
Second Workshop on Computation and Written Language (CAWL 2024) @LREC-COLING-2024, pages 18–22
May 21, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

18

Tool for Constructing a Large-Scale Corpus of Code Comments and
Other Source Code Annotations

Luna Peck, Susan Windisch Brown
University of Colorado Boulder

{luna.peck, susan.brown}@colorado.edu
Abstract

The sublanguage of source code annotations—explanatory natural language writing that accompanies programming
source code—is little-studied in linguistics. To facilitate research into this domain, we have developed a program
prototype that can extract code comments and changelogs (i.e. commit messages) from public, open-source code
repositories, with automatic tokenization and part-of-speech tagging on the extracted text. The program can also
automatically detect and discard "commented-out" source code in data from Python repositories, to prevent it from
polluting the corpus, demonstrating that such sanitization is likely feasible for other programming languages as well.
With the current tool, we have produced a 6-million word corpus of English-language comments extracted from three
different programming languages: Python, C, and C++.

Keywords: text extraction, corpora, code comments

1. Introduction

Within the already-dizzying number of human lan-
guages spoken around the world, one can find an
even greater number of sublanguages: niche sub-
sets of a language that emerge for specialized pur-
poses. While some sublanguages, such as cook-
ing recipes (e.g. Brdar-Szabó and Brdar, 2009;
Gerhardt et al., 2013; DiMeo and Pennell, 2018),
have received widespread linguistic attention, oth-
ers, such as source code annotations, remain woe-
fully understudied.

To the end of eventually developing a large, well-
curated corpus of source code annotations, we
have developed a tool1 for automatically extract-
ing such data from source code repositories. By
"source code annotation," we are referring to ex-
planatory natural language writing that accompa-
nies formal language programming source code.
Examples include comments, changelogs (commit
messages)2, and documentation.

The current version of the program builds a
corpus of approximately 6-million words, across
90,461 changelogs and 76,445 comments, taken
from three English-language repositories written in
the program’s supported programming languages:

1https://github.com/lunaria-bee/ccc-
tools/tree/cawl2024-docs

2"Changelog" is a generic term we have chosen to
refer to any description of changes made to the source
code. In the current version of the tool and its result-
ing corpus, "changelog" is synonymous with "commit
message." However, some codebases, such as those
that are not under version control, may log changes in
other ways, e.g. simply with comments. The use of
"changelog" anticipates a possible future version of this
tool that extracts data from such repositories.

Python (django3), C (libvirt4), and C++ (dlib5).
These repositories were chosen as they host code
for well-established, widely-used software imple-
mented in the languages currently supported by
the program. The program automatically performs
tokenization and part-of-speech tagging on the ex-
tracted data. The program does not currently spe-
cially extract documentation, and documentation
that is encoded as comments (e.g., Doxygen) is
not differentiated from other comments.

We have discovered that code comments in par-
ticular are a very messy domain, requiring much
sanitization, such as:

1. Resolving inconsistent encoding and stripping
invalid characters (e.g., a changelog contained
a bell character, unicode 0x07).

2. Identifying and discarding source code that
has been disabled by "commenting it out."

3. Identifying snippets of code embedded in nat-
ural language comments and preprocessing
them before annotation (e.g., part-of-speech
tagging).

The program currently performs (1)6 and (2) au-
tomatically7. (3) will be handled in a future version
of the program. Due to space constraints, we have
only devoted significant discussion to how we have

3https://github.com/django/django
4https://github.com/libvirt/libvirt
5https://github.com/davisking/dlib
6Although we are handling this somewhat reactively,

with special handling added for each new inconsistency
as it is encountered.

7Although (2) currently only functions for comments
in Python code.

https://github.com/lunaria-bee/ccc-tools/tree/cawl2024-docs
https://github.com/lunaria-bee/ccc-tools/tree/cawl2024-docs
https://github.com/django/django
https://github.com/libvirt/libvirt
https://github.com/davisking/dlib

19

approached (3), as we consider it the most inter-
esting of the challenges to which we have some
solutions.

2. Motivations and Prior Work

This project was inspired by previous (unpub-
lished) work in which we made basic analyses of
source code annotations from a small, largely hand-
collected dataset. While the smaller dataset was
adequate for primarily qualitative analysis, substan-
tive statistical linguistic analysis demands larger
datasets.

Source code annotations are particularly inter-
esting in that they exist almost purely in written
form. While they interact with the often-spoken
sublanguage of software development jargon, com-
ments themselves are both constructed and inter-
preted overwhelmingly as written language. Fur-
ther, source code annotations offer an unusual op-
portunity to study the ways natural language inter-
acts with formal languages: How does writing about
formal language influence our production choices in
natural language? Are such influences consistent
or varied across different formal + natural language
pairings?

There is little existing purely linguistic research
into this domain. Much existing work has focused
on instrumental tasks, like automatically generating
comments from source code (Song et al., 2019), au-
tomatically generating changelog messages from
source code (e.g. Cortés-Coy et al., 2014), and
automatically generating source code from natu-
ral language prompts (e.g. Barone and Sennrich,
2017; Wei et al., 2019). Even for such instrumental
purposes, having a linguistic corpus of source code
annotations should prove valuable; the better we
understand how programmers write about code,
the better we can create tools to translate between
natural language and source code.

The small amount of purely linguistic research on
the topic has primarily involved Letha Etzkorn (Et-
zkorn et al., 2001; Vinz and Etzkorn, 2008). This re-
search studied the linguistics of code comments in
11 C++ packages, as opposed to this project, which
aims to construct a corpus of multiple annotation
types extracted from multiple different programming
languages. To our knowledge, the corpus used in
Etzkorn et al.’s research has not been published.

A similar project to automatically extract source
code annotations from source repositories has
been conducted (Barone and Sennrich, 2017), al-
though that project was much more limited in scope
than this current project. The Barone & Sennrich
project focused only on extracting docstrings8 from
Python programs. This current project, on the other

8In-source documentation, see
https://peps.python.org/pep-0257/.

hand, aims to extract a broad range of annotations
from source code, including comments, changel-
ogs, and eventually documentation.

Automatically filtering comments for linguistic
use has been previously explored (Matskevich and
Gordon, 2022). Similarly to Barone and Sennrich
(2017), this research focused only on comments,
excluding other forms of source code annotations.
Nonetheless, the preprocessing techniques de-
scribed by Matskevich and Gordon (2022) will al-
most certainly be useful for data sanitization in fu-
ture versions of this tool.

3. Data Structure

Corpus data is stored as XML. Each source code
annotation, be it a changelog or comment, is gener-
ically referred to as a "note." The XML structure
for each corpus file contains a root node, named
<notes>, that in turn contains a series of <note>
elements, each representing a single source code
annotation.

Each <note> element contains the raw text of
the annotation, its tokenization and part-of-speech
tags, and assorted metadata, represented by the
following subelements:

• <author>: First 8 bytes of the SHA-256
hash of the author’s version control username.
When an annotation has multiple authors,
there is one author subelement per author.

• <repo>: Name of the repository the data
came from.

• <revision>: First 7 nibbles9 of the revision
hash, as provided by Git. The first 7 nib-
bles of the hash is the same ID scheme used
by GitHub. When an annotation was edited
across multiple revisions, there is one revi-
sion subelement per revision.

• <note-type>: One of ’changelog’ or ’com-
ment’.

• <language>: Programming language the
data was extracted from. Only applicable for
comments, not changelogs.

• <file>, <first-line>, & <last-line>:
Path to the file a note was extracted from, and
the span of lines within that file on which it
appears. Only applicable for comments, not
changelogs. Facilitates finding the source
code associated with a comment.

• <raw>: Raw text of the annotation, in which
comment delimiters (if applicable) and new-
lines & other whitespace are preserved.

9A half-byte, i.e. four bits.‘

https://peps.python.org/pep-0257/

20

<note >
<repo > d l i b </ repo >
<author >0e8171ad9c374e5d </ author >
< rev i s i on >754da0e </ rev i s i on >
<note − type >comment</ note − type >
< f i l e >repos / d l i b / d l i b / a lgs . h </ f i l e >
< f i r s t − l i n e >205</ f i r s t − l i n e >< l as t − l i n e >206</ l as t − l i n e >
<language >c </ language ><
raw > / / se t the i n i t i a l guess f o r what the roo t i s depending on

/ / how big value i s
</ raw><

tokens >set the i n i t i a l guess f o r what the roo t i s depending on how big value i s
</ tokens >
<pos>VB DT JJ NN IN WP DT NN VBZ VBG IN WRB JJ NN VBZ</ pos>

</ note >

Figure 1: An example <note> element.

• <tokens>: Tokenized text. Comment delim-
iters (if applicable) and original whitespace are
stripped from the data. Spaces represent word
token separators, and newlines represent sen-
tence token separators.

• <pos>: Part-of-speech annotations aligned to
the tokenized text. Like in the <tokens> subele-
ment, spaces represent word token separators,
and newlines represent sentence token sepa-
rators. The tags are those assigned by NLTK’s
nltk.tag.pos_tag() function (Bird et al.,
2009). A future version of the program may in-
clude a part-of-speech tagger designed for the
specific domain of source code annotations.

4. Data Extraction

4.1. Comments
The program checks each file in each repository
against parsers10 for each supported programming

10Python’s built-in ast.parse() method for Python,
libclang for C and C++.

Actual
Natural Code

Predicted Natural 50 0
Code 40 10

Figure 2: Confusion matrix showing efficacy of
our approach to identifying commented-out Python
code on random samples of 50 comments pre-
dicted to be natural language and 50 comments
predicted to be code. Taking Natural Language
(i.e. inclusion in the corpus) as the positive label:
Precision=1.0, Recall=0.56.

language. If a file validates as a valid source file in a
supported language, the contents of the file will be
tokenized by an appropriate parser11. If two or more
comment tokens appear across consecutive lines,
those tokens are grouped into a single comment.

As the purpose of this corpus is to study natural
language text, programming code that has been dis-
abled by "commenting it out" should not be included
in the dataset. Automated detection of commented-
out source code proved somewhat tricky. It is not
sufficient to discard any comment that could be in-
terpreted as valid code, as there are many possible
natural language comments that look like source
code to the right parser. For example, all of the
following are valid Python code:

• Single words: e.g., deprecated

• A word followed by another word in parenthe-
ses: e.g., Tests (Final)

• Words separated by mathematical operators
like +, -, *, or /: e.g., Pre-increment/decrement

Naïvely discarding any comment that parses as
programming code risks removing valuable data
from the corpus, and so a smarter approach is in
order.

After experimenting with several different ap-
proaches, for Python we settled on the following
policy: A comment is discarded as commented-out
code if (1) its contents are valid Python code and (2)
it contains parentheses, square brackets, equals
signs, periods, or the word "return".

These rules work quite well, discarding:
• Function calls and object construction: e.g.,

Color(0, 0.56789, 0, .5).

11Python’s built-in tokenize library for Python, lib-
clang for C and C++.

21

I d e n t i f i e d using the f o l l o w i n g command :

$ g i t grep − I ’ \ (\ < [_a−zA−Z0 − 9] \ + \ > \) ∗= ∗ \1 ∗[−+/∗^%&|<>@] ’

Figure 3: Bash snippet with git command embedded in a changelog.

• Indexing: e.g., text[col-1].

• Assignments: e.g., ay += node.y.

• Subscripting: e.g., self._trigger_layout.

• Return statements: e.g., return None.

. . .while keeping many natural language com-
ments that coincidentally resemble source code:

• Initialize

• todo: remove

• --Save/Cancel

This approach does sometimes discard natu-
ral language comments we would probably want
to keep, such as return everything in strings, dis-
carded due to the presence of the keyword "return",
causing this to resemble an instruction to return
whether everything is present in some collection
strings. Although discarding such data is unfor-
tunate, we have decided to prioritize precision over
recall in this task, as we deem polluting the dataset
with source code more damaging than discarding
some potentially useful data. This over-discarding
could likely be ameliorated by augmenting these
symbolic rules with a learned model that classifies
strings into code and non-code.

The program currently does not attempt to iden-
tify commented-out C/C++ code. libclang is not
designed for parsing fragments of C/C++, expect-
ing to produce a full translation unit from any input.
One option for overcoming this limitation would be
to attempt to parse the AST output by libclang12

against a simplified C++ grammar. Another option
would be to rely entirely on a learned model for
identifying commented-out C/C++ code.

Author and revision information for each com-
ment are retrieved using the git blame com-
mand, which provides the most-recent commit mod-
ifying each line of a file.

4.2. Changelogs
Currently, all data included in the corpus comes
from Git repositories, so the program can trivially

12libclang’s parse() method produces an AST even
for invalid input.

extract revision information from each repository’s
commit history. The raw text of the changelog note
is simply the commit message, the author is the
author of the commit, and the revision is the revision
created by the commit.

5. NLTK Reader

The demonstration corpus may be explored using
the CccReader() class, an extension of NLTK’s Cat-
egorizedCorpusReader and XMLCorpusReader
classes (Bird et al., 2009). It provides the general
functions one expects of an NLTK reader: words(),
sents(), etc.

6. Future Work

6.1. Handling Code Snippets
While comments that consist entirely of source
code should be removed from the corpus, com-
ments and changelogs that include snippets of
code embedded within natural language text (of-
ten for illustrative purposes) are quite common and
should be included in the corpus. However, these
source code snippets tend to confuse automated
annotation functions (such as those responsible for
part-of-speech tagging), as natural language con-
cepts such as part of speech do not map cleanly
to source code. Therefore, such snippets must be
identified and given special handling.

Identifying code snippets in source annota-
tions is much more challenging than identifying
commented-out code, for two main reasons:

• As commented-out code is discarded, and dis-
carding some potentially-useful data is more
acceptable than polluting the corpus with
source code, that algorithm can simply err on
the side of over-discarding. This algorithm,
however, would need to identify source code
snippets in data that has already been included
in the corpus, demanding much higher accu-
racy.

• The algorithm for discarding commented-out
code examines each comment in its entirety.
Identifying code snippets, however, would re-
quire identifying all spans of text that should be
considered source code. Thus, the algorithm

22

doesn’t have to be run against one string, but
many substrings of each source annotation.

• Source code snippets are not guaranteed to be
written in the same language as the surround-
ing source code. Consider the Bash snippet
in Figure 3.

6.2. Tracking Repositories Across Time
Currently, the program takes a snapshot of each
repository at a particular revision level, to ensure
that all users invoking the program receive the
same corpus as output. However, tracking repos-
itories across multiple revisions could potentially
provide useful data regarding how programmers
revise comments as code evolves, and allow di-
achronic analysis of source code annotations.

7. Conclusions

Based on the work completed here, it seems quite
feasible to build a corpus of source code annota-
tions much larger than the 6-million-word corpus
produced at this time. Although not all of the nec-
essary work can be automated, in our opinion the
task is automatable enough to justify pursuing the
project further. We intend to continue developing
this project, with the goal of building a larger, more
diverse corpus of source code annotations, to fur-
ther develop our understanding of this little-studied
domain of human language.

8. Bibliographical References

Antonio Valerio Miceli Barone and Rico Sennrich.
2017. A parallel corpus of python functions and
documentation strings for automated code docu-
mentation and code generation. ArXiv.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: an-
alyzing text with the natural language toolkit. "
O’Reilly Media, Inc.".

Rita Brdar-Szabó and Mario Brdar. 2009. Indirect di-
rectives in recipes: a cross-linguistic perspective.
Lodz Papers in Pragmatics, 5(1):107–131.

Luis Fernando Cortés-Coy, Mario Linares-Vásques,
Jairo Aponte, and Denys Poshyvaynk. 2014. On
automatically generating commit messages via
summarization of source code changes. In 2014
IEEE 14th International Working Conference on
Source Code Analysis and Manipulation, Victoria,
BC, Canada.

Michelle DiMeo and Sara Pennell. 2018. Reading
and writing recipe books, 1550–1800:. Manch-
ester University Press, Manchester, England.

Letha H. Etzkorn, Carl G. Davis, and Lisa L. Bowen.
2001. The language of comments in computer
software: A sublanguage of english. Journal of
Pragmatics, 33(11):1731–1756.

Cornelia Gerhardt, Maximiliane Frobenius, and Su-
sanne Ley, editors. 2013. Culinary Linguistics.
John Benjamins.

Sergey Matskevich and Colin S. Gordon. 2022. Pre-
processing source code comments for linguistic
models.

Xiaotao Song, Hailong Sun, Xu Wang, and Jiafei
Yan. 2019. A survey of automatic generation of
source code comments: Algorithms and tech-
niques. IEEE Access, 7:111411–111428.

Bradley Vinz and Letha Etzkorn. 2008. Comments
as a sublanguage: A study of comment gram-
mar and purpose. In Proceedings of the 2008
International Conference on Software Engineer-
ing Research and Practice, SERP 2008, pages
17–23.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin.
2019. Code generation as a dual task of code
summarization.

https://doi.org/https://doi.org/10.48550/arXiv.1707.02275
https://doi.org/https://doi.org/10.48550/arXiv.1707.02275
https://doi.org/https://doi.org/10.48550/arXiv.1707.02275
https://doi.org/doi:10.2478/v10016-009-0006-x
https://doi.org/doi:10.2478/v10016-009-0006-x
https://doi.org/10.1109/SCAM.2014.14
https://doi.org/10.1109/SCAM.2014.14
https://doi.org/10.1109/SCAM.2014.14
https://doi.org/10.7765/9781526129901
https://doi.org/10.7765/9781526129901
https://doi.org/https://doi.org/10.1016/S0378-2166(00)00068-0
https://doi.org/https://doi.org/10.1016/S0378-2166(00)00068-0
https://www.jbe-platform.com/content/books/9789027271716
http://arxiv.org/abs/2208.11235
http://arxiv.org/abs/2208.11235
http://arxiv.org/abs/2208.11235
https://doi.org/10.1109/ACCESS.2019.2931579
https://doi.org/10.1109/ACCESS.2019.2931579
https://doi.org/10.1109/ACCESS.2019.2931579
https://doi.org/https://doi.org/10.48550/arXiv.1910.05923
https://doi.org/https://doi.org/10.48550/arXiv.1910.05923

	Introduction
	Motivations and Prior Work
	Data Structure
	Data Extraction
	Comments
	Changelogs

	NLTK Reader
	Future Work
	Handling Code Snippets
	Tracking Repositories Across Time

	Conclusions
	Bibliographical References

