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Abstract
While language models benefit immensely from their capacity to model large context (i.e., sequence of preceding
tokens), the role of context is unclear in text tokenization, which is, in many cases, language model-driven to begin
with. In this paper, we attempt to explore the role in three different writing systems and using three different text
tokenization strategies (word-based, Morfessor, and BPE). In the first experiment, we examined how the size of
context used for predicting the next token affects the ranking of the segmentation strategies i.t.o. language model
surprisal. This effect was very writing system specific: minimal in case of English, and rank-reversing due to
increased context size and token granularity in case of Turkish and Chinese. In the second experiment, we examined
how context alters segmentation hypotheses when using language models to identify word boundaries. In this case,
the effect was subtle: using context-aware, rather than context-free segment scores improved boundary recognition
accuracy by up to 0.5%, once baseline effects were exploited.
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1. Introduction nrich et al., 2016; Kudo, 2018; Kudo and Richard-
son, 2018).
The most basic unit of computer-stored written lan- While these systems produce satisfactory tokens

guage is typically the character. Despite that neu-  for their intended purposes, there is a lack of atten-
ral network based systems are capable of taking  tion to the role of context in tokenization in natural
characters as input, it is still common practice to  language processing research. This is surprising,
divide the signal into linguistically more meaningful ~ because statistical text segmentation is an applica-
chunks (i.e., tokens). Most writing systems include  tion of probabilistic language models and modern
conventions, such as whitespace and punctuation, language models have a capacity to model context
that can help with segmentation. However, rely-  extending to thousands of preceding tokens.
ing on these conventions to tokenize text is fragile: As a simple example of how context can affect
(1) there are many writing systems with different  segmentation, consider the sequence "ishe’. Given
conventions, (2) even if explicit cues for word sep-  a unigram model, the segmentation 'i-she’ may be
aration are available, further division, for instance  optimal because i’ is a high frequency token in
of compound words, remains problematic, and (3)  English. However, since ’is-he’ co-occurs often,
the noisiness and openness of natural language  the increased probability of 'he’ in the context of
make dictionary-based string matching unreliable.  ’is’ may result in an overall higher probability of the
Therefore, modern systems pre-process text 'is-he’ segmentation according to a bigram model.
via pipelines that, in addition to using manually ~ This way, it is conceivable how such a context-free
described rules, employ statistical segmentation, ~ (unigram) and context-sensitive (bigram) approach
which is robust, language independent, and data  to segmentation would be in disagreement with
driven. The idea is similar to how speech seg-  each other.
mentation is described in studies on spoken lan- Research on language acquisition confirms that
guage acquisition: a standalone token (word)isone  context can affect segmentation. Language learn-
where, within the boundaries, the regularity (mu- ers who make the independence assumption,
tual information) between neighboring elements  hence ignore context, tend to identify words less
(phonemes) is disproportionately stronger than at  accurately than ones that include the dependency
the boundaries (Saffran et al., 1996a). to the preceding word (Goldwater et al., 2009).
This principle can be formulated more generally A further indication of context utility comes from
as a search for the set of segments that, by scoring ~ word segmentation research on writing systems
the probability of each segment in isolation, max- ~ without explicit word boundary notation: several
imizes the sequence generation probability (dis- systems employ contextual features to improve
counting any between-segment dependencies). In  word segmentation performance (Meknawin, 1995;
this form, it has been adopted as the decoding  Kudo, 2006; Huor et al., 2004a; Durrani and Hus-
strategy for many text tokenization implementations  sain, 2010).
(Creutz and Lagus, 2005; Virpioja et al., 2013; Sen- To the best of our knowledge, the extent to
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which unigram and higher-order n-gram segmenta-
tion models correctly recover linguistic units, e.g.,
words, has not been studied in detail. Our first
research question is:

(1) How does using a higher-order language
model (i.e., bigram or trigram as opposed to
unigram) affect the performance of statistical
word segmentation?

To answer this question, we simulate word segmen-
tation by deleting explicit word boundary notation
and testing how well a uni-, bi-, and trigram model
re-discover the reference word boundaries. We dis-
cuss the effects of increased n-gram model order in
the context of merely using a more representative
language model (i.e., inferred using a larger body
of text), a baseline effect.

Given a particular segmentation of a corpus, we
can derive a language model based on it and com-
pute the average language model surprisal, a met-
ric reflecting segmentation optimality. This is a com-
mon way to intrinsically assess segmentation, both
between competing segmentation algorithms and
within the decoding process of a single segmen-
tation method, and it is the basis for our second,
more general research question:

(2) How does changing the order of the language
model change the assessment of surprisal-
based segmentation optimality?

To answer this question, we present simulations
examining the extent to which a particular corpus
segmentation, e.g., a reference word segmentation,
Morfessor, or BPE segmentation, ranks as con-
sistently optimal (i.t.0. bits-per-sentence) across
language models set to include increasingly long
dependencies. If the ranking stays constant, this
indicates a weak role of context.

We conducted both experiments with text in En-
glish (a morphologically poor language), Turkish
(a very agglutinative language), and Chinese (a
language with a logographic writing system). The
corpus used was based on movie subtitles and
aligned such that for each language it contains sub-
titles for the same set of movies.

One difficulty that we faced during this research
was the lack of accessible scientific libraries to per-
form higher order segmentation. Therefore, we
describe the process in Section 3, and also pub-
licly release the code as a Python package ' that
we used to solve first, second, and third order se-
quence segmentation problems. The package is
built on top of NetworkX (Hagberg et al., 2008), a
popular network analysis library, providing direct
access to a wide range of tools that can be used
to manipulate and visualize the segmentation prob-
lems.

"https://github.com/hrasto/segmentgraph
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2. Related Work
2.1. Word Recognition in Spoken
Language

While certain acoustic features help with word seg-
mentation in speech recognition (Jusczyk et al.,
1993; Mattys et al., 1999), the exact mechanics are
non-trivial: the signal is often noisy and contains
hardly any explicit word boundary signature (Cole
et al., 1980; Reddy, 1976). Tasking humans with
word identification from spectrograms of continu-
ous speech is problematic itself (Klatt and Stevens,
1973). Unsurprisingly, modern automatic speech
recognition (ASR) omit manual feature engineering
and learn to transcribe speech to words end-to-
end (Anusuya and Katti, 2009; Hannun et al., 2014;
Amodei et al., 2016).

The challenges associated with ASR naturally
transfer to language acquisition research: how do
language learners identify words? A prominent
finding from this literature is that the expectation of
a phoneme pair at a word boundary to have a lower
transition probability than one within a word is a
reliable cue for word segmentation (Saffran et al.,
1996a,b). As a result, the idea of exploiting statisti-
cal properties to segment speech into words has
gained prominence (Brent, 1999; Venkataraman,
2001; Batchelder, 2002). Relatedly, computational
models capitalizing on regularities between words,
in addition to within words, improve word boundary
recognition (Goldwater et al., 2009), especially by
reducing undersegmentation (falsely omitting word
boundaries).

2.2. Writing Systems without Whitespace

Word segmentation is an important topic for lan-
guages employing writing systems without explicit
word delimiters (e.g., Chinese, Japanese, Thai or
Khmer). Using word units was mainly needed for ef-
ficient functioning of traditional information retrieval
systems (Nie et al., 1996; Chen et al., 1997; Leong
and Zhou, 1997; Foo and Li, 2004). Simplifying
matters somewhat, the word segmentation meth-
ods related to statistical segmentation were based
on: (1) variants of dictionary based string match-
ing for Chinese (Chen and Liu, 1992; Sproat and
Emerson, 2003), Thai (Rarunrom, 1991; Virach,
1993), Khmer (Bi and Taing, 2014a), Japanese
(Sato, 1999); (2) statistical approaches for Chi-
nese (Sproat and Shih, 1990; Ge et al., 1999; Sun
etal., 1998), Thai (Pornprasertkul, 1994; Meknawin,
1995), Khmer (Huor et al., 2004a), Japanese (Mat-
sumoto et al., 2000; Kudo, 2006); (3) pipelines in-
volving the statistics and several other rules and
features (Meknavin et al., 1997). However, recent
research questions the necessity for word segmen-
tation by arguing that modern models based on


https://github.com/hrasto/segmentgraph

characters, instead of words, generalize better and
reduce overfitting (Li et al., 2019).

2.3. Vocabularies in modern NLP

In English-centric research, the traditional unit —
word or lemma — was just about rejected in favor
of subwords once neural networks became main-
stream (Mikolov et al., 2012). This shift was mainly
motivated by conveniences such as reduction of
vocabulary size and robustness in handling out-of-
vocabulary situations. Discounting linguistic rigor
and aiming for robust engineering, several algo-
rithms were developed to segment text into short
subword units. The methods were typically based
on a greedy compression algorithm: byte-pair en-
coding (BPE) (Gage, 1994; Sennrich et al., 2016),
and its derivatives (Schuster and Nakajima, 2012;
Kudo and Richardson, 2018).

Several studies further examined the effects of
segmentation on language modeling and related
tasks. Huck et al. (2017) found that using lin-
guistically informed segmentation (e.g., compound
splitting, prefix splitting, etc.) can improve ma-
chine translation (MT) performance over purely
compression-based segmentation. Domingo et al.
(2019) concluded that, while segmentation affects
MT performance, there is no clear winner in terms
of algorithms, as performance varies across lan-
guage pairs. In language modeling experiments,
Liu et al. (2019) found that there was a small advan-
tage in using BPE-derived tokens from characters
rather than bytes, and Gallé (2019) report that to-
kenizers producing fewer (thus longer) segments
perform better.

Lastly, research suggests that there are advan-
tages in using morphologically aligned subwords.
Bostrom and Durrett (2020) compared segmen-
tation produced by BPE to the Unigram method
(Kudo, 2018), and found the latter to produce more
morpheme-like tokens and ultimately outperform-
ing BPE. Similarly, Park et al. (2021) report advan-
tages in using segmentations produced by Morfes-
sor (Creutz and Lagus, 2005), an unsupervised
morphological segmentation system, over the BPE-
based segmentations. Both methods, Unigram
(Kudo, 2018) and Morfessor (Creutz and Lagus,
2005), try to maximize the probability of sequences
assuming the tokens are generated independently
of each other.

3. Background

In this section, we describe how language model
based sequence segmentation can be conceptu-
alized via graphs in three parts: (1) constructing a
graph where all possible segmentations (i.e., so-
lutions) correspond with paths from a source to a
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Figure 1: lllustrated unigram (a) and bigram (b)
segmentation graphs for the example sequence
ABC. In bold, we indicate how an example pair of
neighboring nodes, namely B and C, corresponds
with a single node in the bigram graph, B-C. Notice
how, in the bigram graph, the production of the
subsequence C is scored separately in the context
of B and AB (dashed box).

sink node, (2) equating the shortest path search to
the maximum likelihood model, (3) and extending
the graph to reflect higher order probability models.

3.1.

Suppose a sentence S of length m is the set of
atoms a, each being a tuple (position, character):

S = {317 ---7am} = {(Pl,cl), ey (pnacm)}

To segment the sentence means to divide it into
n subsets ™ = {wy, ..., w, }, which are (1) pairwise
disjoint (non-overlapping), (2) exhaustive (spanning
the entire sequence), and (3) subsequences, i.e.,
it must be possible to arrange the atoms of each
w such that the difference between any two suc-
cessive positions is equal to 1. We will denote by
Subseq(S) the set of all candidate subsequences
which can be formed from the original sentence.

Consider the example atomic sequence:

From Sequences to Graphs

S=aBCc ={(1,2),(2,B),(3,C)}.

To build the unigram segmentation graph, we first
enumerate all w € Subseq(S), namely:

Subseq(S) = {A, B, C,AB,BC,ABC}.

These form the basis for the graph vertices V. We
create the edges E by connecting each vertex w;
to an other vertex w;, if they are adjacent in S, i.e.
the maximal atom position in w; is exactly one less
than the minimal position in w;. The graph is then
completed by including a special begin and end



Word Morfessor BERT

EN TR ZH EN TR ZH EN TR ZH
# tokens 619M 41.0M 516M | 69.2M 58.4M 67.4M | 649M 59.1M 79.7M
# types 262.8K 774.9K 476.4K | 33.6K 180.6K 37.3K | 24.7K 20.7K 10.5K
tokens/sent. | 5.6 4.0 5.1 6.3 5.8 6.6 5.9 5.8 7.9
char./token | 3.8 5.7 1.6 3.4 4.0 1.2 3.6 3.9 1.0

Table 1: Corpus statistics. Notice that, using the Huggingface BERT tokenizer, (1) the segmentation was
nearly equivalent to character segmentation in case of Chinese (ZH; char./token=1), (2) on average, the
tokens were almost one third shorter than words in Turkish (TR), (3) and, in English (EN), the tokens
were only marginally shorter than words on average. A similar analysis holds for the case of Morfessor
based segmentations, the main difference to the BERT segmentations being that Turkish and Chinese
tokens were slightly longer, while English tokens were shorter, on average. The subword vocabularies
were roughly an order of magnitude more compact than word vocabularies, the largest ones emerging in

case of Turkish.

vertex, vg and vg, and (1) connecting the former to
all vertices where the minimal position is 1 (thus
A, AB, ABC), and (2) connecting vertices where the
maximal position is |S| = 3 (thus C, BC, ABC) to vg,
the end vertex. See Figure 1a for an illustration.

Solving the segmentation problem now corre-
sponds with finding the best path from vg to vg
among the set of all such paths — the solution set —
which we denote Paths(V, E).

3.2. Shortest Path and Maximum
Likelihood

The data structure is now suitable for the decoding
of the most likely sequence of segments according
to a probabilistic language model. Interpreting the
subsequences associated with the graph nodes
as the outcomes of a categorical random variable,
which is identically distributed (but not necessar-
ily independent across position), we can assign
each edge a weight that is based on the generation
probability of the node it points to.

Scoring any particular segmentation, i.e. path
7 € Paths(G), thus translates to computing the prod-
uct of edge weights:

L(m) = [] p(w).

weT

(1)

In practice, we maximize likelihood by minimizing
its negative logarithm (NLL):

argmin —log(L(7)) (2)

wEPaths(V,E)

Tbest —

allowing us to score a candidate path as the sum
of log-probabilities, because of this equivalence:

log(J] p(w)) = _ log(p(w)).
weTm wer
The problem formulation in terms of NLL is conve-
nient, because conventional pathfinding algorithms
are designed with the objective of minimizing the
sum of edge weights.
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3.3. Higher-Order Graphs

One way to create a higher order graph is by re-
cursively creating a linegraph-like version of its
previous-order graph, starting from the unigram
version (similarly to how higher-order state-spaces
are created in Markov models). Doing so once
transforms each pair of adjacent nodes into a new
node, now representing a bigram. An illustration
of such a bigram graph can be seen in Figure 1b.
The final shortest path in such a graph corresponds
with a probability model involving a single additional
dependency at every position in the sequence:

(3)

where the special vertices vg and vg can be inter-
preted as beginning-, and end-of-sentence tokens.
By repeating the procedure, any n-gram graph can
be derived.

L(?T) = p(W1|VB)"'p(Wm ‘Wm—l)p(VE|Wm)

4. Corpus

In the next sections, we present two experiments,
both of which were conducted on the basis of Open-
Subtitles 2 (Lison and Tiedemann, 2016), a movie
subtitle corpus, which is part of the OPUS corpus
(Tiedemann, 2012). We adapted the corpus by
taking the overlapping set of documents (movies)
between the English, Turkish and (simplified) Chi-
nese subtitles. The resulting intersection was then
pre-processed with the objective of keeping the
alphabet minimal and language specific: (1) low-
ercasing, (2) removing punctuation, (3) removing
characters that are not from the processed lan-
guage, (4) and replacing all digit strings with the
hashkey (#) character.

Lastly, we divided the corpus into a training and
testing portion, using 90% of the subtitle lines for
the former and 10% for the latter.

See the corpus statistics in Table 1.

2http://www.opensubtitles.org/



5. Experiment 1

The first experiment compares language model-
ing performance of three (sub-)word segmentation
strategies as a function of context size.

5.1.

We selected three competing types of segmenta-
tion: word segmentation, Morfessor based sub-
word segmentation, and segmentation produced
by popular tokenizers from the Huggingface python
library 3.

Segmentation Strategies

Word segmentation was obtained by simply tak-
ing the tokenized versions of the subtitle corpus.
According to Lison and Tiedemann (2016), the En-
glish subtitles were tokenized by the Moses toolkit
(Koehn et al., 2007) and the Chinese subtitles were
tokenized by the KyTea library (Neubig et al., 2011).

Morphologically similar subword segmentation
was obtained via the Morfessor library (Virpioja
et al., 2013). For English and Turkish, we trained
the unsupervised baseline model on word counts
provided by the latest edition of the MorphoChal-
lenge (Kurimo et al., 2010); for Chinese, we trained
on word counts derived from the training split of the
subtitle corpus.

BERT tokenizer subword segmentations were
obtained from the following pre-trained Hugging-
face models: ‘’bert-base-uncased’ for English,
‘"dbmdz/bert-base-turkish-uncased’ for Turkish, and
‘bert-base-chinese’ for Chinese. These tokenizers
are variants of the BPE (Sennrich et al., 2016) al-
gorithm and are arguably the most widely used
text segmenters in industry and academic research
related to modern language models.

5.2. Evaluation

For every combination of language and segmen-
tation type, we fitted an n-gram count-based lan-
guage model of order up to 5 on the training split
of the dataset, and evaluated it on the testing split.

The results are reported as average values of
bits-per-sentence (BPS), i.e. the sum of negative
log-probabilities of tokens in one line of the test
corpus:

BPS(r) = —log(L(r))

where L(r) is defined by Equation 1 for unigram
models, and Equation 3 for n-gram models where
n > 1. We used BPS rather than BPC* (bits-per-
character), because the former allows for easier

3https://huggingface.co
“BPC = BPS/|S|
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comparison between languages and, in this case,
only skews the results negligibly since the informa-
tion content was roughly controlled for by using the
same set of movies for each language.

Merely reporting the n-gram order as context
size would be misleading, because the size of a
particular n-gram with respect to the sentence size
depends on the segmentation strategy and lan-
guage. To account for this variability, we report the
context size as the fraction of sentence length (in
characters) that the portion of the n-gram used as
context amounts to on average. The exact value
was computed according to the following formula:

(n—=1)*«TL/(SL+n—1)

where n denotes the order of the n-gram, and TL, SL
denote the mean token and sentence length in
characters. The term n — 1 is added to the mean
sentence length in the denominator because we
pre-pended one single-character padding token for
every n-gram order increase above 1 to every sen-
tence.

We used the NLTK (Bird et al., 2009) implementa-
tion and the back-off strategy (Katz, 1987) to score
unseen words and n-grams: if a particular n-gram
does not exist, an (n — 1)-gram (containing one less
context token) is attempted. If all of the attempts
— including the unigram — fail, a logscore derived
from frequency 1 is used.

5.3. Results

The results are visualized in Figure 2.

A shared pattern across settings is the reduction
of surprisal with higher amount of context.

In the case of English, the differences in scores
between the segmentation methods were very
small across the entire observed range of context
size, and, in contrast to Turkish and Chinese, the
word segmentation scored marginally but overall
better than the other segmentations.

With Turkish, there was a stronger difference
between segmentation methods in terms of sur-
prisal reduction rate. While the word segmentation
was still the most optimal at the unigram setting, at
around 20% of sentence length used as context,
the ranking reversed in favor of the segmentations
with shorter tokens: Morfessor and BERT. Between
these two, however, the difference was minimal to
none.

For Chinese, we observed a similar pattern of
ranking reversal at around 20% of context size. The
difference to the case of Turkish was mainly an
overall faster decline of surprisal values, and an
additional difference in rates between Morfessor
and BERT segmentations, the latter ranking as
most optimal and fastest declining.



Bits per sentence as function of context size
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Figure 2: Results of the Experiment 1. The y-axis represents bits-per-sentence on the same scale for
each language. The x-axis values correspond with context size measured as proportion of sentence
length, 0 implying the unigram language model. The change in model order that modulates this metric (1
to 5, in increments of 1) results in different sentence length proportions due to differently sized tokens: a
single Turkish token covers, on average, longer fractions of the sentence than an English or a Chinese

token.

5.4. Discussion

Our results indicate that the optimal elementary unit
of analysis for language modeling is not universal,
but that it depends on the specific characteristics
of the language and writing systems.

Previous experiments in language modeling with
Chinese text demonstrated better performance
for character-based models compared to their
word-based counterparts (Li et al., 2019; Mielke
et al,, 2019), which aligns with our result of
word segmentation having higher surprisal rates
than character-based segmentation (BERT). Then
again, the slightly coarser Morfessor tokens did bet-
ter than character-based segmentation, indicating
that some chunking of Chinese characters might
be meaningful.

Similarly, in a study about the impact of Turk-
ish tokenization on language model performance,
Toraman et al. (2023) reported that models trained
on finer-grained BPE-based segmentations outper-
form more coarse morphological, word, and char-
acter based segmentations. Similarly, the BERT
and Morfessor-based segmentation outperformed
the word-based segmentation in our experiments.

Previous work comparing English tokenization
strategies mainly focused on subword segmen-
tations and recommends using morphologically
aligned segmentations over BPE-based techniques
(Mielke et al., 2019; Bostrom and Durrett, 2020;
Park et al., 2021). However, our results suggest
that the English word is not less optimal than other
subword units for segmentation. This may have
been overlooked in other studies in which the size
of context used to predict the next token was not
properly controlled for. Word-based segmentation
may also be less useful in practice because it re-
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quires a larger vocabulary.

Our finding that subword segmentations in Turk-
ish and Chinese benefit from more context is some-
what puzzling, since both Morfessor and BPE dis-
card between-token dependencies during training.
In the case of Morfessor, the addition of a prior term
regulating vocabulary size in the training procedure
could be a contributing factor.

6. Experiment 2

In the second experiment, the goal was to assess
the benefits of using a higher-order language model
to detect word boundaries. To put the effect in
perspective, we compare it to a baseline effect of
using an increasingly large language sample as
the basis for the language model.

To simulate word segmentation, we deleted any
within-sentence word boundary notation (i.e. all
punctuation and whitespaces) from the test corpus
on a per-sentence basis. Every such sentence was
then segmented by, first, constructing a segmenta-
tion graph (as described in Sections 3.1 and 3.3)
and, second, finding the shortest path (defined by
Equation 2). The procedure was repeated using
uni-, bi-, and trigram language models fitted on
word counts derived from increasingly larger sam-
ples of sentences, i.e. movie subtitle lines, of the
training corpus. The sentences were sampled with-
out replacement and in quantities ranging from 102
to 107 with integer increments in order of magnitude.
The 7th order of magnitude was the full corpus; for
all orders of magnitude less than that, we collected
3 differently seeded samples to account for random
variation.
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Figure 3: lllustrated results of Experiment 2. The x-axis depicts the corpus size as number of sentences
on a log-10 scale. Notice that, while the top value on the y-axis is always 100%, the bottom value is
language-specific due to widely different ranges overall. The points in green, corresponding with bigram
segmentation models, mostly overlap with the blue (trigram) points.

6.1. Evaluation

The solutions — paths in the segmentation graphs —
were converted to sequences of positive and neg-
ative labels that correspond with potential word
boundaries and indicate whether the position is a
boundary or not. The task was evaluated as bi-
nary classification, using accuracy, F1-score, recall
and precision as performance metrics. The labels
were not well balanced: more negative than pos-
itive cases are to be expected, but to a different
extent for each language. The proportion of cases
with the majority label determines our baseline ac-
curacy values.

We evaluated the results on a heldout test-set
containing 10000 sentences. The test set differed
slightly for each setting of the language model n-
gram order: for the unigram model, the sentences
were up to 100 characters long, for the bigram
model up to 40, and for the trigram model up to
30. We did this because of the different computa-
tional demands of the higher-order segmentation.
In practice, this means that the unigram models
were evaluated on a larger test-set, although only by
a little, because the distribution of sentence length
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was skewed towards values within the 30 character
range.

6.2. Results

The results are listed in Table 2. Given the overall
trends in Figure 3, we decided to aggregate the
order effects separately for small and large mod-
els, corresponding with the left and right ranges of
corpus size in the figure’s plots.

One immediate observation in the Figure 3 is
that, in comparison to the baseline effect of sam-
ple size, the model order had minimal effect on
all performance metrics. The largest, among the
small model order effects, was that of bigram vs.
unigram model i.t.o. recall. The increment to tri-
gram model, mostly resulted in no further benefits.
Overall, the accuracy values closely approached
the 100% mark in all three languages when the
sample size was the largest. Another general trend
was that of rapid recall onset, but lagging rise in pre-
cision, which also manifested in F1-scores some-
what lagging behind accuracy scores. With recall,
although being high in general, there was a subtle
decreasing trend in case of all unigram models.



English Turkish Chinese
Order Effect (models sized 10? to 10*)
1to2 1.583+ .45 1.22 + .96 0.21 = .11
2to3 0.31 .22 1.15+£1.02 0.00 = .02

Order Effect (models sized 10° to 107)

1to2 0.53+.08 0.54 + .10 0.41 + .17
2t03 -0.11 +.06 0.23 + .19 -0.05 + .03
Sample Size Effect

2to3 1255+142 -9.06+2.19 8.73+0.78
3to4 11.14+0.79 16.70+1.33 4.07 + 0.53
4t05 6.15+0.47 11.48 +0.81 6.61 +0.55
5t06 1.39+0.09 3.15+0.24 3.51+0.14
6to7 0.35+0.08 0.77 £ 0.04 1.01 £ 0.14

Table 2: Results of the Experiment 2. The unit
value is percentage of accuracy in word boundary
classification. The upper portion of the table ag-
gregates the effects of increasing the model order
in language models trained on small corpora, the
center part on larger corpora. The lower part lists
the effects of corpus size i.t.0. increments in order
of magnitude.

In English, the increase in accuracy was largely
due to the sample size increments from 102 to 10°.
From 10° on, the accuracy was > 99%. The effect
of increasing the model order from 1 to 2 in the
smaller models was dwarfed by the sample size
effect; with larger models, however, its value of
0.53% was non-negligible compared to the sample
size effects (1.39%, 0.35%).

In Turkish, we found the singular case of de-
crease in accuracy due to an increase in sample
size, namely from 102 to 103, matching a dip in
precision at this value. The baseline accuracy for
Turkish was the highest, and surpassed only by
models trained on 10° and more sentences. The
observations about the effect of model order in En-
glish also translate to Turkish.

In Chinese, although the accuracy values grew
the slowest, the difference to baseline values was
the largest. The pattern of quick onset of recall and
lagging precision was also the most marked. The
effect of model order was weak with the smaller
models, but, with larger models, the increment from
1 to 2 resulted in an accuracy increase of 0.41%,
which is non-negligible in comparison to the sample
size effect from 10° to 107 of 1.01%.

6.3. Discussion

The results indicate that, for statistical word seg-
mentation, working with a high quality language
sample is important. Segmenting the text with a
bigram instead of unigram model can result in fur-
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ther increase in accuracy, although this effect is
subtle and only relevant once the language sample
is representative enough.

This finding supports the current trend of us-
ing unigram-decoder based text tokenizers, which
are convenient for their low computational require-
ments. However, for use-cases where accuracy
matters, such as recovering words or morphemes
— tokens with precise linguistic definitions —, bigram
model based segmentation is recommended. In fu-
ture work, it would be interesting to explore whether
higher-order segmentation aids in, e.g., morpho-
logical segmentation or syllabification.

The decline in recall between the unigram and
bigram based segmentations is in line with the find-
ings of Goldwater et al. (2009), who connected the
independence assumption to undersegmentation.
In our findings, larger unigram models did not have
problems over-diagnosing boundaries. Although
the sensitivity dropped somewhat for unigram mod-
els, the higher-order models did not suffer a decline.

7. General Discussion

The two presented experiments explore two differ-
ent aspects of the role of context in text segmen-
tation. The first experiment examined the differ-
ence context makes when evaluating competing
segmentation methods. The second experiment
looked at the effect of context on statistical word
segmentation.

The results suggest that context plays a defini-
tive role in evaluating segmentation methods: the
optimal way to encode language is specific to the
amount of context used for discovering the regular-
ities in token occurrence. However, we observed,
that this is language specific. Surprisingly, our find-
ings also revealed that English word segmentation
was on par with the two subword segmentations.

Looking at statistical word segmentation only,
the role of context was observable but in small
magnitude. While perhaps trivial, this observa-
tion is reassuring. It suggests that the inference of
distributions governing the sub-lexical regularities
(i.e., tokenizers) does not depend on jointly infer-
ring super-lexical regularities, which would severely
complicate the procedure. It further implies that,
to the extent that written text mirrors properties of
spoken language, this offers an explanation on how
children can learn to discern words while being un-
aware of higher-level dependencies between them
due to, e.g., syntax or semantics, which they learn
at later stages of development.



8. Conclusion

The role of preceding text in tokenization was man-
ifested in two ways. When comparing the difficulty
in modeling differently tokenized corpora, our re-
sults indicate that the assessment may fully reverse
when context is involved compared to when it is
absent. In light of a word segmentation experiment,
the role was more subtle: word boundaries were
only marginally more accurately recognized when
using context-sensitive, rather than context free,
methods to score the hypotheses.
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