
Second Workshop on Computation and Written Language (CAWL 2024) @LREC-COLING-2024, pages 53–58
May 21, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

53

Towards Fast Cognate Alignment on Imbalanced Data

Logan Born1, M. Willis Monroe2, Kathryn Kelley3, Anoop Sarkar1
1Simon Fraser University, 2University of New Brunswick, 3Università di Bologna

loborn@sfu.ca, willis.monroe@unb.ca, kathrynerin.kelley@unibo.it, anoop@cs.sfu.ca

Abstract
Cognate alignment models purport to enable decipherment, but their speed and need for clean data can make them
unsuitable for realistic decipherment problems. We seek to draw attention to these shortcomings in the hopes that
future work may avoid them, and we outline two techniques which begin to overcome the described problems.
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1. Introduction

Cognate alignment models aim to identify cognate
lexeme pairs by aligning word lists from related lan-
guages; when one of these lists comes from an
undeciphered language, this alignment produces
a decipherment for any words which are correctly
mapped to their cognates. In this study, we high-
light limitations of current cognate alignment mod-
els which restrict their usefulness in practical deci-
pherment tasks, and propose partial solutions for
more realistic data.

2. Motivation

The state-of-the art for cognate alignment (Tam-
burini, 2023) uses coupled simulated annealing
(Xavier-de-Souza et al., 2010) to solve a search
problem over the set of all k-permutations mapping
n lost-language words into k known-language buck-
ets. The prior state-of-the-art Luo et al. 2019 alter-
nated between learning character- and word-level
pairings using iterative expectation-maximization-
style training. Both achieve strong results when ev-
ery word has at least one cognate in the language
it has been paired with; however, this is artificially
clean compared to true decipherment, where not
only are unpaired words likely, but there may also
be uncertainties about the underlying word bound-
aries or character inventory. Luo et al. (2019) ac-
knowledge this and evaluate on less-clean Ugaritic-
Old Hebrew data, in which setting their accuracy
drops to just 65.9%, from 93.5% on clean data.
Tamburini 2023 does not include noisy evaluations,
likely because their search is computationally in-
tensive and does not appear scalable to settings
with many unpaired words.

Luo et al. (2019, 3152) also “found it beneficial
to train [...] only on a randomly selected subset
(10%) of the entire corpus with the same percent-
age of noncognates,” but observe that such filter-
ing is impossible in a realistic setting where it is
not known which words have cognates. On unde-

ciphered data, both word lists would need to be
sampled independently, meaning that a 10% sub-
set of the corpus should be expected to contain a
mere 1% of the original cognate pairs, destroying
most of the signal that the model would learn from.

Finally, note that existing models can be ineffi-
cient even on clean data (Tamburini 2023, 89 “took
a relevant time to converge”), which is undesirable
for real decipherments where the correct target lan-
guage is not known beforehand. Such settings may
require aligning to multiple targets before a true so-
lution can be found, and this scattershot approach
is only feasible when each individual language pair
can be aligned efficiently.

3. LMs for Character-Level Alignment

Tran (2020) considers the task of adapting pre-
trained models to new languages. Given a matrix
of pretrained word embeddings Ee, they propose
to derive embeddings Ef for a new language using
linear combinations of the rows of Ee:

Ef [i] =

|Ve|∑
j=1

αijEe[j] = αiEe (1)

where αi is a sparse weight vector satisfying∑|Ve|
j αij = 1. The authors cite two offline ap-

proaches (Dyer et al., 2013; Conneau et al., 2017)
which can be used to estimate α by exploiting
sentence-level context. If the dependence on
sentence-level context (which is absent from the
word lists used for cognate alignment) could be
eliminated, we suggest that a similar technique
could by applied to the embeddings from a charac-
ter-level language model to quickly learn character
equivalencies between two scripts or languages as
a first step towards cognate alignment.

Concretely, we propose to first train a character-
level language model on the known language. The
inputs to the model are individual words from the
known-language word list, with no additional con-
text, tokenized at the character level. Given the
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Figure 1: Schematic view of proposed architecture (left) and sampling procedure for Equation 2 (right).
Characters are embedded using a matrix E (for the known language) or αE (for the lost language). The
probability that character a in the known-language corresponds to character a in the lost language is
proportional to their distance in this embedding space. During fine-tuning, α (and by extension pj|i, which
depends on α) is the only parameter that is allowed to be updated.

small size of cognate detection datasets, we use
a shallow Transformer (Vaswani et al., 2017) with
a small feature dimension (2 layers, 4 heads, and
32 dimensions); this is the largest model which we
are able to train reliably, as deeper models or those
with larger dimension often fail to converge. We
use positional encodings (Vaswani et al., 2017) and
apply dropout at a rate of 0.5. This model is trained
with SGD to minimize categorical cross-entropy on
an autoregressive language modeling task using a
causal attention mask.

Let E ∈ Rk×32 be the embedding layer of this
model, where k is the number of known-language
characters. Let M : Rn×32 → Rn×k be a black-
box representation for the remainder of the model,
which maps a sequence of n 32-dimensional
character embeddings onto a sequence of log-
probabilities over k known characters.

We next introduce a mapping α ∈ Rl×k following
Tran 2020. The product αE ∈ Rl×32 can be seen
as an embedding matrix for l distinct lost-language
characters, and M ◦αE can be seen as a hybrid lan-
guage model which accepts lost-language inputs
and predicts known-language outputs. To convert
the outputs from M ◦ αE into a distribution over
lost-language characters, we introduce the follow-
ing conditional probability distribution inspired by
t-SNE (Hinton and Roweis, 2002; van der Maaten
and Hinton, 2008):

log pj|i =
−|xi − αEj |2/2σi∑
h̸=i −|xi − αEh|2/2σi

(2)

where 1 ≤ i ≤ k, 1 ≤ j ≤ l, xi is the embedding

for the ith known character, αEj is the embedding
for the jth lost character, and σi is a per-character
density estimate. Given a known-language char-
acter i, suppose we sample neighboring charac-
ters in the embedding space based on their dis-
tance from xi, with Gaussian falloff. Assuming we
are only allowed to sample neighbors from the lost
language, pj|i models the probability that the lost-
language character j will be the one sampled. This
is equivalent to the sampling procedure used in
t-SNE (van der Maaten and Hinton, 2008) with the
modification that points are divided into two classes
(known and lost), and each class can only sample
points from the other class.

Given a distribution p = [p1, ..., pk] over known-
language characters returned as output by M ◦
αE, we model the corresponding distribution p̃ =
[p̃1, ..., p̃l] over lost-language characters as p̃j =∑k

i=1 pipj|i. With this transformation in hand, we
have adapted the original known-language model
to both accept lost-language inputs and predict
lost-language outputs using only the mapping α.

We now propose to fine-tune the adapted model
on the lost-language word list, following the same
procedure used to train the underlying known-
language model. However, we make α the only
tunable parameter, so that the only way for the
model to improve the language modeling loss at
this stage will be to learn the correct mappings be-
tween characters in the two scripts. This procedure
makes α trainable, whereas the mapping in Tran
2020 was static and estimated offline.
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Permutation Loss We hypothesize that α may
be more easily learned if it is constrained to be
approximately one-to-one, as mappings between
scripts will generally be sparse. Thus we generalize
the matrix penalty function from Lyu et al. (2020) to
the case of non-square k × l matrices:

Lsparse =

k∑
i=1

 l∑
j=1

|αij | −

 l∑
j=1

α2
ij

1/2
 (3)

+

l∑
j=1

 k∑
i=1

|αij | −

(
k∑

i=1

α2
ij

)1/2


When applied to a square matrix α, this quantity
approaches zero as the matrix approaches a per-
mutation; in the non-square setting it approaches
zero as α approaches some non-square projection
of a permutation. We hypothesize that tuning α
to jointly minimize the sum of the cross-entropy
language modeling loss with this sparsity loss will
yield more accurate character-level alignments than
fine-tuning on the language modeling loss by itself.

Note that, during our fine-tuning step, there is
no way for a character in one script to be decoded
to multiple characters in the other script; we use
a vanilla Transformer architecture with no mech-
anism for explicit insertion or deletion operations.
This creates an inductive bias towards one-to-one
mappings, which is reinforced by this sparsity loss
term. Despite this, we will show in Section 5.2
that our model is nonetheless capable of learning
more complex, many-to-one mappings when there
is evidence for such in the input data.

4. Towards Word-Level Alignment

After fine-tuning, α yields a representation for each
lost-language character as a linear combination of
known-language characters. We next wish to use
these combinations to infer likely pairings between
cognates at the word level.

4.1. Edit Distances
We first compute the Levenshtein distance (Leven-
shtein, 1966) from every lost word to every known
word, where the cost of substituting lost character
j with known character i is:

C(j, i) = 1−
pi|j

maxi pi|j
(4)

where pi|j is the conditional probability that known
character i would be sampled by lost character j
paralleling Eq. (2). Note that C(j, i) = 0 when-
ever i is the nearest known-language neighbor to

j in the embedding space, while for all other pair-
ings the cost rises proportionally to the distance
between i and j. Thus there is no cost to replace a
lost-language character with its most likely known-
language correspondent, and increasing cost for
less likely substitutions.

4.2. Alignment Likelihoods
For lost- and known-language vocabularies Vl and
Vk, let ∆ ∈ R|Vl|×|Vk| be a matrix where ∆mn

is the weighted edit distance between lost word
m and known word n as described above. Let
Dm = softmax(−∆m) be a probability distribution
where Dmn is the probability that lost word m aligns
to known word n, and note that the resulting proba-
bilities are inversely proportional to the original edit
distances (Eq. (4)).

To obtain a more sophisticated model for word-
level alignments, we can incorporate a prior esti-
mate for the likelihood that known word n is cognate
to some lost word, as opposed to being a distrac-
tor that has no mapping into the other language.
Existing approaches to cognate detection excel in
clean settings where there are few or no such dis-
tractors, so the ability to identify and prune these
words would be a useful result in itself.

To this end, we propose to learn a language
model on the lost word list, then fine-tune on the
known word list following the same procedure out-
lined in Section 3. In the resulting model, the av-
erage perplexity when producing known word n
should be low if n is cognate to some lost word, as
in this case the underlying lost-language model will
have seen that cognate during pretraining and the
corresponding known word will look “in-domain”.
By contrast, if known word n is not cognate to any
lost words, it should be “out-of-domain” and there-
fore incur a higher average perplexity. We con-
struct a vector Ψ ∈ Rk where Ψn is the average
perplexity when producing the characters in known
word n. We convert this to a probability distribu-
tion P = softmax(−Ψ), and estimate the probability
that lost word m aligns to known word n as P r

nDmn

where r is a smoothing term.

5. Experimental Results

5.1. Character Alignment
We train the proposed model on the noisy Ugaritic-
Old Hebrew data from Luo et al. 2019. We con-
sider two directions: pre-training on the known lan-
guage and fine-tuning α on the lost language, and
vice versa. In each direction, we compare mod-
els trained (i) without the permutation loss Lsparse,
(ii) with the permutation loss for just the first 50
iterations as a kind of warm-up, and (iii) with the
permutation loss for the entire duration of training.
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Permutation Loss
None Warm-Up Always

Pretraining Language top 1 top 5 top 1 top 5 top 1 top 5
Old Hebrew (Known) 26% 57% 83% 100% 13% 30%
Ugaritic (Lost) 48% 74% 48% 70% 0% 17%

Table 1: Top-1 and top-5 precision of character-level mappings derived from α.
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Figure 2: Top-k precision on Ugaritic-Old Hebrew cognate detection for various thresholds k and for
values of the smoothing parameter r ∈ [0, 0.25, 0.5].

α captures a nuanced mapping between charac-
ters in the two scripts in the form of a weighted sum.
We attempt to concretize this into a one-to-one map-
ping for evaluation purposes, but note that this will
necessarily lose some of the information inherent
in the full set of weights. For example, Table 1
reports top-1 and top-5 precision for mappings de-
rived by aligning each character in the known script
to the character(s) with the maximmum likelihood
pj|i according to Eq. (2).

From these results it is clear that the proposed
technique can accurately learn cross-script charac-
ter equivalencies, doing so most effectively when
pretrained on the known language and fine-tuned
on the lost. In this setting, α appears to per-
fectly capture the mapping between the two scripts,
achieving 100% top-5 precision in the best case.
In the opposite direction, the best result is just 74%
top-5 precision. We speculate that this asymme-
try derives from the fact that there is much more
known- than lost-language data, meaning that the
initial model will learn higher-quality character rep-
resentations when pre-trained on the known lan-
guage.

Our proposed permutation loss also appears to
improve the character-level alignment under certain
training regimes. Specifically, when pre-training on
the known language, applying the permutation loss
during the earliest iterations of the alignment step

yields significant improvements in the quality of the
learned alignment. In other settings, this term has
no effect or is actively detrimental to the quality
of the learned mapping. This suggests that it can
be useful to “prime” the model to expect a roughly
one-to-one mapping at the start of training, but that
this requirement must eventually be relaxed. This
makes sense given that the true mapping between
these scripts includes some many-to-one or one-
to-many relationships (as between Ugaritic a, u, i
and Old Hebrew a in most contexts).

5.2. Word Alignment
The data contains 38898 total Hebrew words; thus
a priori each lost (Ugaritic) word could be aligned to
any of 38898 possible targets. We wish to narrow
this to a small pool of candidate cognates for each
word: ideally, we want just the most likely cognate
in each case, but even tens of candidates per word
is manageable for reranking or human evaluation.

To this end, for each lost word, we select the k
known words with the highest probability according
to the distribution P rD described above. We call
these candidate cognate pairs, and consider the
alignment successful if the true cognate is among
the k chosen terms. Figure 2 plots the top-k pre-
cision for different values of k and the smoothing
parameter r.

Our best results arrive at r = 0.25, where nearly
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half (46%) of true cognates are either the most likely
or the second-most likely candidate according to
P rD, and 66% fall within the top 10 most likely
candidates. 66% is the same accuracy reported by
Luo et al. (2019) for their noisy evaluation. These
results suggest an avenue for future work whereby
the top-k candidates are reranked to promote the
true cognates to the top of the ranking. Under this
approach, the correct cognate would only need to
be selected from a few tens of candidates, rather
than the full set of many thousands.

For additional context on these results, note that
half of the word pairs in the input data have identical
lengths in both languages, while the other half are
longer in one language than the other. Thus any
score above 50% must include some cases where
the model correctly infers a complex, non-one-to-
one mapping between some characters, such as
the deletion of y from Heb labyk to Uga labk or
of awy from Heb wlawyb to Uga wlib.

We emphasize that top-k precision is highest
when we exploit P as a prior estimate for whether
a word has a cognate or not. Thus P provides a
usable signal to help assess whether or not a given
word is a distractor. This is encouraging, as it is
otherwise difficult to tell which words are “out-of-
domain” when dealing with undeciphered data.

The process outlined in this work is also ex-
tremely fast, averaging just 0.015s per word, versus
0.464s per word for Luo et al. 2019 on the same
data and longer still for Tamburini 2023. We are
therefore optimistic that this work can serve as the
basis for faster, more efficient cognate alignment
models. One straightforward application of these
results would be as a smart initialization for a model
such as Luo et al. 2019, to bias the initial character
mappings and limit the set of word-level pairings
that are explored. This would increase the effi-
ciency of such a model by constraining its search
space, which we predict would also help to limit the
impact of distractor vocabulary items.

6. Related Work

Aside from the works noted in Section 2, cog-
nate prediction (Fourrier and Sagot, 2022; Fourrier
et al., 2021; Hämäläinen and Rueter, 2019; Wu
and Yarowsky, 2018; Dekker, 2018) is a closely-
related task found in the field of historical linguis-
tics, whereby the form of a word’s cognate in some
target language is predicted given that word’s pho-
netic representation in some known language. Cog-
nate prediction models are typically generative, pro-
ducing a sequence of output phonemes given a
sequence of input phonemes. Thus these mod-
els have an open output vocabulary (the set of all
phoneme sequences), and their inputs and outputs
come from the same script (IPA or another phonetic

representation). By contrast, our model selects
candidate cognates from a closed list (similarly to
Beinborn et al. 2013), and assumes that inputs and
outputs are written using distinct scripts. This en-
ables the application of our model to undeciphered
data, where the underlying phonetic representa-
tions are unknown, but also limits it to finding only
those word pairs which are attested in the input
word lists. Moreover, cognate prediction requires
parallel training data, whereas our decipherment-
focused approach learns from non-aligned word
lists. Notably, if we omit the t-SNE inspired transfor-
mation which was used to convert model outputs
from one script to the other, and omit the following
edit-distance computations, our model would func-
tion as a transducer which rewrites inputs in one
script into another script, in a way that would more
closely resemble prior cognate prediction models.
It may therefore be worth exploring applications of
our model to this task in future work.

7. Conclusion

In conclusion, our work highlights the need for cog-
nate alignment models to be both efficient and ro-
bust against noise if they are to be applied to re-
alistic decipherment tasks. We argue that these
qualities are lacking in existing approaches. As
a first step towards overcoming these challenges,
we have introduced a novel technique that lever-
ages monolingual language models to swiftly and
accurately learn cross-script character equivalen-
cies. By incorporating a permutation loss term, we
further improve the precision of the learned equiva-
lencies by guiding the model towards nearly one-
to-one mappings. Finally, we propose a method of
combining weighted edit distances with perplexity
signals which for the first time enables effective
filtering of words without cognates in the paired lan-
guage. These advancements lay the groundwork
for the development of more efficient and reliable
cognate alignment models in future work.
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