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Abstract

We describe a new weakly supervised method
for sentence-level event detection, based exclu-
sively on linear prototype patterns. We propose
a BERT based algorithm for approximate pat-
tern matching to identify event phrases, seman-
tically similar to these prototypes. To the best
of our knowledge, this is the first time a similar
approach is used in the context of event detec-
tion. We experimented with two event corpora
in the area of disease outbreaks and terrorism
and we achieved promising results in sentence
level event identification, 0.78 F1 score for new
disease cases and 0.68 F1 for terrorist attacks.
Results were in line with two state-of-the art
systems, based on supervised ML and sophisti-
cated linguistic rules.

1 Introduction

Early event extraction systems predominantly rely
on pattern matching and linguistic rules (Xiang and
Wang, 2019). This approach remains particularly
effective in well-defined domains, such as disease
outbreaks, biomedical papers, disasters, security,
and socio-political developments, where language
is clearly structured Tanev et al. (2008); Valenzuela-
Escércega et al. (2015); Nitschke et al. (2022).

In specific contexts, linguistic rules can offer
competitive precision and enhanced transparency
compared to machine learning (ML) models (Chiti-
cariu et al., 2013). Linguistic rules can also be
used for automatic corpus annotation, when new
domains of event extraction are being considered
and no training data is available (Wang et al., 2019).
The transparency inherent in linguistic rules is par-
ticularly vital in real-world event extraction appli-
cations. End users can provide feedback on the per-
formance of specific keywords and phrases, thereby
improving the accuracy and breadth of the rule set.

In this work we argue that the combination of
manually crafted linear patterns and Large Lan-
guage Models (LLM) is a promising avenue for
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combining the strengths of the knowledge based
approaches and the LLM in the domain of event
detection. We experimented in the domains of se-
curity and health, but we think that the approach
is applicable across a wide range of domains and
event classes. LLM like BERT (Devlin et al., 2018)
offer the capability to create utterance abstractions,
using the contextualized word embeddings, which
can be received from the embedding layer of the
BERT neural network, see Figure 1. In the context
of event detection, this allows for creating simple
linear patterns as prototypes, e.g. "people have got
a disease", and using the BERT contextualized em-
beddings of both prototypes and analysed text to
find the semantic relation between the patterns and
their lexical variations in the text, e.g. "children
have got influenza".

More concretely, we propose the following ap-
proach, starting with prototype patterns (here we
consider the event types new disease cases and
terrorist attacks) like "disease outbreak"”, "number
people were infected” or "bomb exploded”, to dis-
covers in the test set sentences containing text frag-
ments, containing words with similar BERT embed-
ding vectors - "influenza outbreak", "COVID was
discovered in 2 foreign nationals", or "blast killed",
etc. These phrases are supposed to be semantically
similar to the prototypes, because of their similarity
in the BERT encoding. Our experiments demon-
strated that BERT-based pattern matching is able
to infer event mentions which have significant lex-
ical and syntactic differences with respect to the
prototype patterns.

We tested our approach on the task of detecting
sentences containing events of a predefined event
type. Two event classes were considered in our ex-
periments: new disease cases and terrorist attacks.
For both of them we achieved performance much
higher than the baseline. Moreover, for the event
type new disease cases, the achieved performance
was in line with other systems, based on supervised
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Figure 1: BERT contextualized embeddings
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2 Related work

Event detection at various levels: token, sentence
and document level has been largely addressed
in previous work. The CASE shared task on
protest detection and the participating systems
(Hiirriyetoglu et al., 2021) tackle event detection at
all the three levels. Various methods for sentence-
level event detection are studied in Naughton et al.
(2010).

A survey of the existing event detection and ex-
traction approaches were presented in (Hogenboom
etal.,, 2011) and (Xiang and Wang, 2019)

Pattern matching is a well established method
for extracting event triggers and arguments. Ear-
lier event extraction systems massively exploited
lexico-syntactic patterns (Xiang and Wang, 2019).
Most of these systems used domain specific gram-
mars and ontologies in complex linguistic patterns.
It is noteworthy that some of the state-of-the-art sys-
tems in the domain of security use linear patterns
and linguistic rules Tanev et al. (2008); Atkinson
et al. (2013); Nitschke et al. (2022). Similarly, rule-
based event extraction is used in the biomedical
domain Bui et al. (2013); Valenzuela-Escarcega
et al. (2015).

Related to the prototype pattern matching we
propose here, is another BERT based entity match-
ing approach (Paganelli et al., 2022). BERT pattern
matching is also used in Question Answering to
find similar questions (Wang et al., 2020). Super-
vised learning, considering event triggers, is de-
scribed in several works: (Liao et al., 2021), (Hao
et al., 2023), (Lai et al., 2021), and (Tuo et al.,
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2023).

3 The approach

The approximate pattern matching approach is de-
signed to identify in a test corpus the sentences
containing event descriptions. At the same time,
the algorithm identifies an n-gram in each of these
sentences, matching best one of the prototypes.

In our experiments we considered two event
types - new disease cases and terrorist attacks,
however we think that the method is applicable
across various domains and event classes.

3.1 User-Generated Pattern Set

The foundation of our method rests on an input set
of prototypes, which are linear event detection pat-
terns. The prototypes are phrases describing event
triggers together with the most important event
arguments, such as actors or victims. In this exper-
iment, we used as triggers and arguments generic
concepts, such as "disease", "people"”, "sick", etc.
A sentence containing a phrase semantically similar
to one of the prototype patterns should indicate the
presence of the targeted event. In the context of dis-
ease outbreak detection, relevant patterns include
"people got disease," "people are sick," "new cases
of disease," and "disease outbreak," encapsulating
generic concepts such as "people" and "disease."
To perform approximate pattern matching, we
leverage BERT context embeddings (Figure 1),
comparing the token embeddings of each pattern
with the token embeddings of the test sentence.
The vector sequence matching is described in the
following subsection. The matching process en-
ables the identification of texts containing more



Corpus Event type All sent. | Positive sent. | Patterns
Disease outbreaks New disease cases 212 62 40
Political violence and disasters | Terrorist attack 994 97 21

Table 1: Test data and evaluation settings
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Figure 2: Comparing pattern and a sentence

concrete concepts or synonyms instantiating the
generic ones from the prototypes, illustrated by
event phrases like "students got influenza," "men
are ill," "new cases of COVID," and "zika out-
break."

In our experimental configuration, we opted for
the use of generic concepts, such as "people” in
the input set of patterns, driven by the simplicity in
pattern creation. Nevertheless, we have to acknowl-
edge that the incorporation of concrete concepts,
such as in "children got flu," is also a viable proto-
typing approach.

3.2 Calculating sentence eventness via
approximate pattern matching

Given a set of event detection patterns

Patterns = p1,p2, ..., pn and a sentence s,

the approximate pattern recognition is used to cal-
culate the sentence eventness of s, a non probabil-
ity function in the interval [0, 1], which shows how
well the best pattern from the sequence matches
the text.

Since patterns should be created in such a way
that they describe unambiguously an event, the
eventness score should also be indicative about
the likelihood of s containing an event of the spec-
ified class. Clearly, various discourse phenomena
like questioning, conditional statements, negation,
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semantic ambiguity and others can play a role in
preventing pattern matching from estimating cor-
rectly the sentence eventness.

Below, we outline the procedure for calculating
the "eventness" of a sentence s. Steps 1 to 5 of this
algorithm are also shown on Figure 2.

1. Each pattern p; = wiwa...w;, , where wy, is
a word, generates a sequence of BERT em-
bedding vectors, one for each word wy. The
sequence is denoted as es(p;).

2. From s, all word ngrams with size between
2 and 20 words are generated, denoted as

ngrams(s).

For example, for the sentence s ="The
crowd in Damascus shouted slogans.",
ngrams(s) ={"crowd in Damascus", "crowd

in Damascus shouted", crowd in Damascus
shouted slogans", "Damascus shouted", "Dam-

ascus shouted slogans", "shouted slogans"}

3. The sentence s is transformed into a sequence
of word embedding vectors es(s), in the same
way es(p;) was obtained in step 1.

4. For each ngram ng € ngrams(s), its subse-
quence of corresponding embedding vectors is
taken from es(s). For example, for the ngram



Event type a=0.6 | a=0.65| a=0.7 | Baseline
New disease cases 0.75 0.78 0.65 0.32
Terrorist attack 0.61 0.68 0.68 0.09
Macro average 0.68 0.73 0.67 0.21

Table 2: F1 score for various thresholds and baseline "exact pattern matching"

"crowd in Damascus", we will take the sec-
ond, third and fourth embedding vector from
es(s). We denote the subsequence of embed-
ding vectors for ng as ses(ng, s).

Finally, we propose a similarity function esim
for comparing sequences of embedding vec-
tors and calculating the eventness of s, ev(s),
via the following formula:

ev(s) = maxp nq esim(es(p), ses(ng, s)),
where p € Patterns,ng € ngrams(s).

If ev(s) > «, then s is considered a sentence
containing an event. The threshold « is being
set empirically.

We describe in details the eventness calculation
in Appendix A and in Figure 3.

4 Experiments

To assess the efficacy and adaptability of our event
detection methodology, we collected a test set of
two distinct event corpora, each derived from a dis-
parate domain: disease outbreaks (Piskorski et al.,
2023) and politically motivated violence and dis-
asters (Atkinson et al., 2017a). A unique targeted
event type was specified for each corpus. Table 1
shows the parameters of the corpora and the tar-
geted event types.

Our approach involves the systematic crafting
of a set of carefully tailored linear patterns for the
specific event types. The formulation of patterns
drew upon insights derived from a development set,
encompassing 300 sentences extracted from each
respective corpus. This was done in the following
steps:

1. We have created an initial set of patterns using
our knowledge of the domain, getting addi-
tional insights from the development set.

Then, we matched these patterns on the sen-
tences from the development corpus, using
our approximate pattern matching algorithm.

. We analyzed in random a subset of the false
positives and false negatives.
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4. We deleted patterns generating many false pos-
itives and created new patterns to detect the
false negatives

5. This pattern development cycle was repeated
several times (3-7) for each event type.

Generally, the creation of linguistic patterns is a
intricate process, usually encompassing a combi-
nation of machine learning techniques and expert
assessment (Tanev et al., 2009). However, in this
study, our approach involved crafting patterns pri-
marily based on linguistic expertise, with the devel-
opment set used to assess their coverage and pre-
cision. The pattern development process was not
the central focus of our work. Instead, we followed
a pragmatic approach akin to what an average pat-
tern developer might undertake, aiming for optimal
results without substantial time investment.

In order to test the accuracy of the prototypes, we
randomly selected a test subset from each corpus,
non overlapping with the development set. Table 1
provides a comprehensive overview of the param-
eters defining each test set. These encompass the
corpus name, targeted event type, total sentence
count, and the frequency of positive instances (the
sentences featuring the targeted event type), along
with the number of developed linear patterns.

Before we run the algorithm, we had to set the «
eventness threshold. Our observation on the devel-
opment set was that the threshold delivers meaning-
ful results in the interval 0.6 to 0.7. Therefore, we
have run the evaluation with three different values
for a: 0.6, 0.65, and 0.7.

We applied our approximate pattern matching
detection of sentences on each corpus for each of
the three « threshold values. Table 2 reports the
obtained F1 score for each of the three thresholds.

We have also defined a baseline - exact pattern
matching: if even one pattern is contained as a sub-
string in a sentence, then the sentence is considered
to contain an event. In Table 2 we report the F1
measure of this baseline.

Experiments showed that our method outpaced
by a considerable margin the baseline. At the same



Matching n-gram with surroundings

Pattern

...the number of confirmed COVID-19 cases...

The number of Zika virus cases has crossed 100 ...

...raising the death toll due to the disease to 11 ...

...the situation where the observed number of cases exceeds...
...the number of people testing positive for the infection rose...
...321 new domestically transmitted coronavirus cases...
...proportion of those testing positive to the total tests...

...New clusters of coronavirus infections are igniting concerns...
...new confirmed coronavirus infections have hit a record...

number of infected

number of infected

death toll from the outbreak
number of infected

testing positive for virus
confirmed disease cases
number of infected

new infection cases
confirmed disease cases

Table 3: Patterns and their matching n-grams with the surrounding sentence fragment

time, the performance of the event class new dis-
ease cases achieved quite promising F'1 score. Al-
though conducted on different test sets, it is worth
mentioning that this F'1 score is in line with the ac-
curacy achieved by some supervised systems in the
outbreak detection domain. (Conway et al., 2009;
Khatua et al., 2019).

Approximate pattern matching showed lower ac-
curacy on the terrorist attacks with respect to the
disease cases detection, still the F'1 score stayed
close to the performance of another early event ex-
traction system in the area of security (Tanev et al.,
2008; Atkinson et al., 2017b). It’s important to
emphasize that these evaluations were conducted
on different corpora, providing only a general and
imprecise basis for comparison.

Analysing the errors for the terrorist attack event
type, we saw that there are text fragments matched
against the patterns, where terrorists were victims,
rather than attackers. Some sentences describing
assassinations and kidnappings, especially in the
Middle East were also erroneously labeled as ter-
rorist attacks. For example, the phrase "victim of
an assassination attempt" erroneously matched the
pattern "victim of a terrorist attack". Also "air raid
killed civilians" erroneously matched the pattern
"market bomb targeted civilians". These and other
pattern matching errors clearly show that in some
cases the BERT pattern matching may be misled
by particular phrases in certain contexts.

5 Conclusions

Results from Table 2 indicate that our approach
attains satisfactory accuracy; nonetheless, its per-
formance may vary across event classes. The per-
formance, achieved in the detection of new disease
cases, was a notable outcome considering the ab-
sence of supervision and the comparable accuracy
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observed in other supervised systems for detection
of disease reports, (Conway et al., 2009), (Khatua
etal., 2019). In Table 3 we show some of the pro-
totypes for new disease cases and their matching
n-grams in context. It is evident that approximate
pattern matching can capture various syntactic and
lexical variations.

Moreover, some of the detected n-grams are rele-
vant as event detecting phrases and they themselves
can constitute prototypes. Following this line of
thinking, the approximate pattern matching algo-
rithm can also be used for learning of new patterns.

As a conclusion, our experiments show that
BERT-based pattern matching is an efficient weakly
supervised event classifier. This method combines
the simplicity and transparency of the pattern-based
approaches and the implicit semantic knowledge,
encoded in large language models like BERT.
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A Approximate pattern matching and
eventness calculation algorithm

Given a set of event detection patterns

Patterns = p1,p2,...,0n

and a sentence s, the approximate pattern recog-
nition calculates how likely it is that s contains
an event, which we call sentence eventness. The
approximate matching and the related eventness
calculation happen in the following steps:



1. Encode each pattern p; via a sequence of con-

textualized embedding vectors, using BERT:
For each token from the pattern we take the
contextualized word embedding vector from
the last layer of the encoder network. Thus,
we have a sequence of context embedding vec-
tors with the length of the number of tokens in
p;. If, for example, the pattern is "protesters
demand", the sequence will consist of two
embedding vectors, one for each word. Lets
call this context embedding sequence es(p;).
Similarly, we obtain a sequence of embedding
vectors for the sentence s, es(s).

. From the target sentence s, generate all the
2 to 20-grams which start and finish with
a non-stop word, lets denote these n-grams
with ngrams(s). As an example, consider
the sentence s ="The crowd in Damascus
shouted slogans.", the ngrams(s) will con-
sists of the following ngrams: "crowd in Dam-
ascus", "crowd in Damascus shouted", crowd
in Damascus shouted slogans", "Damascus
shouted", "Damascus shouted slogans", and

"shouted slogans".

. For each n-gram ng € ngrams(s) we ob-
tain the contextualized BERT embeddings
ses(ng, s): Note, we do not pass the ng to
BERT for calculating the contextualized em-
bedding vectors, but rather we take the corre-
sponding embedding vectors from the embed-
ding vector sequence of the whole sentence
es(s), ensuring better contextualization.

In the example above, the vector sequence ob-
tained from "crowd in Damascus" will be ob-
tained as a subsequence (namely, the second,
third and fourth vector) of the embedding vec-
tor sequence es(s) of the full sentence "The
crowd in Damascus shouted slogans".

. Finally, we find the similarity of the embed-
ding vector sequence of each pattern es(p)
with the embedding vector sequence of each
n-gram, ses(ng, s),ng € ngrams(s). Then,
we take as sentence eventness the maximal
similarity between a pattern and an n-gram
embedding sequence.

We denote as esim(es(p), ses(ng, s) the sim-
ilarity of the embedding sequences es(p) and
ses(ng, s). The eventness of the sentence,
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ev(s), is calculated with the following for-
mula:

ev(s) = max, g esim(p,ng), where p €
Patterns,ng € Ngrams(s).

. If ev(s) > a, then s is considered a sentence

containing an event. The threshold « is being
set empirically.

Calculating esim, similarity of a pattern
and an n-gram embedding vector
sequences

. In order to compare how similar a pattern like

p ="protesters demand" is similar to a n-gram
like ng ="crowd in Damascus shouted slo-
gans", our model first builds two sequences of
embeddings corresponding to the two phrases:
es(p) and ses(ng, s).

Then, the algorithm finds for each word in
the pattern p the most similar word from ng,
using the cosine similarity between the corre-
sponding embedding vectors. In our example,
the most similar word from ng for the word
"protesters” is "crowd" and the most similar
to "demand" is "slogans".

We call these pairs of matching
words matching-pairs: In the exam-
ple above, they form the following set:
{(protesters, crowd), (demand, slogans)}.

. Then, we calculate the similarity between

each pair of matching words and find their
normalized sum, as it is shown in the formula
on Figure 3: It is based on the sum of the
similarities of the matching words, the inverse
document frequency of the pattern words, and
the difference of the positions of the match-
ing words. In case of perfect similarity, equal
pattern and event phrase, similarity function
returns the value of 1.



cos(CE(wp), CE(wn)).idf (wp). L

Z(wp,wn)ematching—pairs 1+6(wp,wn)

Z(wn—)ématching—pairs idf (wp)

esim(es(p), ses(ng, s)) =

matching — pairs - the set of pairs of words - first from the pattern p, the second from the n-gram ng,
such that each word from p is paired with its most similar from ng, considering the cosine between their
embedding vectors

CE(w) - contextualised embedding vector of a word w

idf (w) - inverse document frequency

d(wp, wn) - the difference in the positions of the matching words

Figure 3: Similarity between pattern p and an ngram ng
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