is also dominated by work
solely considering English.1 Of course, key to
these sorts of abbreviation expansion methods is
the availability of data, and unfortunately there
is little of that, even for the best resourced lan-
guages. Several of the above cited works make
use of ad hoc methods to detect or synthesize ab-

1One notable exception is Żelasko (2018), who stud-
ies the particular challenges of abbreviation expansion
in Polish, a richly inflected language.

breviations in context (Roark and Sproat, 2014; Że-
lasko, 2018), whereas others rely on social media
data from shared tasks (e.g., Baldwin et al., 2015;
Chrupała, 2014), data that is unfortunately no
longer available. To the authors’ knowledge, the
data set from Gorman et al. (2021),2 produced by
asking annotators to shorten selected sentences
from English-languageWikipedia, is the only large-
scale abbreviation data set available to the public.
One limitation of previous computational work

on abbreviation expansion—reflecting its narrow
focus on a relatively small number of languages
and scripts—is the simplifying assumption that all
abbreviations are formed by deleting one or more
characters (i.e., they are deletion-based in the
sense of Pennell and Liu 2010). Formally, then,
this assumes that abbreviations are proper subse-
quences of their corresponding full forms, with no
further augmentations or changes to spelling. Fur-
thermore, some of this prior work also focuses on
abbreviations of a single word and ignores abbrevi-
ations formed from phrases. As will be seen below,
neither of these assumptions is generally valid for
the world’s languages and scripts.
In this study, we describe the collection of a sur-

vey of abbreviatory mechanisms used in a diverse
sample of just over 50 languages, dialects, and
scripts. From the results of the survey, we provide
a taxonomy of abbreviation expansion strategies,
and provide information about which abbreviation
strategies, if any, are attested in each of the sur-
veyed languages, dialects, and scripts. We thus
document the kinds of phenomena that can be
found in this diverse sample. We conjecture that
it will always be necessary to impose constraints
on what abbreviatory strategies are considered, so
this information is a prerequisite for building and
validating the data collection and annotation pro-
cesses needed to build truly multilingual abbrevia-

2https://github.com/
google-research-datasets/
WikipediaAbbreviationData

36

tion expansions systems. All survey data, includ-
ing examples elicited from the language consul-
tants, is publicly available under a Creative Com-
mons CC-BY 4.0 license.3

2. Background

Abbreviations are a class of what Sproat et al.
(2001) call non-standard words, forms found in
written text which are generally not pronounced
according to the ordinary letter-to-sound rules of
the language. Non-standard words, henceforth
NSWs, pose difficulties for speech and text pro-
cessing applications. In particular, text-to-speech
(TTS) systems require NSWs to be converted to
“spoken form” (e.g., Ebden and Sproat, 2015),
and automatic speech recognition (ASR) systems
must invert this transduction so that the resulting
transcripts can be displayed to users in a read-
able format (e.g., Pusateri et al., 2017).4 Sproat
et al. (2001) provide a taxonomy of NSWs, and
this is further enriched by van Esch and Sproat
(2017). These taxonomies provide useful informa-
tion for the linguists and engineers who design the
many computer systems that interact with NSWs.
Sproat et al. propose three broad categories of
abbreviation, focusing on the pronunciation of the
NSW token: ASWDs: those read as a word (e.g.,
NATO); LSEQs: those read as a letter sequence
(e.g., CIA); and EXPNs: general abbreviations
(e.g., Blvd.). In this work, however, we propose a
taxonomy that goes beyond mere pronunciation.
Gorman et al. (2021) discern two broad classes

of abbreviations. First are conventionalized abbre-
viations, which are of high enough frequency that
both their pronunciation and denotation are known
to most readers, at least in certain speech commu-
nities or text genres. These include SI5 units (e.g.,
Hz read as Hertz) and abbreviations for certain ge-
ographic entities (e.g.,OH read asOhio). The sec-
ond type are ad-hoc abbreviations, those coined
as needed. These are particularly common on dig-
ital communications channels which prefer brevity,
such as text messaging (e.g., Crystal, 2001, 2008).
These ad-hoc abbreviations are rarely recorded by
lexicographers.
Like other NSWs, it is not always obvious

3https://github.com/google-research/
google-research/tree/master/
multilingual_abbreviation_survey

4Such transductions are traditionally referred to as
text normalization, though this term has taken on a
broader sense—since it was first popularized by Sproat
et al., 2001—which includes the conversion of noisy
user-generated text to conventional spelling for pur-
poses unrelated to speech processing.

5‘International System of Units’, whose abbreviation
comes from the French Système international d’unités.

how one might read an abbreviation. For in-
stance, one might read NATO—a conventional-
ized abbreviation—as a word rhyming with Cato,
or possibly expand it to its full form, the North At-
lantic Treaty Organization, but it is not ordinarily
read letter by letter. In contrast, CIA is an initialism,
an abbreviation which is read letter by letter, but
never as a two-syllable word rhyming with Garcia.
Such language- and word-specific facts are crucial
for building an ASR verbalizer or a TTS front-end.
Abbreviations, particularly ad-hoc abbreviations,

pose an additional difficulty not common to other
NSWs: it is not always obvious what they de-
note. For instance, AMA could represent: Amer-
ican Medical Association, a professional organiza-
tion and lobbying group for doctors; against medi-
cal advice, jargon referring to a patient leaving the
hospital before being cleared for discharge; or ask
me anything, a prompt used on various online fo-
rum to solicit questions; and this does not exhaust
the possibilities. Similarly, the ad-hoc abbreviation
brd might denote bread, broad, or bird, and con-
text is required to determine how to pronounce or
interpret it. For this reason, methods for abbrevia-
tion expansion must take context into account.

3. Methods

We conducted a survey of abbreviatory methods
used in diverse languages and scripts. Adapting
pre-existing practices at Google for internationaliz-
ing text normalization systems, we hypothesized
that literate, linguistically sophisticated language
consultants would have reasonably reliable judg-
ments about whether or not a particular type of ab-
breviation formation process is present in their lan-
guage when provided with examples of that pro-
cess. These examples were in English—the lan-
guage used for the survey instrument itself—when
relevant examples exist in English, and glosses
were provided for examples from other languages
when relevant examples do not exist in English.
Table 1 lists the seven abbreviation strategies tar-
geted and the examples provided; the full text of
the survey can be found in Appendix A.
To strengthen conclusions about which types of

abbreviations are present in which language, we
also asked consultants to provide two or three ex-
amples of each process they claimed for their lan-
guage.6 Elicitation of examples allowed us to dis-
cern whether a consultant understood the strate-
gies during the consensus procedure.

6We note in passing that requiring an additional step
when answering “yes” might cause consultants to have
a response bias in favor of “no”. While the consensus
procedure described in subsection 3.4 is intended to
avoid errors due to this bias, we have no straightforward
way to detect the presence of such a bias.

37

Abbreviation class Example

First-character abbreviations NATO (< North Atlantic Treaty Organization)
Stump compounds FiDi (< Financial District)
Truncations Col. (< Colonel)
Augmented truncations Australian English footie (< football plus augment -ie)
Word-internal deletions Blvd. (< Boulevard)
Inflection strategies Spanish EE UU (< Estados Unidos ‘United States’)
Reduplication strategies Indonesian orang2 (< orangorang ‘people’)
Other strategies (none given)

Table 1: Abbreviation strategies queried in the survey, with characteristic examples.

3.1. Languages sampled
The languages, dialects, and scripts were selected
to cover many language families and script types
but also in support of internationalization and qual-
ity assurance efforts at Google. We decided to fo-
cus in some cases on multiple dialects of a par-
ticular “macrolanguage”, or to target the multiple
scripts used to write a certain language. In a slight
abuse of terminology, we refer to the entries in our
survey—a language or dialect, and the associated
script—as locales. See Table 3 for a full list of lo-
cales. Some details of how locales were defined
are discussed below.
For Arabic, which is both diglossic and pluricen-

tric, the sample targeted both the Modern Stan-
dard literary standard as well as Egyptian, Gulf,
and Magrebi dialects. For Gulf and Magrebi di-
alects, we target abbreviations in non-standard ro-
manization. Hindi-Urdu was treated as two sep-
arate locales, as Hindi is written with a Brahmic
alphasyllabary, and Urdu with a Perso-Arabic con-
sonantal alphabet. Separate locales were used for
the Brahmic (Gurmukhi) and Perso-Arabic (Shah-
mukhi) scripts used to write Punjabi in India and
Pakistan, respectively, and for the non-standard
romanizations of Bengali, Hindi, Marathi, and
Urdu. Finally, European and Brazilian dialects of
Portuguese were treated as separate locales.

3.2. Participants
At least three—though occasionally as many as
nine—consultants gave judgments and examples
for each locale. Consultants were recruited from a
pool of professional annotators and were compen-
sated for their time.

3.3. Instrument
The survey itself was conducted using Google
Forms. Before the survey began, consultants
were prompted to rate their proficiency with the tar-
get locale on a seven-point scale where 1 was la-
beled “limited proficiency” and 7 was labeled “na-
tive fluency”. The median value for this proficiency

score was 5, and no consultant scored their profi-
ciency lower than 3. The survey consists of seven
main questions, each asking whether the target lo-
cale uses a particular style of abbreviation. These
strategies are listed in Table 1.
If the consultant answered yes, they were then

asked to provide two or three relevant examples
of that style (where each example includes the ab-
breviated form, the expanded form, and an English
gloss). This initial taxonomy of style is based on
the authors’ own linguistic background and is not
intended to exhaust the possibilities. Thus, in a
final question, the consultant was asked whether
they were aware of any styles of abbreviation not
yet covered in the locale, and if so, were asked to
provide examples of these styles. The text of the
survey is reprinted in Appendix A.

3.4. Consensus
When consultants for a given locale disagreed as
to whether a given abbreviation formation strategy
was present in that locale, the first author manually
enforced consensus across the responses for that
locale. This was done by consulting the examples
provided. If, for instance, only one of the three con-
sultants provided an example of a given strategy,
but the examples clearly illustrate the strategy, the
omission by the other consultants was assumed to
be accidental and the strategy is coded as present
in the locale. However, if the examples provided
were not of the relevant strategy, or were judged
uninterpretable, they were discarded and the strat-
egy was coded as absent.

4. Results

The survey received roughly 200 responses over
55 locales corresponding to 46 unique ISO 639-
1 languages. Roughly half of these locales use
non-Latin scripts. The associated language codes
are adapted from ISO-639-1 with additional disam-
biguating information where necessary.
Disagreements between annotators were some-

what common, accounting for 39% of the re-

38

Abbreviation class % attested

First-character abbreviations 90.6
Stump compounds 45.3
Truncations 56.6
Augmented truncations 30.2
Word-internal deletions 45.3
Inflection strategies 15.1
Reduplication strategies 3.8
Other strategies 17.0

Table 2: The percentage of locales attesting each
of the eight abbreviation strategies.

sponses (not including “Other strategies”) aggre-
gated across locale. Table 2 provides the percent-
ages of locales that attest (following the consen-
sus procedure in subsection 3.4) each of our ab-
breviation classes. Table 3 in Appendix B provides
the full post-consensus per-locale results. We give
an impressionistic summary of the findings below.
As can be seen from Table 2, first-character

abbreviations are present for most locales, but
the other strategies in English are less commonly
found. Truncations are the next most common
strategy; these are attested in just over half of
the locales. Inflection and reduplication marking
are far less common than the other strategies.
Roughly one out of six locales attest other strate-
gies beyond the seven provided.
The locales for languages spoken in the In-

dian subcontinent—Assamese, Bengali, Gujarati,
Hindi, Kannada, Malayalam, Marathi, Odia, Pun-
jabi, Tamil, Telugu, and Urdu—make little use
of abbreviation beyond first-character abbrevia-
tions (e.g., Kannada ಬಎಿಸ್ಎನ್ಎಲ್ ⟨bi-es-en-el⟩
‘Bharat Sanchar Nigam Limited’; note the failure
to encode aspiration of the initial consonant), and
some of these may be borrowed from English.
This is marked insofar as these languages belong
to two distinct language families (Indo-Aryan and
Dravidian) and which may be written in Brahmic
alphasyllabaries, Perso-Arabic consonantal alpha-
bets, or Latin alphabetic transliterations.
Outside of the subcontinent, two other lan-

guages which make limited use of abbreviations
are Arabic and Farsi. While these languages are
unrelated, this may reflect a structural incompatibil-
ity between abbreviation formation and the Perso-
Arabic script they share (also with Urdu, as men-
tioned above); this script is defective in the sense
that short vowels are ordinarily omitted, and this
in turn might limit the ability—or need—to form
abbreviations via truncation or word-internal dele-
tion. Something similar might be true of Korean; its
Hangul writing system is roughly alphabetic, but
symbols are organized into syllable-sized blocks
called jamo, which might make it difficult to in-

dicate abbreviations—particularly those which in-
volve deletion of vowels—orthographically. Sim-
ilarly, Japanese, which is written in a mixed—
but predominantly syllabic—writing system, forms
novel stump compounds from English phrases,
as in セクハラ ⟨se-ku-ha-ra⟩ ‘sexual harassment’,
but its writing system lacks any obvious way to
represent the deletion of vowels. Amharic and
Tigrinya, closely related Ethiopic languages writ-
ten with the Ge‘ez alphasyllabary, also make lim-
ited used of abbreviation formation. Among Latin-
script locales, Yorùbá and Zulu stand out for their
limited use of abbreviations.
Relatively few locales surveyed make use of

augmented truncations. Both dialects of Por-
tuguese use -ão as an augment, as in burgão (<
hambúrguer ‘hamburger’). The Russian abbrevi-
ation презик ‘condom’ is formed from a trunca-
tion of презерватив suffixed with a -ик augment.
Turkish uses truncation with an -o augment to form
familiar forms of proper names. While it is not ab-
breviation per se, Indonesian uses truncation and
infixation to derive informal forms of words. For
example, sepokat is formed via truncation of word-
final u in sepatu ‘shoe’ and infixation of -ok-.7
Inflection-marking strategies are overall rare.

Belarusian, Polish, and Romanian generalize the
character-doubling strategy found in Portuguese,
Serbian and Spanish by reduplicating the entire
abbreviation. In Polish, for example, the plural
forms of o. (< ojciec ‘father’) and prof. (< pro-
fesor ‘professor’) are oo. and prof. prof., respec-
tively. In Slovenian, the title of someone with two
doctoral degrees is abbreviated either as ddr. or
dr. dr. Specific strategies for abbreviating redupli-
cated words are even less common. Indonesian
and Vietnamese use the Arabic numeral 2 to indi-
cate reduplication, and the々 character serves the
same purpose in Japanese.
Many consultants reported the presence of

other strategies for abbreviation formation. Many
locales report the use of a “mixed” strategies.
For example, the derivation of Belarusian БелТА
(< Беларускае Тэлеграфнае Агенцтва ‘Belaru-
sian Telegraph Agency’), Polish PZMot (< Polski
Związek Motorowy ‘Polish Automobile and Motor-
cycle Federation’), and Uzbek SamDU (< Samar-
qand Davlat Universiteti ‘Samarkand State Uni-
versity’) seems to combine truncation and first-
character abbreviation. Bulgarian forms abbrevi-
ations by deleting a contiguous sequence of word-
internal segments, marking the deleted span with
a hyphen—e.g., у-ще (< училище ‘school’)—and
a similar strategy is found in Hebrew.

7This process is apparently borrowed from a thieves’
argot. A similar process, the infixation of -iz- in African-
American Vernacular English, is described by Gil Scott-
Heron in his spoken-word piece “The Ghetto Code”.

39

5. Conclusions

We have presented (and publicly released) re-
sults from a survey over diverse languages and
scripts regarding abbreviatory devices in the writ-
ing systems. Explicit examples in a language
of specific attested abbreviation strategies can
help in developing covering grammars or simi-
lar pattern-matching methods (e.g., Gorman and
Sproat, 2016; Sproat and Jaitly, 2017; Zhang et al.,
2019) to find possible abbreviations and candidate
expansions in raw text, en route to building abbre-
viation expansion engines. In future work, we in-
tend to mine web text to identify additional exam-
ples of attested patterns.

Acknowledgments

Thanks to Alexander Gutkin, Christo Kirov, and
Richard Sproat; and to the many annotators upon
whom this project depended.

References

Timothy Baldwin, Young-Bum Kim, Marie Cather-
ine de Marneffe, Alan Ritter, Bo Han, and Wei
Xu. 2015. Shared tasks of the 2015 Workshop
on Noisy User-generated Text: Twitter lexical
normalization and named entity recognition. In
Proceedings of the Workshop on Noisy User-
generated Text, pages 126–136.

Garland Cannon. 1989. Abbreviations and
acronyms in English word-formation. American
Speech, 64(2):99–127.

Grzegorz Chrupała. 2014. Normalizing tweets with
edit scripts and recurrent neural embeddings. In
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 680–686.

David Crystal. 2001. Language and the Internet.
Cambridge University Press.

David Crystal. 2008. Txtng: The Gr8 Db8. Oxford
University Press.

Peter Ebden and Richard Sproat. 2015. The
Kestrel TTS text normalization system. Natural
Language Engineering, 21(3):1–21.

Daan van Esch and Richard Sproat. 2017. An
expanded taxonomy of semiotic classes for
text normalization. In Proceedings of INTER-
SPEECH, pages 4016–4020.

Kyle Gorman, Christo Kirov, Brian Roark, and
Richard Sproat. 2021. Structured abbreviation
expansion in context. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP
2021, pages 995–1005.

Kyle Gorman and Richard Sproat. 2016. Minimally
supervised number normalization. Transactions
of the Association for Computational Linguistics,
4:507–519.

Hans Marchand. 1969. The Categories and Types
of Present-Day English Word-Formation, 2nd
edition. Beck.

Deana Pennell and Yang Liu. 2010. Normaliza-
tion of text messages for text-to-speech. In IEEE
International Conference on Acoustics, Speech
and Signal Processing, pages 4842–4845.

Ernest Pusateri, Bharat Ram Ambati, Elizabeth
Brooks, Ondrej Platek, Donald McAllaster, and
Venki Nagesha. 2017. A mostly data-driven ap-
proach to inverse text normalization. InProceed-
ings of INTERSPEECH, pages 2784–2788.

Brian Roark and Richard Sproat. 2014. Hippo-
cratic abbreviation expansion. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short
Papers), pages 364–369.

Richard Sproat, Alan W. Black, Stanley Chen,
Shankar Kumar, Mari Ostendorf, and Christo-
pher Richards. 2001. Normalization of non-
standard words. Computer Speech & Language,
15(3):287–333.

Richard Sproat and Navdeep Jaitly. 2017. An RNN
model of text normalization. In Proceedings of
INTERSPEECH, pages 754–758.

Hao Zhang, Richard Sproat, Axel H. Ng, Felix
Stahlberg, Xiaochang Peng, Kyle Gorman, and
Brian Roark. 2019. Neural models of text nor-
malization for speech applications. Computa-
tional Linguistics, 45(2):293–337.

Piotr Żelasko. 2018. Expanding abbreviations in
a strongly-inflected language: are morphosyn-
tactic tags sufficient? In Proceedings of the
Eleventh International Conference on Language
Resources and Evaluation, pages 1880–1884.

A. Survey questions

1. Does the target language use abbreviations
formed from the first character of each word
in a phrase (e.g., “NATO” < “North Atlantic

40

Treaty Organization”, “CIA” < “Central Intelli-
gence Agency”)? [If yes: Please provide 2–
3 examples of abbreviations formed from the
first character of each word in a phrase in the
target language, giving the abbreviated form,
the full/expanded form, and an English gloss.
(You are also welcome to link to any relevant
discussions of this phenomenon.)]

2. Does the target language use abbreviations
formed from the first syllable of each word
in a phrase (e.g., “FiDi” < “Financial Dis-
trict”, “ForEx” < “foreign exchange”)? [If yes:
Please provide 2–3 examples of abbrevia-
tions formed from the first syllable of each
word in a phrase in the target language, giving
the abbreviated form, the full/expanded form,
and an English gloss. (You are also welcome
to link to any relevant discussions of this phe-
nomenon.)]

3. Does the target language use abbreviations
formed by truncating characters at the ends
of words (e.g., “Col.” < “Colonel”, “Ave.” <
“Avenue”)? [If yes: Please provide 2–3 ex-
amples of abbreviations formed by truncat-
ing characters at the ends of words in the
target language, giving the abbreviated form,
the full/expanded form, and an English gloss.
(You are also welcome to link to any relevant
discussions of this phenomenon.)]

4. Does the target language use abbreviations
formed by truncating characters at the ends
of words and then adding “augment” suffixes
(e.g., Australian English “footie” < “football”,
with an -ie augment, “ambo” < “ambulance”
with an -o augment)? [If yes: Please pro-
vide 2–3 examples of abbreviations formed
by truncating characters at the ends of words
and then adding “augment” suffixes in the
target language, giving the abbreviated form,
the full/expanded form, and an English gloss.
(You are also welcome to link to any relevant
discussions of this phenomenon.)]

5. Does the target language use abbreviations
formed by deleting characters (e.g., partic-
ularly vowels) from the middle of words
(e.g., “Blvd.” < “Boulevard”, “Sgt.” <
“Sergeant”)? [If yes: Please provide 2–3 ex-
amples of abbreviations formed by deleting
characters from the middle of words in the
target language, giving the abbreviated form,
the full/expanded form, and an English gloss.
(You are also welcome to link to any relevant
discussions of this phenomenon.)]

6. Does the target language use any ortho-
graphic tricks to mark the inflection of ab-

breviations (e.g., Spanish “EE UU.” < “Esta-
dos Unidos” ‘United States’, with the doubling
used to indicate that the abbreviation is plu-
ral)? [If yes: Please provide 2–3 examples of
inflected abbreviations in the target language,
giving the abbreviated form, the full/expanded
form, and an English gloss. (You are also wel-
come to link to any relevant discussions of this
phenomenon.)]

7. Does the target language use any particu-
lar orthographic tricks to abbreviate redupli-
cation (e.g., Indonesian “orang2” < “orango-
rang” ‘people’, with “2” used to indicate redu-
plication)? Answer “No” if the target language
does not have productive reduplication. [If
yes: Please provide 2–3 examples of abbrevi-
ations for reduplication in the target language,
giving the abbreviated form, the full/expanded
form, and an English gloss. (You are also wel-
come to link to any relevant discussions of this
phenomenon.)]

8. Does the target language use any other style
of abbreviation not yet covered? [If yes:
Please provide 2–3 examples of these other
style or styles, giving the abbreviated form,
the full/expanded form, and an English gloss.
(You are also welcome to link to discussions
of other styles of abbreviation in the target lan-
guage.)]

B. Consensus locale results

Table 3 presents the consensus results for each of
the locales surveyed.

41

Code Locale NATO FiDi Col. footie Blvd. EE UU orang2 Other

am Amharic 3 7 7 7 7 7 7 7
ar-eg Arabic (Egyptian) 3 7 7 7 7 7 7 7
ar-gu Arabic (Gulf, Latin) 3 7 7 7 7 7 7 7
ar-ml Arabic (Magrebi, Latin) 3 7 7 7 7 7 7 7
ar-ms Arabic (Modern Standard) 3 7 7 7 7 7 7 7
as Assamese 3 7 7 7 7 7 7 7
be Belarusian 3 3 3 7 3 3 7 3
bg Bulgarian 3 3 3 7 7 7 7 7
bn Bengali 3 3 3 7 3 7 7 7
bn-la Bengali (Latin) 3 3 3 3 3 7 7 7
en English 3 3 3 3 3 7 7 7
es Spanish 3 7 7 7 3 3 7 3
et Estonian 3 3 3 7 3 7 7 7
fa Farsi 3 7 7 7 7 7 7 7
fr French 3 3 3 7 7 7 7 3
gu Gujarati 3 7 7 3 7 7 7 7
ha Hausa 3 7 3 3 3 7 7 3
he Hebrew 3 3 3 3 7 7 7 3
hi Hindi 3 7 7 3 7 7 7 7
hi-la Hindi (Latin) 3 7 3 3 7 7 7 7
hy Armenian 3 3 3 3 3 7 7 3
id Indonesian 3 3 3 3 3 7 3 3
it Italian 3 7 3 3 3 7 7 7
ja Japanese 3 7 7 7 7 7 3 7
ka Georgian 3 3 3 3 3 7 7 7
kn Kannada 3 7 7 7 3 7 7 7
ko Korean 7 3 7 7 7 7 7 7
lt Lithuanian 3 3 7 7 3 7 7 7
lv Latvian 3 7 3 7 3 7 7 7
ml Malayalam 3 7 7 7 7 7 7 7
mr Marathi 3 7 7 7 7 7 7 7
mr-la Marathi (Latin) 7 7 7 7 7 7 7 7
nl Dutch 3 3 3 7 3 7 7 7
or Odia 3 3 7 7 7 7 7 7
pa-gu Punjabi (Gurmukhi) 7 7 7 7 7 7 7 7
pa-sh Punjabi (Shahmukhi) 3 7 7 7 7 7 7 7
pl Polish 3 3 3 7 3 3 7 3
pt-br Portuguese (Brazilian) 3 3 3 3 3 7 7 7
pt-pt Portuguese (European) 3 3 3 3 3 3 7 7
ro Romanian 3 3 3 7 7 3 7 7
ru Russian 3 3 3 3 3 7 7 3
sl Slovenian 3 3 3 3 3 7 7 7
sq Albanian 3 7 3 7 3 3 7 7
sr Serbian 3 3 3 7 7 3 7 7
sw Swahili 3 7 3 7 3 7 7 7
ta Tamil 3 7 3 7 7 7 7 7
te Telugu 3 7 3 7 7 7 7 7
ti Tigrinya 7 7 3 7 7 7 7 7
tr Turkish 3 3 3 3 3 7 7 7
ur Urdu 7 7 7 7 7 7 7 7
ur-la Urdu (Latin) 3 7 7 7 7 7 7 7
uz Uzbek 3 3 3 7 3 7 7 7
vi Vietnamese 3 3 7 3 3 3 7 7
yo Yorùbá 3 7 7 7 7 7 7 7
zu Zulu 7 7 3 7 3 7 7 7

Table 3: Summary of the abbreviation strategies attested in each locale after consensus.

42

Second Workshop on Computation and Written Language (CAWL 2024) @LREC-COLING-2024, pages 43–52
May 21, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

Now You See Me, Now You Don’t: ‘Poverty of the Stimulus’
Problems and Arbitrary Correspondences in End-to-End Speech

Models

Daan van Esch
Google Speech

1600 Amphitheatre Parkway, Mountain View, CA 94043
dvanesch@google.com

Abstract
End-to-end models for speech recognition and speech synthesis have many benefits, but we argue they also
face a unique set of challenges not encountered in conventional multi-stage hybrid systems, which relied on
the explicit injection of linguistic knowledge through resources such as phonemic dictionaries and verbalization
grammars. These challenges include handling words with unusual grapheme-to-phoneme correspondences,
converting between written forms like ‘12’ and spoken forms such as ‘twelve’, and contextual disambiguation of
homophones or homographs. We describe the mitigation strategies that have been used for these problems
in end-to-end systems, either implicitly or explicitly, and call out that the most commonly used mitigation tech-
niques are likely incompatible with newly emerging approaches that use minimal amounts of supervised audio
training data. We review best-of-both-world approaches that allow the use of end-to-end models combined with
traditional linguistic resources, which we show are increasingly straightforward to create at scale, and close with
an optimistic outlook for bringing speech technologies to manymore languages by combining these strands of research.

Keywords: speech recognition, speech sythesis, end-to-end modeling, text normalization, pronunciation
modeling

1. Introduction

In recent years, so-called ‘end-to-end’ models have
become increasingly popular for both automatic
speech recognition (ASR) and text-to-speech (TTS)
applications. The precise meaning of ‘end-to-end’
is not exactly defined, and there are many varia-
tions on the theme, but in the case of ASR, end-
to-end models are typically understood to be all-
neural systems that take in audio features and emit
some subword-level unit like bytes (Li et al., 2019),
graphemes, or wordpieces directly (Prabhavalkar
et al., 2017). Such all-neural systems side-step the
need for a manually-curated phonemic dictionary
of the target language (Sainath et al., 2018; Kim
et al., 2020), and contrast with ‘conventional’ or
‘hybrid’ approaches, which consist at least partially
of non-neural components, like a phonemic lexicon
finite-state transducer (Mohri et al., 2002) or hand-
written verbalization grammars (Sak et al., 2013) to
turn words like ‘twelve’ into ‘12’. Similarly, in TTS,
end-to-end architectures like Tacotron (Wang et al.,
2017) can take in graphemes and emit audio, again
without going through intermediate phases that are
common in conventional TTS systems, such as
text normalization to turn input like ‘12’ into ‘twelve’
(Sproat et al., 2001), and grapheme-to-phoneme
conversion, typically employing a combination of
phonemic dictionaries and machine-learning mod-
els (Bisani and Ney, 2008).

In conventional speech processing systems, with

multiple individual components involved, jointly op-
timizing over the entire system from start to finish
is hard, and errors may compound, which can be
detrimental to quality (Wang et al., 2017). By de-
sign, all-neural end-to-end approaches do not have
this issue, while also being much simpler to train
(Chiu et al., 2017), as well as being significantly
smaller in terms of disk size, enabling deployment
of high-quality models on devices like smartphones
(Kim et al., 2020). In addition, being able to avoid
the need for injecting linguistic knowledge, such as
phonemic dictionaries or verbalization grammars,
is frequently considered to be an advantage of end-
to-end modeling approaches—for example, (Wang
et al., 2017) points out that such components re-
quire ‘extensive domain expertise and are laborious
to design’, while an end-to-end approach ‘alleviates
the need for laborious feature engineering’. Simi-
larly, (Sotelo et al., 2017) argues that end-to-end
modeling for TTS ‘eliminates the need for expert
linguistic knowledge, which removes a major bottle-
neck in creating synthesizers for new languages’.

Unarguably, developing such linguistic resources
can take a non-negligible amount of effort, even
despite much progress on tools and methodolo-
gies that can help alleviate this burden (Kim and
Snyder, 2013; Rutherford et al., 2014; Deri and
Knight, 2016; Lee et al., 2020; Ritchie et al., 2019;
Bleyan et al., 2019; Ritchie et al., 2020). And it
is, of course, desirable to mitigate bottlenecks in
developing speech systems in whatever way possi-

43

ble: if it were indeed possible to completely avoid
the need for linguistic resources while still building
systems that are in every way just as capable of
handling ASR or TTS tasks as conventional sys-
tems, or even better at doing so (as suggested
by Sainath et al. (2018)), that would be excellent.
However, this may be infeasible, as the relation-
ship between the spoken and the written form of
human languages is typically far from straightfor-
ward: such correspondences frequently turn out to
be full of entirely arbitrary phenomena that cannot
be derived, or that would be very difficult to derive,
through generalization from a randomly selected
large set of training data in the target language.

We provide an overview of such challenging cor-
respondences, and argue that this area has not
been receiving enough attention and analysis in the
literature on end-to-end systems, calling for more
research and analysis along the lines of (Fong et al.,
2019; Taylor and Richmond, 2019) to investigate
how well end-to-end speech modeling approaches
are equipped to deal with such problems. We fo-
cus on a practical description of the problem space
and common mitigation techniques more so than
empirical experiments, since the ability of end-to-
end speech systems to handle such arbitrary cor-
respondences will differ depending on factors such
the composition of the training data, plus model
architecture and size. We argue that these issues
will become all the more relevant as end-to-end
modeling approaches are adopted that use only
minimal amounts of supervised target-language
training data: for example, (Baevski et al., 2020; He
et al., 2021) report impressive progress on extend-
ing speech technologies to new languages using
just minutes of transcribed target-language audio,
but the resulting models are likely to struggle with
such arbitrary correspondences when no linguistic
resources are used.

2. Poverty of the Stimulus

As an example, assume for the sake of argument
that an end-to-end model’s training data contains
all numbers in the English language except for ‘12’
(and except numbers of which ‘12’ is a constituent,
like ‘112’ as ‘one hundred and twelve’). Given this
data, this hypothetical model would be unable to
know that ‘twelve’ should be transcribed as ‘12’ in
ASR tasks, or that ‘12’ can be read as ‘twelve’ in
TTS tasks. This is because there is no possible
generalization that would let the model determine
that the written form ‘12’ corresponds to the spoken
form ‘twelve’. To avoid generalizing to something
incorrect like ‘twoteen’ (by analogy with ‘fourteen’,
‘sixteen’, ‘seventeen’, and so on) or ‘ten-two’ (by
analogy with ‘twenty-two’, ‘thirty-two’, and so on),
an end-to-end model needs to observe at least

one example of this arbitrary correspondence in its
training data.

This problem is by no means limited to ‘12’ alone,
of course: even just among English numbers be-
tween 10 and 20, cases like ‘11’ and ‘eleven’,
‘13’ and ‘thirteen’, and ‘15’ and ‘fifteen’ are not
quite straightforwardly generalizable either. More
generally, such examples are somewhat reminis-
cent of what’s known in linguistics as the ‘poverty
of the stimulus’, which is the argument that chil-
dren are not exposed to enough information to cor-
rectly induce the rules of their native language, and
that it must therefore be the case that the human
brain must contain some form of innate knowledge
about how languages work (Laurence andMargolis,
2001). This debate is far from settled in linguistics,
but what is relevant to us here is the idea of ana-
lyzing a learner’s input to understand the limits of
generalization based on such training data, and to
test how well learners generalize at various points
of the learning process.

We believe end-to-end speech processing would
benefit from (1) taking into account the limits of
generalization when it comes to correspondences
between spoken and written forms of language, (2)
understanding to what extent the training data used
for a given model can theoretically allow it to learn
these correspondences, (3) evaluating the degree
to which this process is successful in practice, e.g.
through separate test sets for various types of nu-
meric sequences, or words with unusual grapheme-
to-phoneme correspondences, and (4) taking steps
to make available any missing linguistic knowledge
to the model in the next round of training, or at
inference time.

2.1. Semiotic Classes: Numbers, Times,
etc.

In our hypothetical example above, ‘12’ would need
to be observed in the training data for the model
to learn this unusual and arbitrary correspondence.
Including it in the training data, then, would be a
natural solution. And indeed, our argument is not
that an end-to-end model could never learn such
edge cases at all—we simply observe, in a flavor of
the poverty-of-the-stimulus argument, that the sys-
tem must have observed such idiosyncratic cases
at least once to be able to learn them.
Of course, this does raise the question of what

needs to be included in the training data. Some
correspondences will be generalizable: for exam-
ple, a system that observed in its training data all
the numbers between ‘20’ and ‘40’ apart from ‘33’
should be able to generalize correctly and produce
‘thirty-three’ for ‘33’, following the pattern of first
verbalizing the decade form (‘twenty’ or ‘thirty’) and
then using the regular cardinal number ‘three’ (as in

44

‘thirty-one’, ‘thirty-two’, and so on). In other words,
some examples are entirely arbitrary and idiosyn-
cratic, and need to be specifically covered individ-
ually, while for others, generalization is an option
as long as sufficient information is available from
which to generalize.

Now, even if a model observes such an entirely
idiosyncratic case such as ‘12’ only once at train-
ing time, the model may not remember this corre-
spondence; to our knowledge there has been no
research determining if there is a threshold of oc-
currences that is sufficient to teach an end-to-end
system a given correspondence. Presumably the
degree of arbitrariness and frequency both play a
role, as does the general model architecture, but
this seems like a rich area for analysis. However, an
end-to-end model would at least theoretically stand
a chance to get ‘12’ right if it was included even just
once in its training data; if it never observed this
case at all, it would stand no chance.
If the issues were limited to cases like like ‘10’,

‘11’ and ‘12’, this would perhaps pose only a limited
problem that could be easily addressed by includ-
ing relevant data at training time. However, even for
simple cardinal numbers in counting forms like ‘one’,
‘two’, ‘three’, a relatively complex induction needs
to be done to derive the correct correspondences
even just for forms between 1 and 999, as shown
by Ritchie et al. (2019); Gorman and Sproat (2016).
These inductions differ in complexity from one lan-
guage to another, but are rarely straightforward. In
the extreme, for some languages, the only option
for getting the numbers between 1 and 100 right
appears to be explicitly enumerating every single
form (Gorman and Sproat, 2016). This would imply
that an end-to-end speech system would also need
to observe every single form in its training data at
least once.
Cardinal numbers are, unfortunately, perhaps

among the easier correspondences to learn. There
are many classes of tokens for which there are
non-trivial correspondences between written and
spoken forms of human language, and they appear
in mostly any language; see e.g. van Esch and
Sproat (2017) which provides an overview of these
‘semiotic classes’, ranging from phone numbers like
‘1-800-GOOG411’ to times like ‘10:15’ (‘ten fifteen’
or ‘a quarter past ten’), and from measures like
‘10km’ to currency amounts like ‘HK$300’.

For end-to-end speech models, learning such
correspondences is difficult, with low accuracy
rates unless special measures are taken (Peyser
et al., 2019). In fact, as Sproat and Jaitly (2017);
Zhang et al. (2019) show, handling semiotic classes
is difficult even for standalone text-to-text neural net-
works that are dedicated entirely to transforming
between spoken-domain text strings like ‘twelve’
and written-domain text strings like ‘12’. Sproat

and Jaitly (2017); Zhang et al. (2019) point out
that even such text-to-text models frequently make
so-called ‘silly errors’ like verbalizing ‘16GB’ into
‘sixteen hertz’ instead of ‘sixteen gigabytes’—even
though for these networks, large amounts of rel-
evant data were available at training time, based
on which the correct behavior could have been
inferred.

2.2. Normal Words: Names, Loanwords,
Acronyms, etc.

Beyond semiotic-class tokens like ‘12’, ‘1-800-
GOOG411’, ‘10:15’, ‘HK$300’, and ‘16GB’, there
are also countless examples of English words
with idiosyncratic grapheme-to-phoneme map-
pings. For example, the pronunciation of the En-
glish word ‘Worchestershire’ is relatively idiosyn-
cratic, consisting of only three syllables. Put simply,
the rules of English orthography do not map one-
to-one onto English pronunciations—and this is
the case in many of the world’s languages (though
not everywhere). The complexity of various ortho-
graphic systems can be measured (van den Bosch
et al., 1994), and different orthographic systems
are known to have different degrees of orthographic
transparency (Katz and Frost, 1992). In practice,
this means that in some languages, the correspon-
dences between spoken and written forms will be
harder to learn than in others.
Indeed, cross-language comparisons of

grapheme-to-phoneme (G2P) conversion models
such as (van Esch et al., 2016; Lee et al., 2020)
show widely different accuracy rates across
languages. While the accuracy metrics achieved
by G2P models also depend on the amount of
training data available for the target language, as
well as factors such as the model architecture,
there is unmistakably an impact from the degree
of orthographic transparency in each language.
Some languages, like Spanish, have a reasonably
transparent orthography, and G2P accuracy rates
are usually high; languages like English, on the
other hand, feature large numbers of idiosyncratic
cases, which are much more challenging or even
impossible for a G2P model to predict based on
the training data, leading to lower accuracy rates.
Such challenging grapheme-to-phoneme corre-

spondences are known to impact the quality of end-
to-end speech models: for example, Taylor and
Richmond (2019); Fong et al. (2019) show that end-
to-end TTS models struggle to generate correct au-
dio for words with irregular or idiosyncratic G2P cor-
respondences. End-to-end ASR systems face sim-
ilar struggles (Kim et al., 2020; Prabhavalkar et al.,
2017), although to our knowledge the issue has
not been analyzed in detail. Unusual grapheme-to-
phoneme correspondences appear in many types

45

of words, including in place names like ‘Worchester-
shire’, names of people and businesses (Rutherford
et al., 2014), names of artists (like ‘P!nk’, where the
‘!’ stands for an ‘i’, or ‘deadmau5’, read as ‘dead
mouse’), and loanwords (which may retain the
original spelling from their source language, as in
‘restaurant’ or ‘La Jolla’). Sometimes, otherwise en-
tirely unremarkable nouns suddenly involve an un-
predictable correspondence, as in ‘sword’, the only
word in the English language where the grapheme
‘w’ is silent in the onset cluster ‘sw’: compare, for
example, ‘swam’, ‘sweep’, and ‘swore’. Highly fre-
quent words may also have unusual grapheme-to-
phoneme correspondences, like English ‘one’. And
letter sequences (Sproat and Hall, 2014) such as
‘NASA’ (read as a word) and ‘C-SPAN’ (partially
read as a word, partially as a letter) present their
own idiosyncrasies—not to mention borrowed letter
sequences, such as ‘BBC’, which is read letter-by-
letter using English letter pronunciations in many
European languages.

As with semiotic-class tokens, it can range from
challenging to impossible for an end-to-end speech
model to predict the correct grapheme-to-phoneme
correspondence for a given word, depending on
the degree of arbitrariness of the relationship, the
training data, and the model’s generalization abil-
ity. According to the Census Bureau, there are
tens of thousands of geographical names in the
United States alone. Many of them are likely rea-
sonably amenable to generalization, but others (like
‘La Jolla’) will not be, and must be observed in the
training data for an end-to-end model to learn them.
In the extreme, cases like ‘deadmau5’ are presum-
ably sufficiently idiosyncratic as to be impossible for
an end-to-end system to predict correctly through
generalization from any other training data.

2.3. Homophones, Homographs, and
Context

For both semiotic-class tokens and normal words,
another issue can cause further challenges for ASR,
namely homophony—words or phrases that sound
the same, but have different spellings depending
on their meaning and context. For example, ‘three
eleven’ could be written as ‘3:11’ (as a time) or
‘3/11’ (as a date), and ‘Xanh’ (a popular restaurant
in Mountain View, California, which unfortunately
closed after the pandemic) shares its pronunciation
with ‘sun’. As an extreme example, if these terms
were only ever observed in isolation at training time,
the system would find it challenging to determine
that it should emit ‘dinner at Xanh in Mountain View’
(not ‘sun’) but ‘the sun is shining’ (not ‘Xanh’).

In TTS applications, homographs, or words that
are spelled the same but have different pronun-
ciations depending on context, pose similar prob-

lems: ‘Houston, Texas’ is pronounced differently
than ‘Houston Street, New York City’ (which is pro-
nounced like ‘how-ston’ not ‘hew-ston’), but again,
if the term ‘Houston’ was only ever observed in iso-
lation, the model would struggle to decide which of
the two pronunciations to use based on inference-
time context—assuming, of course, that both pro-
nunciations were even included in the training data.

3. Mitigation Techniques

The existence of such arbitrariness is not an argu-
ment against end-to-end modeling: our goal has
only been to point out that it is impossible for an end-
to-end model to correctly predict an entirely arbi-
trary phenomenon that it has not observed at train-
ing time—and that even for slightly less arbitrary
phenomena, such models may struggle. But given
the benefits of end-to-end modeling, it is clearly de-
sirable to see if these challenges can be mitigated
within the end-to-end paradigm.

Before discussing mitigation strategies, one
question that may come to mind is whether any
mitigation is in fact needed at all: one might argue
that handling these correspondences can simply
be called out-of-scope entirely. For example, an
ASR system could simply emit ‘twelve’ instead of
‘12’, and a TTS system could simply require that
only forms like ‘twelve’ are used in any input text.
However, in a real-world system this is typically in-
feasible or impractical, given that TTS applications
are generally expected to be able to handle generic
written-domain text, and given that downstream pro-
cessing of ASR transcriptions generally also relies
on written forms like ‘11:15’—for example, in con-
versational voice assistants that need to identify
times in transcribed spoken commands. Taking
this position is even harder in the case of words
with unusual grapheme-to-phoneme relationships:
it would be hard to argue that general-purpose ASR
or TTS systems do not need to correctly pronounce
or transcribe phrases like ‘La Jolla’.
First, we recommend setting up evaluation sets

that specifically aim to measure ASR or TTS qual-
ity for different categories of arbitrary correspon-
dences, such as words with unusual grapheme-
to-phoneme relationships, and different types of
semiotic classes, as in Peyser et al. (2019). Such
sets will help us understand the extent to which
these problems appear for a given model. The
question then becomes how to maximize accuracy
for these cases.

3.1. Large Training Data Sets
Ensuring that end-to-end systems see sufficient
data to correctly generalize all generalizable corre-
spondences, and to learn even the most arbitrary

46

cases, is one possible approach. This does pose
some practical problems, since there will be many
words that are affected (especially in languages like
English, with its opaque orthography). But as one
increases the size of the training data, more corre-
spondences will be covered, mitigating the problem
to some extent—and with the abundance of data
in high-resource languages, the problem may even
be invisible entirely unless specific evaluations are
done, as in Peyser et al. (2019).

Theoretically, one could simply collect recordings
of all normal words and semiotic-class tokens in
the target language, but this would clearly be very
time-consuming, and it is not clear that it poses less
of a bottleneck than creating verbalization gram-
mars and phonemic dictionaries. In the extreme, it
is arguably impossible due to the infinite amount of
e.g. cardinal numbers, but at at any rate, recording
many hundreds of thousands words and phrases
would be challenging even for ASR, where training
data can be gathered from many speakers through
platforms such as Hughes et al. (2010); for TTS,
where high-quality single-speaker recordings have
typically been required, it would be entirely imprac-
tical.
In addition to practical factors that make adding

more training data a less-than-desirable mitigation
strategy, recent work also suggests that reason-
able levels of ASR or TTS quality can be obtained
by using only an hour or less of supervised target-
language audio (Baevski et al., 2020; He et al.,
2021), combined with self-supervised learning tech-
niques and/or multilingual modeling. Such work
is incredibly promising for addressing the single
biggest bottleneck in bringing speech technologies
to more languages, namely the scarcity of super-
vised training data, but it seems vanishingly unlikely
that 40 seconds of target-language audio (as in He
et al. (2021)) could contain sufficient information to
learn all relevant arbitrary correspondences for the
target language.
In some cases, multilingual modeling may help,

e.g. in predicting that ‘24’ should be verbalized
as ‘vingt-quatre’ in French, following the English
pattern. But equally, multilingual modeling may be
ineffective or even harmful for this problem, e.g.
when mixing English with German, where the cor-
rect verbalization of ‘24’ is not ‘zwanzig-vier’ (liter-
ally ‘twenty-four’), but ‘vier-und-zwanzig’ (‘four-and-
twenty’).

3.2. Supplementing Training Data with
Synthetic Audio

For ASR, another technique is to use TTS to gener-
ate synthetic data to supplement the training data
(Rosenberg et al., 2019): for example, Peyser et al.
(2019) showed that if a target-language TTS system

is available, it can be used to generate transcribed-
audio training examples for cases like ‘12’ and
‘twelve’ at very large scale. However, such ap-
proaches still requires the creation of some kind
of verbalization grammar (Sak et al., 2013; Ritchie
et al., 2019, 2020) to provide the correspondences
between the written-domain forms (like ‘12’) which
would serve as the ASR training target, and the
spoken-domain forms (like ‘twelve’) which would
be passed into the TTS system. And unless the
target-language orthography is extremely transpar-
ent, the TTS system itself will likely require a phone-
mic dictionary (recall cases like ‘one’) in order for
the synthetic audio it generates to have the correct
pronunciation. Similar synthetic-audio approaches
can be employed for phrases like ‘La Jolla’ with chal-
lenging grapheme-to-phoneme correspondences,
but again this would require a phonemic dictionary
to drive the generation of accurate synthetic audio.
In other words, such synthetic-data approaches
still require an investment in linguistic resources
that is no different from the investments needed
to build the linguistic components of conventional,
non-end-to-end systems.

3.3. Secondary Models
Yet another class of mitigation techniques involves
combining secondary models with the original end-
to-end model. For example, fusion techniques are
commonly used to connect end-to-end ASR mod-
els with neural text-only language models to cover
phrases that were not observed in the original train-
ing data (Kim et al., 2020). While it seems reason-
able that external language models can help with
contextual disambiguation (‘Xanh’ vs ‘sun’), their ef-
fect for words with unusual grapheme-to-phoneme
or arbitrary verbalization correspondences is un-
clear and requires further research; they are un-
likely to be a panacea, especially for highly idiosyn-
cratic cases. In another example, Serrino et al.
(2019) describes a module that allows for the use
of phonemic dictionaries to correct misrecognitions
from the upstream ASR system, but again at the
cost of requiring linguistic resources. In both ASR
and TTS, secondary neural models can also be
used for normalizing semiotic-class tokens before
or after the core end-to-end model, as in Zhang
et al. (2019); Peyser et al. (2019); such models do,
however, typically require large amounts of text-to-
text training data, as well as covering grammars,
both of which again require linguistic expertise.

3.4. Combining End-to-End and
Conventional Approaches

It is also possible to combine the best of both worlds,
so to speak, by training models using the end-to-
end paradigmwhich do however still use phonemes

47

as an input or output unit: one recent example of
this is the Hybrid Autoregressive Transducer (HAT)
(Variani et al., 2020) for ASR, which combines end-
to-end models that output phoneme units with a
traditional finite-state transduction decoding graph
that uses a phonemic dictionary and verbalization
grammars. Similarly, in TTS, end-to-end models
can simply take phonemes produced by a conven-
tional text normalization front-end as input, e.g. as
in Skerry-Ryan et al. (2018); Yasuda et al. (2020).
In a related approach, (Kastner et al., 2019) de-
scribes an end-to-end TTS model that allows the
mixing of graphemes and phonemes in inference-
time inputs, allowing per-example control through
phonemic specifications where needed—but then
the question becomes how to decide when such
control should be exercised. Such best-of-both-
worlds approaches share one commonality: they
still require the same linguistic components as non-
end-to-end systems.

4. Conclusions

End-to-end speech models face challenges when
it comes to handling words with unusual grapheme-
to-phoneme correspondences (e.g. place names
and loanwords) and semiotic classes (e.g. num-
bers and time expressions), because there is a
large amount of arbitrariness in the correspon-
dences between spoken and written forms of hu-
man language, and because training data suf-
fers from poverty-of-the-stimulus issues. Tradi-
tional speech systems solved these challenges
through the explicit injection of linguistic knowledge,
e.g. through phonemic dictionaries or verbalization
grammars. With thousands of languages spoken in
our world, and very few of them covered by speech
technologies today, it would be great if we did not
need to curate such resources for every language,
but this is unlikely to be possible, given that the
mitigation strategies we reviewed still require sim-
ilar amounts of linguistic resources, as we have
discussed.

Importantly, we called out that the mitigation strat-
egy employed (mostly implicitly) for many end-to-
end systems will no longer work as end-to-end
approaches take hold that use relatively small
amounts of supervised training data. These ap-
proaches rely heavily on self-supervised learning
and multilingual modeling—an exciting develop-
ment that promises to help bring speech technolo-
gies to many more languages. At the same time,
as we have seen, these methods will likely need
to be combined with synthetic-data approaches (in
ASR), or best-of-both-world architectures, like the
use of phonemes produced by a conventional text
normalization front-end as the input unit to end-to-
end TTS models, or like HAT (Variani et al., 2020)

in ASR.
Fortunately, much work has been done to make

creating linguistic resources like phonemic dictio-
naries and verbalization grammars for new lan-
guages easier than ever (Kim and Snyder, 2013;
Rutherford et al., 2014; Deri and Knight, 2016; Lee
et al., 2020; Ritchie et al., 2019; Bleyan et al., 2019;
Ritchie et al., 2020), leading us to be optimistic
about the opportunities for bringing high-quality
ASR and TTS systems to more languages by com-
bining conventional linguistic resources with inno-
vative modeling approaches that require little su-
pervised audio training data.

5. Acknowledgements

Many thanks to Richard Sproat, Trevor Strohman,
Tara Sainath, Jonas Fromseier Mortensen, Pedro
Moreno, and Jeremy O’Brien for many lively water
cooler conversations on this topic over the years,
and for their thoughtful feedback.

6. Bibliographical References

Solomon Teferra Abate, Martha Yifiru Tachbelie,
and Tanja Schultz. 2020. Multilingual acous-
tic and language modeling for ethio-semitic lan-
guages. In Proceedings of Interspeech 2020,
pages 1047–1051.

Oliver Adams et al. 2019. Massively multilingual
adversarial speech recognition. In Proceedings
of NAACL 2019, pages 96–108, Minneapolis,
Minnesota. Association for Computational Lin-
guistics.

Oliver Adams et al. 2021. User-friendly auto-
matic transcription of low-resource languages:
Plugging ESPnet into Elpis. In Proceedings of
ComputEL-4.

Adam Albright. 2009. Lexical and morphological
conditioning of paradigm gaps. Modeling un-
grammaticality in optimality theory, pages 117–
164.

Rosana Ardila et al. 2020. Common Voice: A
massively-multilingual speech corpus. In Pro-
ceedings of LREC 2020, pages 4218–4222, Mar-
seille, France. ELRA.

Alexei Baevski et al. 2020. wav2vec 2.0: A frame-
work for self-supervised learning of speech rep-
resentations. arXiv:2006.11477.

Laurent Besacier et al. 2014. Automatic speech
recognition for under-resourced languages: A
survey. Speech Communications, 56:85–100.

48

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme
conversion. Speech Commun., 50(5):434–451.

David Blachon et al. 2016. Parallel speech collec-
tion for under-resourced language studies using
the Lig-Aikuma mobile device app. In Proceed-
ings of SLTU 2016, Yogyakarta, Indonesia.

Harry Bleyan et al. 2019. Developing pronuncia-
tion models in new languages faster by exploit-
ing common grapheme-to-phoneme correspon-
dences across languages. In Proceedings of
Interspeech 2019.

Nicholas Buckeridge and Ben Foley. 2020. Scal-
ing language data import/export with a data
transformer interface. In Proceedings of SLTU-
CCURL 2020, pages 121–125, Marseille, France.
ELRA.

Isaac Caswell et al. 2020. Language ID in the
wild: Unexpected challenges on the path to a
thousand-language web text corpus. In Proceed-
ings of COLING 2020.

Isaac Caswell et al. 2021. Quality at a glance:
An audit of web-crawled multilingual datasets.
arXiv:2103.12028.

Tania Chakraborty et al. 2021. A large scale
low-resource pronunciation data set mined from
Wikipedia. arXiv:2101.11575.

Po-Han Chi et al. 2021. Audio ALBERT: A lite BERT
for self-supervised learning of audio representa-
tion. arXiv:2005.08575.

Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu,
Rohit Prabhavalkar, Patrick Nguyen, Zhifeng
Chen, Anjuli Kannan, Ron J. Weiss, Kanishka
Rao, Katya Gonina, Navdeep Jaitly, Bo Li, Jan
Chorowski, and Michiel Bacchiani. 2017. State-
of-the-art speech recognition with sequence-to-
sequence models. CoRR, abs/1712.01769.

Mason Chua et al. 2018. Text normalization in-
frastructure that scales to hundreds of language
varieties. In Proceedings of LREC 2018.

Yu-An Chung et al. 2018. Unsupervised cross-
modal alignment of speech and text embedding
spaces. In Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates,
Inc.

Alexis Conneau et al. 2020. Unsupervised cross-
lingual representation learning for speech recog-
nition. arXiv:2006.13979.

J. Cui et al. 2015. Multilingual representations for
low resource speech recognition and keyword
search. In ASRU 2015, pages 259–266.

Aliya Deri and Kevin Knight. 2016. Grapheme-
to-phoneme models for (almost) any language.
In Proceedings of ACL 2016, pages 399–408,
Berlin, Germany. ACL.

Moussa Doumbouya, Lisa Einstein, and Chris
Piech. 2021. Using radio archives for low-
resource speech recognition: Towards an intelli-
gent virtual assistant for illiterate users. In Pro-
ceedings of the AAAI Conference on Artificial
Intelligence, volume 35.

Siyuan Feng et al. 2021. How phonotactics affect
multilingual and zero-shot ASR performance. In
ICASSP 2021.

Ben Foley et al. 2018. Building speech recogni-
tion systems for language documentation: The
CoEDL endangered language pipeline and infer-
ence system. In Proceedings of SLTU 2018.

Jason Fong, Jason Taylor, Korin Richmond, and
Simon King. 2019. A comparison of letters and
phones as input to sequence-to-sequence mod-
els for speech synthesis. In Proceedings of ISCA
SSW 2019, pages 223–227.

Kyle Gorman and Richard Sproat. 2016. Minimally
supervised number normalization. Transactions
of the Association for Computational Linguistics,
4:507–519.

Anmol Gulati et al. 2020. Conformer: Convolution-
augmented transformer for speech recognition.
In Proceedings of Interspeech 2020, pages
5036–5040.

Vishwa Gupta and Gilles Boulianne. 2020. Auto-
matic transcription challenges for Inuktitut, a low-
resource polysynthetic language. In Proceed-
ings of LREC 2020, pages 2521–2527, Marseille,
France. ELRA.

Mark Hasegawa-Johnson, Camille Goudeseune,
and Gina-Anne Levow. 2019. Fast tran-
scription of speech in low-resource languages.
arXiv:1909.07285.

Mark Hasegawa-Johnson et al. 2020. Grapheme-
to-phoneme transduction for cross-language
ASR. In Statistical Language and Speech Pro-
cessing, pages 3–19, Cham. Springer Interna-
tional Publishing.

Tomoki Hayashi et al. 2020. Espnet-TTS: Unified,
reproducible, and integratable open source end-
to-end text-to-speech toolkit. In ICASSP 2020,
pages 7654–7658. IEEE.

Mutian He, Jingzhou Yang, and Lei He. 2021.
Multilingual byte2speech text-to-speech mod-
els are few-shot spoken language learners.
arXiv:2103.03541.

49

Stephanie Hirmer et al. 2021. Building representa-
tive corpora from illiterate communities: A review
of challenges and mitigation strategies for devel-
oping countries. In Proceedings of EACL 2021.

Nils Hjortnaes et al. 2020. Improving the language
model for low-resource ASR with online text cor-
pora. In Proceedings of SLTU-CCURL 2020,
pages 336–341, Marseille, France. ELRA.

Mathieu Hu et al. 2020. Kaldi-web: An installation-
free, on-device speech recognition system. In
Proceedings of Interspeech 2020: Show & Tell,
Shanghai, China.

Thad Hughes et al. 2010. Building transcribed
speech corpora quickly and cheaply for many
languages. In Proceedings of Interspeech 2010,
pages 1914–1917.

Pratik Joshi et al. 2020. The state and fate of lin-
guistic diversity and inclusion in the NLP world.
In Proceedings of ACL 2020, pages 6282–6293,
Online. ACL.

Anjuli Kannan et al. 2019. Large-scale multilin-
gual speech recognition with a streaming end-to-
end model. In Proceedings of Interspeech 2019,
pages 2130–2134.

Kyle Kastner, João Felipe Santos, Yoshua Bengio,
and Aaron Courville. 2019. Representation mix-
ing for TTS synthesis. In Proceedings of ICASSP
2019.

Leonard Katz and Ram Frost. 1992. The read-
ing process is different for different orthogra-
phies: The orthographic depth hypothesis. In
Leonard Katz and Ram Frost, editors, Orthogra-
phy, Phonology, Morphology, and Meaning, page
67–84. Elsevier North Holland Press, Amster-
dam.

Chanwoo Kim, Dhananjaya Gowda, Dongsoo Lee,
Jiyeon Kim, Ankur Kumar, Sungsoo Kim, Abhinav
Garg, and Changwoo Han. 2020. A review of on-
device fully neural end-to-end automatic speech
recognition algorithms. arXiv:2012.07974.

Young-Bum Kim and Benjamin Snyder. 2013. Op-
timal data set selection: An application to
grapheme-to-phoneme conversion. In Proceed-
ings of NAACL 2013, pages 1196–1205, Atlanta,
Georgia. ACL.

S. H. Krishnan Parthasarathi and N. Strom. 2019.
Lessons from building acoustic models with a
million hours of speech. In ICASSP 2019, pages
6670–6674.

Stephen Laurence and Eric Margolis. 2001. The
poverty of the stimulus argument. The British

Journal for the Philosophy of Science, 52(2):217–
276.

Jackson L. Lee et al. 2020. Massively multilingual
pronunciation modeling with WikiPron. In Pro-
ceedings of LREC 2020, pages 4223–4228.

B. Li, Y. Zhang, T. N. Sainath, Y. Wu, and W. Chan.
2019. Bytes are all you need: End-to-end mul-
tilingual speech recognition and synthesis with
bytes. In Proceedings of ICASSP 2019.

Xinjian Li et al. 2020. Universal phone recognition
with a multilingual allophone system. In ICASSP
2020, pages 8249–8253. IEEE.

Yusen Lin, Jiayong Lin, Shuaicheng Zhang, and
Haoying Dai. 2021. Bilingual dictionary-based
language model pretraining for neural machine
translation.

Chunxi Liu et al. 2020. Multilingual graphemic hy-
brid ASR with massive data augmentation. In
Proceedings of SLTU-CCURL 2020, pages 46–
52, Marseille, France. ELRA.

M. Mohri, F. Pereira, and M. Riley. 2002. Weighted
finite-state transducers in speech recognition.
Computer Speech & Language, 16(1):69–88.

Steven Moran and Daniel McCloy, editors. 2019.
PHOIBLE 2.0. Max Planck Institute for the Sci-
ence of Human History, Jena.

David R. Mortensen, Siddharth Dalmia, and Patrick
Littell. 2018. Epitran: Precision G2P for many lan-
guages. In Proceedings of LREC 2018, Miyazaki,
Japan. ELRA.

A. Oktem et al. 2020. Gamayun - language tech-
nology for humanitarian response. In 2020 IEEE
Global Humanitarian Technology Conference,
pages 1–4.

Pedro Javier Ortiz Suárez, Laurent Romary, and
Benoît Sagot. 2020. A monolingual approach
to contextualized word embeddings for mid-
resource languages. In Proceedings of ACL
2020, pages 1703–1714, Online. ACL.

V. Panayotov et al. 2015. Librispeech: An ASR
corpus based on public domain audio books. In
ICASSP 2015, pages 5206–5210.

Daniel S. Park et al. 2019. SpecAugment: A simple
data augmentation method for automatic speech
recognition. Proceedings of Interspeech 2019,
pages 2613–2617.

Daniel S. Park et al. 2020. SpecAugment on large
scale datasets. ICASSP 2020, pages 6879–
6883.

50

Niko Partanen and Michael Rießler. 2019. An OCR
system for the Unified Northern Alphabet. In
Proceedings of the Fifth Workshop on Compu-
tational Linguistics for Uralic Languages, pages
77–89, United States. ACL.

Matthias Petursson, Simon Klüpfel, and Jon Gud-
nason. 2016. Eyra - speech data acquisition
system for many languages. In Proceedings of
SLTU 2016, Yogyakarta, Indonesia.

Cal Peyser et al. 2019. Improving performance
of end-to-end ASR on numeric sequences. In
Proceedings of Interspeech 2019.

Jonas Pfeiffer et al. 2020. AdapterHub: A frame-
work for adapting transformers. InProceedings of
EMNLP 2020: Systems Demonstrations, pages
46–54, Online. ACL.

Daniel Povey et al. 2011. The Kaldi speech recog-
nition toolkit. In ASRU 2011.

Rohit Prabhavalkar, Kanishka Rao, Tara N. Sainath,
Bo Li, Leif Johnson, and Navdeep Jaitly. 2017.
A comparison of sequence-to-sequence models
for speech recognition. In Proceedings of Inter-
speech 2017, pages 939–943.

Manasa Prasad, Theresa Breiner, and Daan van
Esch. 2018. Mining training data for language
modeling across the world’s languages. In Pro-
ceedings of SLTU 2018.

Manasa Prasad et al. 2019. Building large-
vocabulary asr systems for languages without
any audio training data. In Proceedings of Inter-
speech 2019.

Vineel Pratap et al. 2020. Massively Multilingual
ASR: 50 Languages, 1 Model, 1 Billion Parame-
ters. In Proceedings of Interspeech 2020, pages
4751–4755.

S. Punjabi, H. Arsikere, and S. Garimella. 2019.
Language model bootstrapping using neural
machine translation for conversational speech
recognition. In ASRU 2019, pages 487–493.

Shruti Rijhwani, Antonios Anastasopoulos, and
Graham Neubig. 2020. OCR post correction for
endangered language texts. In Proceedings of
EMNLP 2020, pages 5931–5942, Online. Asso-
ciation for Computational Linguistics.

Sandy Ritchie et al. 2019. Unified verbalization for
speech recognition synthesis across languages.
In Proceedings of Interspeech 2019.

Sandy Ritchie et al. 2020. Data-driven parametric
text normalization: Rapidly scaling finite-state
transduction verbalizers to new languages. In
Proceedings of SLTU-CCURL 2020.

Andrew Rosenberg et al. 2019. Speech recognition
with augmented synthesized speech. In ASRU
2019.

Attapol Rutherford, Fuchun Peng, and Françoise
Beaufays. 2014. Pronunciation learning for
named-entities through crowd-sourcing. In Pro-
ceedings of Interspeech 2014.

Tara N. Sainath, Rohit Prabhavalkar, Shankar Ku-
mar, Seungji Lee, Anjuli Kannan, David Rybach,
Vlad Schogol, Patrick Nguyen, Bo Li, Yonghui
Wu, Zhifeng Chen, and Chung-Cheng Chiu.
2018. No need for a lexicon? Evaluating the
value of the pronunciation lexica in end-to-end
models. In Proceedings of ICASSP 2018.

H. Sak et al. 2013. Language model verbalization
for automatic speech recognition. In ICASSP
2013.

O. Scharenborg et al. 2020. Speech technology for
unwritten languages. IEEE/ACM Transactions
on Audio, Speech, and Language Processing,
28:964–975.

S. Schneider et al. 2019. wav2vec: Unsupervised
pre-training for speech recognition. Proceedings
of Interspeech, pages 3465–3469.

Tanja Schultz and Alex Waibel. 2001. Experiments
on cross-language acoustic modeling. In Pro-
ceedings of the 7th European Conference on
Speech Communication and Technology.

Frank Seifart et al. 2018. Language documentation
twenty-five years on. Language, 94(4):e324–
e345.

Jack Serrino, Leonid Velikovich, Petar Aleksic, and
Cyril Allauzen. 2019. Contextual recovery of
out-of-lattice named entities in automatic speech
recognition. In Proceedings of Interspeech 2019,
pages 3830–3834, Graz, Austria.

Jiatong Shi, Jonathan D. Amith, Rey Castillo Gar-
cía, Esteban Guadalupe Sierra, Kevin Duh, and
Shinji Watanabe. 2021. Leveraging end-to-end
asr for endangered language documentation: An
empirical study on yoloxóchitl mixtec.

RJ Skerry-Ryan, Eric Battenberg, Ying Xiao, Yux-
uan Wang, Daisy Stanton, Joel Shor, Ron J.
Weiss, Rob Clark, and Rif A. Saurous. 2018. To-
wards end-to-end prosody transfer for expressive
speech synthesis with Tacotron. In Proceedings
of ICML 2018.

Jose Sotelo, Soroush Mehri, Kundan Kumar,
João Felipe Santos, Kyle Kastner, Aaron
Courville, and Yoshua Bengio. 2017. Char2Wav:
End-to-end speech synthesis. In Proceedings of
ICLR 2017.

51

Richard Sproat, Alan W. Black, Stanley Chen,
Shankar Kumar, Mari Ostendorf, and Christo-
pher Richards. 2001. Normalization of non-
standard words. Computer Speech and Lan-
guage, 15(3):287–333.

Richard Sproat and Keith Hall. 2014. Applications
of maximum entropy rankers to problems in spo-
ken language processing. In Proceedings of
Interspeech 2014.

Richard Sproat and Navdeep Jaitly. 2017. RNN
approaches to text normalization: A challenge.
arXiv:1611.00068.

Piotr Szymański et al. 2020. WER we are andWER
we think we are. In Findings of EMNLP 2020,
pages 3290–3295, Online. ACL.

Jason Taylor and Korin Richmond. 2019. Analysis
of Pronunciation Learning in End-to-End Speech
Synthesis. In Proceedings of Interspeech 2019,
pages 2070–2074.

Anjana Vakil et al. 2014. lex4all: A language-
independent tool for building and evaluating pro-
nunciation lexicons for small-vocabulary speech
recognition. In Proceedings of ACL 2014: Sys-
tem Demonstrations, pages 109–114, Baltimore,
Maryland. ACL.

A.P.J. van den Bosch, A. Content, W.M.P. Daele-
mans, and B.L.M.F. de Gelder. 1994. Measuring
the complexity of writing systems. Journal of
Quantitative Linguistics, 1(3):178–188. Pagina-
tion: 11.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals.
2018. Representation learning with contrastive
predictive coding. arXiv:1807.03748.

Daan van Esch, Mason Chua, and Kanishka Rao.
2016. Predicting pronunciations with syllabifica-
tion and stress with recurrent neural networks.
In Proceedings of Interspeech 2016.

Daan van Esch and Richard Sproat. 2017. An
expanded taxonomy of semiotic classes for text
normalization. In Proceedings of Interspeech
2017.

Daan van Esch et al. 2019. Writing across the
world’s languages: Deep internationalization for
Gboard, the Google keyboard. Technical report.

Nanne van Noord et al. 2021. Automatic annota-
tions and enrichments for audiovisual archives.
In ICAART 2021.

Ehsan Variani, David Rybach, Cyril Allauzen, and
Michael Riley. 2020. Hybrid autoregressive trans-
ducer (HAT). In Proceedings of ICASSP 2020.

Shafqat Mumtaz Virk et al. 2020. The DReaM
corpus: A multilingual annotated corpus of gram-
mars for the world’s languages. InProceedings of
LREC 2020, pages 878–884, Marseille, France.
ELRA.

Yuxuan Wang, R.J. Skerry-Ryan, Daisy Stanton,
Yonghui Wu, Ron J. Weiss, Navdeep Jaitly,
Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy
Bengio, Quoc Le, Yannis Agiomyrgiannakis, Rob
Clark, and Rif A. Saurous. 2017. Tacotron: To-
wards end-to-end speech synthesis. In Proceed-
ings of Interspeech 2017, pages 4006–4010.

Shinji Watanabe et al. 2018. ESPnet: End-to-end
speech processing toolkit. In Proceedings of
Interspeech 2018, pages 2207–2211.

Guillaume Wisniewski, Séverine Guillaume, and
Alexis Michaud. 2020. Phonemic transcription
of low-resource languages: To what extent can
preprocessing be automated? In Proceedings of
SLTU-CCURL 2020, pages 306–315, Marseille,
France. ELRA.

Yusuke Yasuda, Xin Wang, and Junichi Yamag-
ishi. 2020. Investigation of learning abilities on
linguistic features in sequence-to-sequence text-
to-speech synthesis. arXiv:2005.10390.

Piotr Zelasko et al. 2020. That Sounds Familiar:
An Analysis of Phonetic Representations Trans-
fer Across Languages. In Proceedings of Inter-
speech 2020, pages 3705–3709.

Hao Zhang, Richard Sproat, Axel H. Ng, Felix
Stahlberg, Xiaochang Peng, Kyle Gorman, and
Brian Roark. 2019. Neural models of text nor-
malization for speech applications. Comput. Lin-
guist., 45(2):293–337.

52

Second Workshop on Computation and Written Language (CAWL 2024) @LREC-COLING-2024, pages 53–58
May 21, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

Towards Fast Cognate Alignment on Imbalanced Data

Logan Born1, M. Willis Monroe2, Kathryn Kelley3, Anoop Sarkar1
1Simon Fraser University, 2University of New Brunswick, 3Università di Bologna

loborn@sfu.ca, willis.monroe@unb.ca, kathrynerin.kelley@unibo.it, anoop@cs.sfu.ca

Abstract
Cognate alignment models purport to enable decipherment, but their speed and need for clean data can make them
unsuitable for realistic decipherment problems. We seek to draw attention to these shortcomings in the hopes that
future work may avoid them, and we outline two techniques which begin to overcome the described problems.

Keywords: cognate detection, alignment, decipherment

1. Introduction

Cognate alignment models aim to identify cognate
lexeme pairs by aligning word lists from related lan-
guages; when one of these lists comes from an
undeciphered language, this alignment produces
a decipherment for any words which are correctly
mapped to their cognates. In this study, we high-
light limitations of current cognate alignment mod-
els which restrict their usefulness in practical deci-
pherment tasks, and propose partial solutions for
more realistic data.

2. Motivation

The state-of-the art for cognate alignment (Tam-
burini, 2023) uses coupled simulated annealing
(Xavier-de-Souza et al., 2010) to solve a search
problem over the set of all k-permutations mapping
n lost-language words into k known-language buck-
ets. The prior state-of-the-art Luo et al. 2019 alter-
nated between learning character- and word-level
pairings using iterative expectation-maximization-
style training. Both achieve strong results when ev-
ery word has at least one cognate in the language
it has been paired with; however, this is artificially
clean compared to true decipherment, where not
only are unpaired words likely, but there may also
be uncertainties about the underlying word bound-
aries or character inventory. Luo et al. (2019) ac-
knowledge this and evaluate on less-clean Ugaritic-
Old Hebrew data, in which setting their accuracy
drops to just 65.9%, from 93.5% on clean data.
Tamburini 2023 does not include noisy evaluations,
likely because their search is computationally in-
tensive and does not appear scalable to settings
with many unpaired words.

Luo et al. (2019, 3152) also “found it beneficial
to train [...] only on a randomly selected subset
(10%) of the entire corpus with the same percent-
age of noncognates,” but observe that such filter-
ing is impossible in a realistic setting where it is
not known which words have cognates. On unde-

ciphered data, both word lists would need to be
sampled independently, meaning that a 10% sub-
set of the corpus should be expected to contain a
mere 1% of the original cognate pairs, destroying
most of the signal that the model would learn from.

Finally, note that existing models can be ineffi-
cient even on clean data (Tamburini 2023, 89 “took
a relevant time to converge”), which is undesirable
for real decipherments where the correct target lan-
guage is not known beforehand. Such settings may
require aligning to multiple targets before a true so-
lution can be found, and this scattershot approach
is only feasible when each individual language pair
can be aligned efficiently.

3. LMs for Character-Level Alignment

Tran (2020) considers the task of adapting pre-
trained models to new languages. Given a matrix
of pretrained word embeddings Ee, they propose
to derive embeddings Ef for a new language using
linear combinations of the rows of Ee:

Ef [i] =

|Ve|∑

j=1

αijEe[j] = αiEe (1)

where αi is a sparse weight vector satisfying∑|Ve|
j αij = 1. The authors cite two offline ap-

proaches (Dyer et al., 2013; Conneau et al., 2017)
which can be used to estimate α by exploiting
sentence-level context. If the dependence on
sentence-level context (which is absent from the
word lists used for cognate alignment) could be
eliminated, we suggest that a similar technique
could by applied to the embeddings from a charac-
ter-level language model to quickly learn character
equivalencies between two scripts or languages as
a first step towards cognate alignment.

Concretely, we propose to first train a character-
level language model on the known language. The
inputs to the model are individual words from the
known-language word list, with no additional con-
text, tokenized at the character level. Given the

53

Known-Language Transformer

Lost→Known Language Adapter

pj|i

w a H z

a H z </s>

lost-language input

known-language output

input adapted to
known language

Known-Language
Embedding Layerα times

output adapted to
lost language

i
u

aa

d z

d

Lost-language character
Known-language character

Figure 1: Schematic view of proposed architecture (left) and sampling procedure for Equation 2 (right).
Characters are embedded using a matrix E (for the known language) or αE (for the lost language). The
probability that character a in the known-language corresponds to character a in the lost language is
proportional to their distance in this embedding space. During fine-tuning, α (and by extension pj|i, which
depends on α) is the only parameter that is allowed to be updated.

small size of cognate detection datasets, we use
a shallow Transformer (Vaswani et al., 2017) with
a small feature dimension (2 layers, 4 heads, and
32 dimensions); this is the largest model which we
are able to train reliably, as deeper models or those
with larger dimension often fail to converge. We
use positional encodings (Vaswani et al., 2017) and
apply dropout at a rate of 0.5. This model is trained
with SGD to minimize categorical cross-entropy on
an autoregressive language modeling task using a
causal attention mask.

Let E ∈ Rk×32 be the embedding layer of this
model, where k is the number of known-language
characters. Let M : Rn×32 → Rn×k be a black-
box representation for the remainder of the model,
which maps a sequence of n 32-dimensional
character embeddings onto a sequence of log-
probabilities over k known characters.

We next introduce a mapping α ∈ Rl×k following
Tran 2020. The product αE ∈ Rl×32 can be seen
as an embedding matrix for l distinct lost-language
characters, and M ◦αE can be seen as a hybrid lan-
guage model which accepts lost-language inputs
and predicts known-language outputs. To convert
the outputs from M ◦ αE into a distribution over
lost-language characters, we introduce the follow-
ing conditional probability distribution inspired by
t-SNE (Hinton and Roweis, 2002; van der Maaten
and Hinton, 2008):

log pj|i =
−|xi − αEj |2/2σi∑
h̸=i −|xi − αEh|2/2σi

(2)

where 1 ≤ i ≤ k, 1 ≤ j ≤ l, xi is the embedding

for the ith known character, αEj is the embedding
for the jth lost character, and σi is a per-character
density estimate. Given a known-language char-
acter i, suppose we sample neighboring charac-
ters in the embedding space based on their dis-
tance from xi, with Gaussian falloff. Assuming we
are only allowed to sample neighbors from the lost
language, pj|i models the probability that the lost-
language character j will be the one sampled. This
is equivalent to the sampling procedure used in
t-SNE (van der Maaten and Hinton, 2008) with the
modification that points are divided into two classes
(known and lost), and each class can only sample
points from the other class.

Given a distribution p = [p1, ..., pk] over known-
language characters returned as output by M ◦
αE, we model the corresponding distribution p̃ =
[p̃1, ..., p̃l] over lost-language characters as p̃j =∑k

i=1 pipj|i. With this transformation in hand, we
have adapted the original known-language model
to both accept lost-language inputs and predict
lost-language outputs using only the mapping α.

We now propose to fine-tune the adapted model
on the lost-language word list, following the same
procedure used to train the underlying known-
language model. However, we make α the only
tunable parameter, so that the only way for the
model to improve the language modeling loss at
this stage will be to learn the correct mappings be-
tween characters in the two scripts. This procedure
makes α trainable, whereas the mapping in Tran
2020 was static and estimated offline.

54

Permutation Loss We hypothesize that α may
be more easily learned if it is constrained to be
approximately one-to-one, as mappings between
scripts will generally be sparse. Thus we generalize
the matrix penalty function from Lyu et al. (2020) to
the case of non-square k × l matrices:

Lsparse =

k∑

i=1




l∑

j=1

|αij | −




l∑

j=1

α2
ij




1/2

 (3)

+

l∑

j=1




k∑

i=1

|αij | −
(

k∑

i=1

α2
ij

)1/2



When applied to a square matrix α, this quantity
approaches zero as the matrix approaches a per-
mutation; in the non-square setting it approaches
zero as α approaches some non-square projection
of a permutation. We hypothesize that tuning α
to jointly minimize the sum of the cross-entropy
language modeling loss with this sparsity loss will
yield more accurate character-level alignments than
fine-tuning on the language modeling loss by itself.

Note that, during our fine-tuning step, there is
no way for a character in one script to be decoded
to multiple characters in the other script; we use
a vanilla Transformer architecture with no mech-
anism for explicit insertion or deletion operations.
This creates an inductive bias towards one-to-one
mappings, which is reinforced by this sparsity loss
term. Despite this, we will show in Section 5.2
that our model is nonetheless capable of learning
more complex, many-to-one mappings when there
is evidence for such in the input data.

4. Towards Word-Level Alignment

After fine-tuning, α yields a representation for each
lost-language character as a linear combination of
known-language characters. We next wish to use
these combinations to infer likely pairings between
cognates at the word level.

4.1. Edit Distances
We first compute the Levenshtein distance (Leven-
shtein, 1966) from every lost word to every known
word, where the cost of substituting lost character
j with known character i is:

C(j, i) = 1− pi|j
maxi pi|j

(4)

where pi|j is the conditional probability that known
character i would be sampled by lost character j
paralleling Eq. (2). Note that C(j, i) = 0 when-
ever i is the nearest known-language neighbor to

j in the embedding space, while for all other pair-
ings the cost rises proportionally to the distance
between i and j. Thus there is no cost to replace a
lost-language character with its most likely known-
language correspondent, and increasing cost for
less likely substitutions.

4.2. Alignment Likelihoods
For lost- and known-language vocabularies Vl and
Vk, let ∆ ∈ R|Vl|×|Vk| be a matrix where ∆mn

is the weighted edit distance between lost word
m and known word n as described above. Let
Dm = softmax(−∆m) be a probability distribution
where Dmn is the probability that lost word m aligns
to known word n, and note that the resulting proba-
bilities are inversely proportional to the original edit
distances (Eq. (4)).

To obtain a more sophisticated model for word-
level alignments, we can incorporate a prior esti-
mate for the likelihood that known word n is cognate
to some lost word, as opposed to being a distrac-
tor that has no mapping into the other language.
Existing approaches to cognate detection excel in
clean settings where there are few or no such dis-
tractors, so the ability to identify and prune these
words would be a useful result in itself.

To this end, we propose to learn a language
model on the lost word list, then fine-tune on the
known word list following the same procedure out-
lined in Section 3. In the resulting model, the av-
erage perplexity when producing known word n
should be low if n is cognate to some lost word, as
in this case the underlying lost-language model will
have seen that cognate during pretraining and the
corresponding known word will look “in-domain”.
By contrast, if known word n is not cognate to any
lost words, it should be “out-of-domain” and there-
fore incur a higher average perplexity. We con-
struct a vector Ψ ∈ Rk where Ψn is the average
perplexity when producing the characters in known
word n. We convert this to a probability distribu-
tion P = softmax(−Ψ), and estimate the probability
that lost word m aligns to known word n as P r

nDmn

where r is a smoothing term.

5. Experimental Results

5.1. Character Alignment
We train the proposed model on the noisy Ugaritic-
Old Hebrew data from Luo et al. 2019. We con-
sider two directions: pre-training on the known lan-
guage and fine-tuning α on the lost language, and
vice versa. In each direction, we compare mod-
els trained (i) without the permutation loss Lsparse,
(ii) with the permutation loss for just the first 50
iterations as a kind of warm-up, and (iii) with the
permutation loss for the entire duration of training.

55

Permutation Loss
None Warm-Up Always

Pretraining Language top 1 top 5 top 1 top 5 top 1 top 5
Old Hebrew (Known) 26% 57% 83% 100% 13% 30%
Ugaritic (Lost) 48% 74% 48% 70% 0% 17%

Table 1: Top-1 and top-5 precision of character-level mappings derived from α.

0.2

0.4

0.6

0.8

1

1 10 100 1000

To
p-
k

Pr
ec

is
io

n

k

P 0.5D

P 0.25D

P 0D

Figure 2: Top-k precision on Ugaritic-Old Hebrew cognate detection for various thresholds k and for
values of the smoothing parameter r ∈ [0, 0.25, 0.5].

α captures a nuanced mapping between charac-
ters in the two scripts in the form of a weighted sum.
We attempt to concretize this into a one-to-one map-
ping for evaluation purposes, but note that this will
necessarily lose some of the information inherent
in the full set of weights. For example, Table 1
reports top-1 and top-5 precision for mappings de-
rived by aligning each character in the known script
to the character(s) with the maximmum likelihood
pj|i according to Eq. (2).

From these results it is clear that the proposed
technique can accurately learn cross-script charac-
ter equivalencies, doing so most effectively when
pretrained on the known language and fine-tuned
on the lost. In this setting, α appears to per-
fectly capture the mapping between the two scripts,
achieving 100% top-5 precision in the best case.
In the opposite direction, the best result is just 74%
top-5 precision. We speculate that this asymme-
try derives from the fact that there is much more
known- than lost-language data, meaning that the
initial model will learn higher-quality character rep-
resentations when pre-trained on the known lan-
guage.

Our proposed permutation loss also appears to
improve the character-level alignment under certain
training regimes. Specifically, when pre-training on
the known language, applying the permutation loss
during the earliest iterations of the alignment step

yields significant improvements in the quality of the
learned alignment. In other settings, this term has
no effect or is actively detrimental to the quality
of the learned mapping. This suggests that it can
be useful to “prime” the model to expect a roughly
one-to-one mapping at the start of training, but that
this requirement must eventually be relaxed. This
makes sense given that the true mapping between
these scripts includes some many-to-one or one-
to-many relationships (as between Ugaritic a, u, i
and Old Hebrew a in most contexts).

5.2. Word Alignment
The data contains 38898 total Hebrew words; thus
a priori each lost (Ugaritic) word could be aligned to
any of 38898 possible targets. We wish to narrow
this to a small pool of candidate cognates for each
word: ideally, we want just the most likely cognate
in each case, but even tens of candidates per word
is manageable for reranking or human evaluation.

To this end, for each lost word, we select the k
known words with the highest probability according
to the distribution P rD described above. We call
these candidate cognate pairs, and consider the
alignment successful if the true cognate is among
the k chosen terms. Figure 2 plots the top-k pre-
cision for different values of k and the smoothing
parameter r.

Our best results arrive at r = 0.25, where nearly

56

half (46%) of true cognates are either the most likely
or the second-most likely candidate according to
P rD, and 66% fall within the top 10 most likely
candidates. 66% is the same accuracy reported by
Luo et al. (2019) for their noisy evaluation. These
results suggest an avenue for future work whereby
the top-k candidates are reranked to promote the
true cognates to the top of the ranking. Under this
approach, the correct cognate would only need to
be selected from a few tens of candidates, rather
than the full set of many thousands.

For additional context on these results, note that
half of the word pairs in the input data have identical
lengths in both languages, while the other half are
longer in one language than the other. Thus any
score above 50% must include some cases where
the model correctly infers a complex, non-one-to-
one mapping between some characters, such as
the deletion of y from Heb labyk to Uga labk or
of awy from Heb wlawyb to Uga wlib.

We emphasize that top-k precision is highest
when we exploit P as a prior estimate for whether
a word has a cognate or not. Thus P provides a
usable signal to help assess whether or not a given
word is a distractor. This is encouraging, as it is
otherwise difficult to tell which words are “out-of-
domain” when dealing with undeciphered data.

The process outlined in this work is also ex-
tremely fast, averaging just 0.015s per word, versus
0.464s per word for Luo et al. 2019 on the same
data and longer still for Tamburini 2023. We are
therefore optimistic that this work can serve as the
basis for faster, more efficient cognate alignment
models. One straightforward application of these
results would be as a smart initialization for a model
such as Luo et al. 2019, to bias the initial character
mappings and limit the set of word-level pairings
that are explored. This would increase the effi-
ciency of such a model by constraining its search
space, which we predict would also help to limit the
impact of distractor vocabulary items.

6. Related Work

Aside from the works noted in Section 2, cog-
nate prediction (Fourrier and Sagot, 2022; Fourrier
et al., 2021; Hämäläinen and Rueter, 2019; Wu
and Yarowsky, 2018; Dekker, 2018) is a closely-
related task found in the field of historical linguis-
tics, whereby the form of a word’s cognate in some
target language is predicted given that word’s pho-
netic representation in some known language. Cog-
nate prediction models are typically generative, pro-
ducing a sequence of output phonemes given a
sequence of input phonemes. Thus these mod-
els have an open output vocabulary (the set of all
phoneme sequences), and their inputs and outputs
come from the same script (IPA or another phonetic

representation). By contrast, our model selects
candidate cognates from a closed list (similarly to
Beinborn et al. 2013), and assumes that inputs and
outputs are written using distinct scripts. This en-
ables the application of our model to undeciphered
data, where the underlying phonetic representa-
tions are unknown, but also limits it to finding only
those word pairs which are attested in the input
word lists. Moreover, cognate prediction requires
parallel training data, whereas our decipherment-
focused approach learns from non-aligned word
lists. Notably, if we omit the t-SNE inspired transfor-
mation which was used to convert model outputs
from one script to the other, and omit the following
edit-distance computations, our model would func-
tion as a transducer which rewrites inputs in one
script into another script, in a way that would more
closely resemble prior cognate prediction models.
It may therefore be worth exploring applications of
our model to this task in future work.

7. Conclusion

In conclusion, our work highlights the need for cog-
nate alignment models to be both efficient and ro-
bust against noise if they are to be applied to re-
alistic decipherment tasks. We argue that these
qualities are lacking in existing approaches. As
a first step towards overcoming these challenges,
we have introduced a novel technique that lever-
ages monolingual language models to swiftly and
accurately learn cross-script character equivalen-
cies. By incorporating a permutation loss term, we
further improve the precision of the learned equiva-
lencies by guiding the model towards nearly one-
to-one mappings. Finally, we propose a method of
combining weighted edit distances with perplexity
signals which for the first time enables effective
filtering of words without cognates in the paired lan-
guage. These advancements lay the groundwork
for the development of more efficient and reliable
cognate alignment models in future work.

8. Bibliographical References

Lisa Beinborn, Torsten Zesch, and Iryna Gurevych.
2013. Cognate production using character-based
machine translation. In Proceedings of the Sixth
International Joint Conference on Natural Lan-
guage Processing, pages 883–891, Nagoya,
Japan. Asian Federation of Natural Language
Processing.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou.

57

2017. Word translation without parallel data.
arXiv preprint arXiv:1710.04087.

Peter Dekker. 2018. Msc thesis: Reconstructing
language ancestry by performing word prediction
with neural networks.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameter-
ization of IBM model 2. In Proceedings of the
2013 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 644–648,
Atlanta, Georgia. Association for Computational
Linguistics.

Clémentine Fourrier, Rachel Bawden, and Benoît
Sagot. 2021. Can cognate prediction be mod-
elled as a low-resource machine translation task?
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 847–861,
Online. Association for Computational Linguis-
tics.

Clémentine Fourrier and Benoît Sagot. 2022.
Probing multilingual cognate prediction mod-
els. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 3786–3801,
Dublin, Ireland. Association for Computational
Linguistics.

Mika Hämäläinen and Jack Rueter. 2019. Finding
Sami cognates with a character-based NMT ap-
proach. In Proceedings of the 3rd Workshop on
the Use of Computational Methods in the Study
of Endangered Languages Volume 1 (Papers),
pages 39–45, Honolulu. Association for Compu-
tational Linguistics.

Geoffrey E Hinton and Sam Roweis. 2002. Stochas-
tic neighbor embedding. In Advances in Neural
Information Processing Systems, volume 15. MIT
Press.

V. I. Levenshtein. 1966. Binary Codes Capable of
Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady, 10:707.

Jiaming Luo, Yuan Cao, and Regina Barzilay. 2019.
Neural decipherment via minimum-cost flow:
From Ugaritic to Linear B. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3146–3155,
Florence, Italy. Association for Computational
Linguistics.

Jiancheng Lyu, Shuai Zhang, Yingyong Qi, and
Jack Xin. 2020. Autoshufflenet: Learning permu-
tation matrices via an exact lipschitz continuous
penalty in deep convolutional neural networks.
In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery &

Data Mining, KDD ’20, page 608–616, New York,
NY, USA. Association for Computing Machinery.

Fabio Tamburini. 2023. Decipherment of lost an-
cient scripts as combinatorial optimisation using
coupled simulated annealing. In Proceedings
of the Workshop on Computation and Written
Language (CAWL 2023), pages 82–91, Toronto,
Canada. Association for Computational Linguis-
tics.

Ke Tran. 2020. From english to foreign languages:
Transferring pre-trained language models.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in Neural
Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 5998–6008.

Winston Wu and David Yarowsky. 2018. Creat-
ing large-scale multilingual cognate tables. In
Proceedings of the Eleventh International Con-
ference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Lan-
guage Resources Association (ELRA).

Samuel Xavier-de-Souza, Johan A. Suykens, Joos
Vandewalle, and Désiré Bolle. 2010. Coupled
simulated annealing. IEEE Trans Syst Man Cy-
bern B Cybern, 40(2):320–335.

58

Second Workshop on Computation and Written Language (CAWL 2024) @LREC-COLING-2024, pages 59–66
May 21, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

Simplified Chinese Character Distance Based on Ideographic
Description Sequences

Yixia Wang and Emmanuel Keuleers
Tilburg University

Warandelaan 2, 5037 AB Tilburg
y.wang_1@tilburguniversity.edu, e.a.keuleers@tilburguniversity.edu

Abstract
Character encoding systems have long overlooked the internal structure of characters. Ideographic Description
Sequences, which explicitly represent spatial relations between character components, are a potential solution
to this problem. In this paper, we illustrate the utility of Ideographic Description Sequences in computing edit
distance and finding orthographic neighbors for Simplified Chinese characters. In addition, we explore the pos-
sibility of using Ideographic Description Sequences to encode spatial relations between components in other scripts.

Keywords: Ideographic Description Sequences, Character distance, Character Neighbors

1. Introduction

Storage and communication of written text using
digital computers requires conventions for encod-
ing characters. Early efforts at establishing en-
coding standards were driven by practicality and
economy of space. Developed in 1963, the Amer-
ican Standard Code for Information Interchange
(ASCII; American National Standards Institute,
1995) lies at the basis of most character encoding
systems in use today. ASCII uses a 7-bit encod-
ing, with 32 of the 128 positions allocated to com-
munication control characters and the other 96 re-
served for numbers, upper- and lowercase letters
of the English alphabet, and punctuation. As com-
puter technology spread, ASCII was succeeded by
ISO-8859 (ISO/IEC, 1987) which, with 8-bit encod-
ing and language specific versions, enabled the
encoding of characters for a wider variety of alpha-
betic writing systems (e.g., ISO 8859-5 for Cyrillic,
ISO-8859-11 for Thai). Accommodation for stor-
ing the many characters used in CJK (Chinese,
Japanese, Korean) writing systems, came with the
Unicode Standard, with different variants allowing
for up-to 32-bit encoding (>4 billion characters).

The legacy of ASCII lead to these successive
standards allocating more and more space for in-
dividual characters instead of incorporating com-
positionality, which is a design feature of most writ-
ing systems (English writing being a notable excep-
tion). For instance, for writers of French it is under-
stood that most vowels can be accented, yet ISO-
8859-1 has different slots for â, ê, î, ô, and û; á, é,
í, ó, and ú; etc. For other writing systems, such as
Chinese, compositionality is the norm, rather than
the exception.

Recognizing that it was necessary to represent
characters that do not have a dedicated slot, such
as rare or novel Chinese characters, Unicode
15.1 (Unicode Consortium, 2023) introduced Ideo-

Figure 1: Chinese character biang1 ’the sound
of slapping and kneading noodles during noodle-
making’. The ideographic description sequence
for this character is ⿺⻍⿳穴⿲月⿱⿲幺言幺⿲
長馬長刂心.

graphic Description Sequences (IDSs) as a prin-
cipled approach to encoding characters composi-
tionally.1 Figure 1 shows the rendition of a rare
character using an IDS.

Because of their ability to encode and repre-
sent characters compositionally, IDSs have a wide
range of applications. In this paper, we will focus
on a novel application, namely the use of IDSs
to compute distance between Chinese characters.
As section 2 will show, psycholinguistic literature
has demonstrated that the identification of written
words is influenced by their orthographic neigh-
bors. Determining the orthographic neighbors of a
word requires the ability to compute distances be-
tween any pairs of words. This is relatively straight-
forward to do in a language such as English, be-
cause most words do not have a hierarchical struc-
ture and characters are not compositional. It is far
more difficult to do for Chinese characters.

Section 2 introduces related work on how diacrit-
ics and spatial relations influence word process-
ing in various writing systems, providing theoreti-
cal background to support their explicit represen-
tations. Section 3 demonstrates a practical appli-

1Although the term ideographic is widespread, it is
inaccurate. Chinese writing, specifically, is considered
morphosyllabic (DeFrancis, 1989; Gorman and Sproat,
2023).

59

cation of IDSs in measuring distance between Chi-
nese characters.

2. Related Work

2.1. Visual Processing of Diacritics
The use of diacritics is probably the best known ap-
plication of compositionality in writing characters.
A diacritic is usually defined as a glyph added to a
character for pronunciation modification (Daniels
and Bright, 1996). Evidence suggests that the pro-
cessing of characters with diacritics depends on
language features (Labusch et al., 2023). Ayçiçeği
and Harris (2002) conducted a rapid serial visual
presentation (RSVP) experiment in Turkish, show-
ing more repetition blindness for words differing in
a diacritic (işim- isim) as opposed to orthographic
neighbours (ilim - isim), suggesting that charac-
ters with and without diacritics share the same
mental representation. Perea et al. (2016) demon-
strated that diacritic marks were quickly processed
by the cognitive system during the early stages of
word processing in Arabic, a script that is char-
acterized by diacritical marks, position-dependent
allography, and its cursive nature. Chetail and
Boursain (2019), on the other hand, found that dia-
critic letters did not share the same abstract repre-
sentations with their pure counterparts in French,
where diacritic marks are predominantly observed
on vowels. Marcet et al. (2022) found similar ev-
idence for diverging abstract representations in
Catalan, a language with complex grapheme-to-
phoneme mappings.

2.2. Modeling Compositionality in Visual
Processing

The Recognition by Components model (Bieder-
man, 1987), asserted the significance of structural
representations in object recognition. According
to the model, the visual system recognizes an ob-
ject by analyzing spatial arrangements of basic ge-
ometric shapes, such as cubes and cones. Trans-
ferring this to the domain of character recognition
(Grainger et al., 2008), the relative positioning of
components in a character is an important indica-
tor of visual characteristics, helping to distinguish
between characters (Lu et al., 2002). For exam-
ple, the Chinese character音 yin1 ’sound’ is distin-
guishable from another 昱 yu4 ’bright’ only by the
relative positioning of components. The same is
true for the diacritic letters ṡ and ṣ in the orthogra-
phy of Yoruba in Nigeria. Arguably, even letters of
Ъ and Б in Cyrillic script are compositionally simi-
lar, with a more nuanced difference in line orienta-
tion.

Other models focusing on the function of spatial
relations in visual processing include Gestalt prin-

ciples (Köhler, 1967; Todorovic, 2008) and feature
integration theory (Treisman and Gelade, 1980).

3. Character Distance in Simplified
Chinese Script

Ideographic description sequences were created
to encode the spatial arrangement of components
for CJK Unified Ideographs.2 Unicode 15.1 (Uni-
code Consortium, 2023) defines eighteen ideo-
graphic description characters (IDCs), twelve of
which are commonly used (Table 1).

An IDS consists of an IDC followed by its ar-
guments, which can be either ideographs or an-
other IDC. For instance, the IDS for the character
英 ying1 ’blossom’ is ⿱艹央, where ⿱ signifies
top-down arrangement of the arguments艹 and央.
Because the number of arguments to an IDC is al-
ways known, IDSs allow for nesting and concate-
nation. The ability to nest IDCs makes it possible
to render complex spatial arrangements. For in-
stance, the IDS for the character嚻 xiao1 ’a mythic
beast’ is⿲⿱口口頁⿱口口.

When considering distance between the simpli-
fied Chinese characters芍 shao2 ’peony’,顶 ding3
’roof’, and英 ying1 ’blossom’, one approach would
be to say that they are all different characters. An-
other approach could consist of noting that芍 and
英 are both vertically arranged and have the ele-
ment 艹 in common, whereas 顶 has no similari-
ties to the other two characters, either in layout or
components.

Existing methods for character similarity for Chi-
nese characters can be divided in two main types:
stroke-based and, more commonly, component-
based. An abundance of literature defines the de-
gree of character similarity based on shared com-
ponent(s). In single-component comparison (Leck
et al., 1995; Chen and Juola, 1982; Yeh and Li,
2002; Perfetti and Zhang, 1991), radicals (e.g.,蕉
jiao1 ’banana’ & 荐 jian4 ’to recommend’) or pho-
netic components (e.g., 煤 mei2 ’coal’ & 谋 mou2
’to plan’) are used. Less often, smaller stroke pat-
terns (e.g., 兌 dui4 ’to exchange’ & 分 fen1 ’to di-
vide’; Liu and Lin, 2008) and structural information
(e.g.,啄 zhuo2 ’to peck’ &偌 ruo4 ’such’; Yeh et al.,
1997) are used. Most of these methods define sim-
ilarity in a binary way: a pair of characters is either
similar or it is not. In the following sections, we
propose an alternative method which is based on
using edit distance on fully-decomposed IDSs and
compare it to the existing approaches.

2CJK Unified Ideographs refers to a shared set of
characters used in the writing systems of Chinese,
Japanese, and Korean languages, all of which incorpo-
rate Han characters and their variations. CJKV extends
the scope to include Vietnamese, which historically used
Han characters.

60

IDC Unicode Name Example Example IDS
⿰ U+2FF0 Ideographic Description Character Left to Right 作 ⿰亻乍
⿱ U+2FF1 Ideographic Description Character Above to Below 思 ⿱田心
⿲ U+2FF2 Ideographic Description Character Left to Middle and Right 街 ⿲彳圭亍
⿳ U+2FF3 Ideographic Description Character Above to Middle and Below 帚 ⿳彐冖巾
⿴ U+2FF4 Ideographic Description Character Full Surround 回 ⿴囗口
⿵ U+2FF5 Ideographic Description Character Surround from Above 网 ⿵冂⿰㐅㐅
⿶ U+2FF6 Ideographic Description Character Surround from Below 凶 ⿶凵㐅
⿷ U+2FF7 Ideographic Description Character Surround from Left 区 ⿷匚㐅
⿸ U+2FF8 Ideographic Description Character Surround from Upper Left 庆 ⿸广大
⿹ U+2FF9 Ideographic Description Character Surround from Upper Right 句 ⿹勹口
⿺ U+2FFA Ideographic Description Character Surround from Lower Left 这 ⿺辶文
⿻ U+2FFB Ideographic Description Character Overlaid 巫 ⿻工从

Table 1: The table provides IDCs, their Unicode, names, example characters, and Ideographic descrip-
tion sequences for the character.

3.1. Character distance using fully
decomposed IDSs

We retrieved a dataset with IDSs for Chinese
characters from an online repository3, which in
turn was derived from the Character Informa-
tion Service Environment (CHISE) IDS database4

(Morioka and Wittern, 2002). Part of the open-
source CHISE project to expand general-purpose
coded character sets, the IDS database contains
most of the CJKV Unified Ideographs of ISO/IEC
10646 (Morioka, 2015).

To limit the list to Chinese characters used
in mainland China, we selected only the 20,830
characters documented in Xinhua Dictionary
(http://xh.5156edu.com). Then, we normalized
the selected IDSs by recursively replacing compo-
nents that could be further decomposed by their
corresponding IDS. The result was a set of fully de-
composed IDSs. Inspection of the resulting IDSs
showed that, in addition to the 12 IDCs, only 545
basic characters were required to encode the over
20,000 selected characters.

Levenshtein distance (LD) is defined as the num-
ber of insertions, deletions, and substitutions oper-
ated on a string to turn it into another string (Lev-
enshtein, 1966). Inspired by Kruskal (1983), we
gave the substitution a cost of 2 and the other two
operations a cost of 1 (see Figure 2).

3.1.1. IDS distance vs methods based on
shared components

Some Chinese characters incorporate the same
radicals and residuals: 案 an4 ’instance’ &桉 an1
’the eucalyptus tree’, 召 zhao4 ’to summon’ & 叨
dao1 ’to chatter’, and 峯 feng1 ’peak’ & 峰 feng1
’summit’. When similarity is based on shared com-
ponents as in the examples (i.e., 吃 chi1 ’to eat’,

3https://github.com/cjkvi/cjkvi-ids
4https://gitlab.chise.org/CHISE/ids

⿱艹⿹勹丶 ⿱艹央勹丶 ⿱艹央丶 ⿱艹央
⿹ to央

+2

delete勹

+1

delete丶

+1

⿱艹央 女⿱艹央 ⿰女⿱艹央
insert女

+1

insert⿰

+1

Figure 2: The first example illustrates substitution
and deletion. Converting 芍 shao2 ’peony’ (IDS:
⿱艹⿹勹丶) to 英 ying1 ’blossom’ (IDS: ⿱艹央)
involves one substitution and two deletions, result-
ing in an edit distance of 4. The second example
illustrates insertion: Transforming 英 to 媖 ying1
beauty (IDS:⿰女⿱艹央) requires the insertion of
⿰ and女, resulting in an edit distance of 2.

员 yuan2 ’member’, 哲 zhe2 ’philosophical’, and
加 jia1 ’to add’) provided in the work of Yeh and
Li (2002), these pairs are identical because they
all have the same components. This method falls
short with respect to structural differences.

Figure 3 shows the IDS distance for the same
characters. The IDS distance between 案 and 桉
is 4, equal to that between召 &叨, whereas closer
are 峯 & 峰, which are only different in layout and
have a distance of 2.

⿱⿱宀女木 (案) ⿰⿱宀女木

⿰木⿱宀女木⿰木⿱宀女 (桉)

⿱ to⿰
+2

insert木 +1
delete木
at the end

+1

Figure 3: The edit distance of 案 & 桉 is 4, sum-
ming up 1 substitution, 1 insertion and 1 deletion.

61

3.1.2. IDS distance vs methods based on
radical-level shared components and
character structures

The spatial arrangements of components in Chi-
nese characters are highly correlated with their
functions (semantic or phonetic). In various ap-
plications, characters that have identical structure
and shared components are considered similar
and selected as stimuli (Leck et al., 1995; Chen
and Juola, 1982). Hence, these methods do not
identify similarity among characters sharing both
structure and components, but not the function of
components. For instance, 杏 xing4 ’apricot’ and
呆 dai1 ’dull’ have different component order and
semantic radical, but are otherwise identical. Fig-
ure 4 shows how, in comparison, IDS-based dis-
tance addresses this.

⿱木口 (杏) ⿱口 ⿱口木 (呆)
delete木

+1

insert木
at the end

+1

Figure 4: The edit distance of杏 &呆 is 2 via one
deletion and one insertion.

3.1.3. IDS distance vs methods based on
sub-radical shared components and
character structures

Liu and Lin (2008) go beyond the radical - resid-
ual level and explore smaller stroke patterns in
computing similarity between Chinese characters.
They decompose a character into a set of 24 ba-
sic elements defined in the Cangjie code by Chu
(1979). A character is represented by its structure
(one of nine layout patterns, encoded as a real
value) followed by up to three components. For
example, 相 xiang4 ’appearance’ has a represen-
tation of ’2 (layout code) -木 (part 1) -月山 (part 2)’.
Although this approach goes a long way toward
addressing the compositionality of characters in a
principled manner, the limited basic components
do not allow for an unambiguous specification of
characters. In other words, in many cases the
decomposition does not allow for recomposition
of the original characters. Using only nine layout
patterns is also insufficient, as Simplified Chinese
characters can be as complex as encompassing
up to 32 strokes (e.g,龖 da2 ’depicting the majestic
soaring of a dragon’). Instead, using IDS, we en-
code character structures by explaining structural
information between just two or three components
predetermined by IDCs. This granularity is also a
reason why our method produce faithful results.

The IDS representation does not have struc-
tural ambiguity between sequences. In the few
cases where we have found characters to share
the same IDS representation (56 out 20,830), this

⿰木目 (相) 竹⿰木目 ⿱竹⿰木目 (箱)
insert竹

+1
insert⿱

+1

⿰木目 (相) ⿱⿰木目 ⿱⿰木目心 (想)
insert⿱

+1
insert心

+1

⿱竹⿰木目 (箱) ⿱⿰木目 ⿱⿰木目心 (想)
delete竹

+1
insert心

+1

Figure 5: The figure shows the process to get edit
distance among characters相,箱, and想. We turn
相 into箱 via two insertions, as is the case for相 &
想. Converting 箱 to 想 requires one deletion and
one insertion.

concerned historical variants of the same charac-
ter with slightly different stroke variants. Figure
5 shows the IDS distance between 相 xiang4 ’ap-
pearance’,箱 xiang1 ’case’, and想 xiang3 ’to miss’,
which according to Liu and Lin (2008) would be dis-
similar. It may seem to be surprising that the IDS
distance between箱 and想 is so small, but, in ad-
dition to overlapping components, these two are
both vertical characters hierarchically enclosing a
horizontal character.

3.1.4. Three basic elements to compute
character similarity

It seems that, from the above-mentioned exam-
ples, it is next to impossible to evaluate the de-
gree of character similarity without the integration
of three basic elements:

• components (stroke patterns or smaller), as
opposed to single-component comparison.

• layouts governing components, in compari-
son with character structure possibly as a re-
sult of single component comparison.

• relative positions of components.

We suggest that if we want to claim that characters
are similar, we need to make these three elements
explicit.

One of the limitations of using IDS to compute
edit distance is its comprised ability to differentiate
relative positions of components in some cases.
For example, characters呆 dai1 ’dull’,宋 song4 ’a
surname’, and告 gao4 ’to sue’ have the same edit
distance of 2, but while we rule in component po-
sition, 告 should be further away from 呆, as their
shared component is located differently. In order
to differentiate the effect of component order, one
possible method is to increase the weight of inser-
tion. However, this would lead to an asymmetry of
pairwise distances, which requires further modifi-
cation.

62

杳 鬰
Neighbors Distance Neighbors Distance
杳 0 鬰 0
查 2 鬱 6
査 2 爩 10
杏 2 鬯 12
朰 2 棥 18
杢 2 儍 19
李 2 糭 20
旮 2 鑁 20
木 2 蓾 20
杰 2 滷 20
桼 2 燓 20
旵 2 樐 20
呆 2 樊 20
杲 2 鐢 20
妟 2 鹵 20
柰 2 乘 21
早 2 兇 21
旯 2 冟 21
日 2 爻 21
旦 2 壱 21

Table 2: Neighbors and their pairwise distance to
杳 (orthographically simple and dense) and to 鬰
(orthographically complex and distinct).

3.2. Character Neighbors
By computing character distance, it is possible to
cluster orthographically similar characters by ex-
hausting pairwise distances among all characters
and sorting the result. Table 2 provides twenty
nearest neighbors for 杳 yao3 ’dim’ and 鬰 yu4
’lush and growing abundantly’.

However, this could be problematic, as distance
is modulated by sequence length. For example,
character 鬰 is closer to 匕 bi3 ’spoon’ (distance:
23) than礬 fan2 ’alum’ (distance: 24), although the
latter may seem to be more similar due to identical
structures and more common components. The
reason is that匕 (IDS:⿺乚丿, length: 3) requires
only addition to transform into the target charac-
ter 鬰 (IDS: ⿳⿲木⿱㐅⿻丿乀木冖⿰⿱⿶凵⿻
㐅⿳丶⿰丶丶丶⿺乚丿彡, length: 26), while 礬
(IDS: ⿱⿱⿲木⿱㐅⿻丿乀木⿻一人⿸⿱一丿口,
length: 18), with longer sequences, requires addi-
tional deletion.

To address this, we normalize distance as fol-
lows: Let Ni be the length of IDS of character Ci

and Nj be the length of IDS of character Cj :

max distance = min(Ni, Nj)× 2 + |Ni −Nj |

where max distance represents the upper bound
of the cost from possible operations. The distance
metric can then be normalized by calculating the
relationship between the cost of operations actu-
ally used and the maximum possible costs. The

normalized distance is calculated as:

normalized distance =
edit distance

max distance

where normalized distance indicates a measure
where lower values signify higher operational con-
gruence and thus closer distance.

Twenty closest neighbors for 鬰 based on nor-
malized distance are given in Table 3. Note that
the normalized distance of鬰 and and礬 is 0.545,
smaller than that of鬰 and匕, though not shown in
the table, at 0.793. We can see that the adjusted
distance reveals a cluster of character pattern that
is closer to human intuition.

4. IDS as a general approach to
expressing component relations

in any script

There are some advantages of the ideographic de-
scription sequences. First, they have the poten-
tial to be used to describe attested compositional
characters in any script. For instance, French café
could be represented as (c, a, f, ⿱, ́, e), with the
description character⿱ indicating that the two sub-
sequent elements are to be arranged top-down.
Second, they provide the possibility to form new
compositional characters. Finally, when words are
represented using concatenated ideographic de-
scription sequences, they allow for more accurate
measurement of word similarity. For instance, in
French, the word pâte can be considered to differ
by one character from both pate and pâté, but in
the same way it can also be considered to differ by
the absence or presence of a diacritic on one of
the characters.

In practice, the arguments to a particular IDC
are quite predictable. For example, the IDC ⿰
almost always has a semantic radical as its left
component and a phonetic residual as its right
component. The spatial rendering thus typically
also encodes a specific relationship. Taking this
idea further, we can consider an IDC as a way
of connecting a specific type of linguistic relation-
ship to a specific spatial rendering (e.g., morpho-
logical, semantic, ontological). For instance, Ta-
ble 4 shows how one could consider the compo-
nents of compound words as arguments to a rela-
tionship operator which horizontally concatenates
the components. This would allow distinguishing
compounds from non-compounds, at least in the
underlying sequence. But instead of horizontal ar-
rangement, we could also replace the horizontal
IDC with an equivalent vertical IDC to achieve a dif-
ferent kind of representation. In some applications,
English text could then be rendered as in Figure
6. On top of this, there are also a wide range of
other possible applications for IDS: creating novel

63

Neighbors 鬰 鬱 爩 鬯 鑁 儍 糭 蓾 滷 樐
Normalized Distance 0 0.125 0.192 0.3 0.442 0.463 0.463 0.5 0.5 0.5

Neighbors 磠 塷 鏀 燓 樊 鐢 鹵 棥 礬 鹶
Normalized Distance 0.5 0.524 0.524 0.526 0.526 0.526 0.526 0.529 0.545 0.545

Table 3: Twenty neighbors to鬰 based on normalized distance. Note that after adjusting for the complexity
level of the characters, the result is closer to human intuition.

Compound
word

IDS
horizontal

IDS
vertical

Representation
vertical

red dwarf ⿲, red, , dwarf ⿱, red, dwarf
red

dwarf

red-blooded ⿲, red, -, blooded ⿱, red, blooded
red

blooded

redhead ⿰, red, head ⿱, red, head
red

head

Table 4: Table shows three compound words, IDS
for their original forms, IDS for vertical placements,
and resulting vertical renditions.

Figure 6: A demonstration of rendering compound
words in vertical layouts. Example sentences
were retrieved from online Cambridge Dictionary
(https://dictionary.cambridge.org).

sequences; creating or adapting representations
for under-resourced languages; rendering linguis-
tic relationships spatially; substituting layouts, etc.

Examples of character IDS application in differ-
ent scripts are shown in Table 5. While we use ex-
isting IDCs designed for Simplified Chinese char-
acters in these examples, specific IDCs may need
to be created to allow for script characteristics.

5. Conclusion

In this paper, we demonstrated that IDSs can
be used to more precisely calculate edit distance
and orthographic neighbors for Simplified Chinese
characters. In addition, we explored the possibility
of using IDSs to typographically represent morpho-
logical relationships. While Unicode currently only
uses IDSs for CJK writing systems, the ability to
represent characters compositionally gives IDSs
a wide range of application beyond these scripts.
In this way, representing characters and words us-
ing IDSs can offer methodological improvements
in several areas.

Table 5: Example characters represented as IDS
in several scripts like Adlam, Cyrillic, Korean,
Greek, Latin, and Tamil.

References

American National Standards Institute. 1995.
7-bit American national standard code for
information interchange. Standards Ac-
tion. Retrieved February 6, 2024, from
https://webstore.ansi.org/standards.

Ayse Ayçiçeği and Catherine L. Harris. 2002.
How are letters containing diacritics repre-
sented? Repetition blindness for Turkish words.
European Journal of Cognitive Psychology,
14(3):371–382.

Irving Biederman. 1987. Recognition-by-
components: a theory of human image un-
derstanding. Psychological review, 94(2):115.

Hsuan-Chih Chen and James F Juola. 1982. Di-
mensions of lexical coding in Chinese and En-
glish. Memory & Cognition, 10:216–224.

Fabienne Chetail and Emeline Boursain. 2019.
Shared or separated representations for letters
with diacritics? Psychonomic Bulletin & Review,
26(1):347–352.

Bong-Foo Chu. 1979. Laboratory of Chu Bong-
Foo. Retrieved Februrary 6, 2024, from
http://www.cbflabs.com.

64

Peter T Daniels and William Bright. 1996. The
world’s writing systems. Oxford University
Press.

John DeFrancis. 1989. Visible speech: The di-
verse oneness of writing systems. University of
Hawaii Press.

Kyle Gorman and Richard Sproat. 2023. Myths
about writing systems in speech & language
technology. In Proceedings of the Workshop
on Computation and Written Language (CAWL
2023), pages 1–5.

Jonathan Grainger, Arnaud Rey, and Stéphane
Dufau. 2008. Letter perception: from pixels to
pandemonium. Trends in Cognitive Sciences,
12(10):381–387.

ISO/IEC. 1987. ISO/IEC 8859: 8-bit charac-
ter encodings. International Organization for
Standardization and International Electrotechni-
cal Commission.

Wolfgang Köhler. 1967. Gestalt psychology. Psy-
chologische Forschung, 31(1):XVIII–XXX.

Joseph B Kruskal. 1983. An overview of se-
quence comparison: Time warps, string edits,
and macromolecules. SIAM review, 25(2):201–
237.

Melanie Labusch, Stéphanie Massol, Ana Marcet,
and Manuel Perea. 2023. Are goats chèvres,
chévres, chēvres, and chevres? Unveiling the
orthographic code of diacritical vowels. Journal
of Experimental Psychology: Learning, Memory,
and Cognition, 49(2):301–319.

Kwong Joo Leck, Brendan S Weekes, and
May Jane Chen. 1995. Visual and phonological
pathways to the lexicon: Evidence from Chinese
readers. Memory & Cognition, 23:468–476.

Vladimir Iosifovich Levenshtein. 1966. Binary
codes capable of correcting deletions, inser-
tions, and reversals. In Soviet physics doklady,
volume 10, pages 707–710.

Yi-Chen Lin, Hsiang-Yu Chen, Yvonne C Lai, and
Denise H Wu. 2015. Phonological similarity and
orthographic similarity affect probed serial recall
of Chinese characters. Memory & Cognition,
43:538–554.

Chao-Lin Liu and Jen-Hsiang Lin. 2008. Using
structural information for identifying similar Chi-
nese characters. In Proceedings of the 46th
Annual Meeting of the Association for Compu-
tational Linguistics on Human Language Tech-
nologies Short Papers - HLT ’08, page 93,
Columbus, Ohio. Association for Computational
Linguistics.

Qin Lu, Shiu Tong Chan, Yin Li, and Ngai Ling Li.
2002. Decomposition for ISO/IEC 10646 ideo-
graphic characters. In COLING-02: The 3rd
Workshop on Asian Language Resources and
International Standardization.

Ana Marcet, María Fernández-López, Ana
Baciero, Albert Sesé, and Manuel Perea. 2022.
What are the letters e and é in a language with
vowel reduction? The case of Catalan. Applied
Psycholinguistics, 43(1):193–210.

Tomohiko Morioka. 2015. Multiple-policy char-
acter annotation based on chise. Journal of
the Japanese Association for Digital Humanities,
1(1):86–106.

Tomohiko Morioka and Christian Wittern. 2002.
Developping of character object technology with
character databases. IPA result report.

Manuel Perea, Reem Abu Mallouh, Ahmed Mo-
hammed, Batoul Khalifa, and Manuel Carreiras.
2016. Do Diacritical Marks Play a Role at the
Early Stages of Word Recognition in Arabic?
Frontiers in Psychology, 7.

Charles A Perfetti and Sulan Zhang. 1991. Phono-
logical processes in reading Chinese charac-
ters. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 17(4):633.

I-Fan Su, Sin-Ching Cassie Mak, Lai-Ying Milly
Cheung, and Sam-Po Law. 2012. Taking a rad-
ical position: evidence for position-specific radi-
cal representations in Chinese character recog-
nition using masked priming erp. Frontiers in
Psychology, 3:333.

Dejan Todorovic. 2008. Gestalt principles. Schol-
arpedia, 3(12):5345.

Anne M Treisman and Garry Gelade. 1980. A
feature-integration theory of attention. Cognitive
psychology, 12(1):97–136.

Unicode Consortium. 2023. The Unicode Stan-
dard, Version 15.1.0. The Unicode Consortium,
South San Francisco, CA. ISBN 978-1-936213-
33-7.

Senlin Xu, Mingfan Zheng, and Xinran Li. 2020.
String comparators for Chinese-characters-
based record linkages. IEEE Access, 9:3735–
3743.

Su-Ling Yeh and Jing-Ling Li. 2002. Role of struc-
ture and component in judgments of visual sim-
ilarity of Chinese characters. Journal of Experi-
mental Psychology: Human Perception and Per-
formance, 28(4):933.

65

Su-Ling Yeh, Jing Ling Li, I Chen, et al. 1997. The
perceptual dimensions underlying the classifica-
tion of the shapes of Chinese characters. Chi-
nese Journal of Psychology.

Pong Chi Yuen, Guo-Can Feng, and Yuan Yan
Tang. 1998. Printed Chinese character similarity
measurement using ring projection and distance
transform. International journal of pattern recog-
nition and artificial intelligence, 12(02):209–221.

Xiaochen Zhang, Siqin Yang, and Minghu Jiang.
2020. Rapid implicit extraction of abstract ortho-
graphic patterns of Chinese characters during
reading. Plos one, 15(2):e0229590.

66

Author Index

Born, Logan, 53
Brown, Susan, 18

Cucchiarini, Catia, 8

Gorman, Kyle, 36

Harmsen, Wieke, 8
Hronsky, Rastislav, 23

Kelley, Kathryn, 53
Keuleers, Emmanuel, 23, 59

Merchant, Rayyan, 1
Monroe, M. Willis, 53

Peck, Luna, 18

Roark, Brian, 36

Sarkar, Anoop, 53
Strik, Helmer, 8

Tang, Kevin, 1

van Esch, Daan, 43
van Hout, Roeland, 8

Wang, Yixia, 59

67

	Program
	ParsText: A Digraphic Corpus for Tajik-Farsi Transliteration
	A Joint Approach for Automatic Analysis of Reading and Writing Errors
	Tool for Constructing a Large-Scale Corpus of Code Comments and Other Source Code Annotations
	Tokenization via Language Modeling: the Role of Preceding Text
	Abbreviation Across the World's Languages and Scripts
	Now You See Me, Now You Don't: ‘Poverty of the Stimulus' Problems and Arbitrary Correspondences in End-to-End Speech Models
	Towards Fast Cognate Alignment on Imbalanced Data
	Simplified Chinese Character Distance Based on Ideographic Description Sequences

