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Abstract

The escalating impact of climate change on
our environment and lives has spurred a global
surge in climate change activism. However, the
misuse of social media platforms like Twitter
has opened the door to the spread of hatred
against activism, targeting individuals, orga-
nizations, or entire communities. Also, the
identification of the stance in a tweet holds
paramount significance, especially in the con-
text of understanding the success of activism.
So, to address the challenge of detecting such
hate tweets, identifying their targets, and clas-
sifying stances from tweets, this shared task
introduced three sub-tasks, each aiming to ad-
dress exactly one mentioned issue. We partic-
ipated in all three sub-tasks and in this paper,
we showed a comparative analysis between the
different machine learning (ML), deep learning
(DL), hybrid, and transformer-based models.
Our approach involved proper hyper-parameter
tuning of models and effectively handling class
imbalance datasets through data oversampling.
Notably, our fine-tuned m-BERT achieved a
macro-average f1 score of 0.91 in sub-task A
(Hate Speech Detection) and 0.74 in sub-task
B (Target Identification). On the other hand,
Climate-BERT achieved a f1 score of 0.67 in
sub-task C. These scores positioned us at the
forefront, securing 1st, 6th, and 15th ranks in
the respective sub-tasks. The detailed imple-
mentation information for the tasks is available
in the GitHub 1.

1 Introduction

Over the decades, climate change has evolved into
a pressing issue for nature and all Earth’s species,
with alarming consequences. Reports from the In-
tergovernmental Panel on Climate Change (IPCC)
confirm that climate change is resulting in more
frequent and severe weather events, including heat-
waves, droughts, and floods 2. These events can

1https://github.com/Salman1804102/CASE-EACL-2024
2https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-11/

lead to crop failures, food shortages, displacement
of people, melting of glaciers and ice caps, rising
sea levels, and increased coastal flooding.

Preserving a harmonious climate is vital for en-
suring balanced ecosystems, optimal temperature
conditions, and biodiversity (Weiskopf et al., 2020;
Mikhaylov et al., 2020). This urgent issue has
spurred people worldwide to voice their concerns
and participate in a growing number of climate
change activism events on a global scale (Damoah
et al., 2023). These events aim to raise aware-
ness about the impact of climate change and the
urgent need for action. One such prominent move-
ment is ‘FridayForFuture’ (FFF), initiated by Greta
Thunberg, a Swedish schoolgirl, in August 2018,
to exert pressure on policymakers to take neces-
sary actions against climate change (Spaiser et al.,
2022; Neas et al., 2022). Other notable climate
activism movements, including ‘Extinction Rebel-
lion’, ‘Earth Strike’, and ‘Climate Justice Now’,
have further fueled the global movement against
climate change (Gunningham, 2019; Schlosberg
and Collins, 2014; Laux, 2021).

However, contemporary activism extends be-
yond street protests to online platforms, with social
media users expressing their thoughts on climate
movements through tweets and comments. But
some people share hateful, aggressive, and humor-
ous tweets targeting activism (Thapa et al., 2024).
Hate speech not only undermines the objectives of
activism but also poses a threat to the well-being
of individuals, organizations, and communities in-
volved in the movement (Arce-García et al., 2023).
Whereas stance detection in text is also a vital com-
ponent in assessing the dynamics of protests and ac-
tivism. It helps understand whether activist move-
ments and protests are being supported or opposed
(Shiwakoti et al., 2024). Despite numerous stud-
ies conducted in recent years on identifying hate
speech and its targets in social media text, this con-
text in climate activism remains an under-explored
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domain (Parihar, Anil Singh and Thapa, Surendra-
bikram and Mishra, Sushruti, 2021; MacAvaney
et al., 2019; Kovács et al., 2021). As these events
serve as crucial platforms for promoting environ-
mental awareness and policy changes, there is a
need for a comprehensive understanding of the
stance and mitigation strategy for hateful tweets.
As contributors to this endeavor, our principal con-
tributions are delineated below:

• We introduced and advocated for the utiliza-
tion of BERT models by effectively handling
the class imbalance data, leveraging their ca-
pabilities to classify textual content.

• By delving into diverse methodologies, we
seek to provide valuable insights that can in-
form the development of more robust systems
for addressing the intricacies of climate ac-
tivism events on social media platforms.

The later part of the paper is organized as follows:
Section 3 provides the task and dataset descrip-
tion, Section 4 outlines the methodology, Section
5 presents the result analysis, and Section 6 delves
into error analysis for each task. Lastly, Section 7
encapsulates the conclusion.

2 Related Work

2.1 Hate Speech Detection
Over time, numerous research efforts have been
dedicated to the detection and classification of
hate speech, employing various methodologies. In
an earlier study (Malmasi and Zampieri, 2017), a
machine-learning approach was adopted, utilizing
an SVM classifier with lexical features on a dataset
comprising 14,509 English tweets. The results indi-
cated a 78% accuracy using the 4-gram model. The
exploration of machine learning methods continued
in another study (Davidson et al., 2017), where Lo-
gistic Regression (LR) outperformed Naïve Bayes
(NB), Decision Tree (DT), and Random Forest (RF)
in identifying hate speech within a Twitter-based
hate speech datasets.

As the popularity of deep learning algorithms
grew, Zhang and Luo (2019) aimed to enhance the
semantic understanding of hate speech. They in-
troduced a CNN+(skipped-CNN) model, which
showcased better performance compared to the
CNN+GRU model across various publicly avail-
able Twitter datasets. Another deep learning-based
study (Badjatiya et al., 2017) combined embed-
dings learned from LSTM with gradient-boosting

decision trees, which achieved a higher f1 score
of 93% in hate speech detection. The study also
involved a comparative analysis utilizing various
feature extraction methods such as character n-
grams, word n-grams, fastText, GloVe, and Bag-of-
words for LR, DT, and SVM. However, with the
advent of transformer-based models like BERT, re-
search trends shifted towards leveraging these mod-
els due to their capability to capture intricate se-
mantic meanings in textual context. Mozafari et al.
(2020) proposed BERT+LSTM, BERT+CNN, and
BERT+Nonlinear-layers models for hate speech
detection. Their BERT+CNN architecture demon-
strated f1 scores of 88% and 92% for the Waseem
(Waseem and Hovy, 2016) and Davidson (David-
son et al., 2019) hate datasets.

2.2 Hate Speech Target Identification
In the realm of hate speech target classification, re-
searchers have extended their focus beyond merely
detecting hate speech to the classification of hate
speech targets. The study (Kurniawan and Budi,
2020) employed a labeled dataset of hate tweets in
Indonesia, distinguishing between individual and
group-targeted hate. Their work utilized word n-
grams, Bag-of-words, and TF-IDF for machine
learning models. Ultimately, the findings revealed
that SVM surpassed NB and RF, achieving an
impressive f1 score of 0.84772 with TF-IDF. In
another work, (Shvets et al., 2021) entailed fine-
tuning a semi-supervised concept extraction model
by incorporating weight variables for hate tar-
get classification. Additionally, the author imple-
mented a domain adaptation phase to detect targets
and associated aspects in both the ‘sexism’ and
‘racism’ categories of the hate speech dataset.

2.3 Textual Stance Classification (TSC)
Various studies have delved into the classification
of stance in text data across different domains,
driven by the necessity to comprehend the dynam-
ics within specific contexts, movements, and is-
sues. The author (Upadhyaya et al., 2023) intro-
duced MEMOCLiC, a multimodal multitasking
framework for comprehensive stance detection in
tweets. MEMOCLiC utilizes diverse embedding
techniques and attention frameworks, incorporat-
ing learned emotional and offensive expressions.
With a primary focus on stance detection, there
were secondary tasks including emotion recogni-
tion and offensive language identification. The au-
thor’s evaluation on climate change and benchmark
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datasets highlights a notable f1 score of 93.76%.
In this TSC scheme, another study (Vaid et al.,

2022) focused on addressing climate change con-
cerns through the development of a stance detection
and fine-grained classification system for related
social media text. The study delved into linguistic
features using part-of-speech tagging and named
entity recognition. Two English datasets, Climat-
eStance and ClimateEng, each containing 3,777
annotated tweets, were introduced. State-of-the-art
models like BERT, RoBERTa, and Distil-BERT are
utilized for benchmarking.

3 Task and Dataset Description

The shared task encompasses three distinct sub-
tasks: sub-task A, focusing on hate speech detec-
tion; sub-task B, centered around target detection;
and sub-task C, concentrating on stance detection
(Thapa et al., 2024). The organizers introduced a
dataset called ClimaConvo (Shiwakoti et al., 2024),
comprising 15,309 tweets related to various climate
movements. Sub-tasks A, B, and C utilized subsets
of this dataset.

3.1 Sub-Task A: Hate Speech Detection
This problem involves binary classification with
two annotated labels: ‘hate’ and ‘non-hate’. The
dataset comprises a total of 7,284 training samples,
1,561 validation samples, and 1,562 test samples.
The labels were encoded to 1 (‘non-hate’) and 2
(‘hate’).

3.2 Sub-Task B: Target Detection
Sub-task B is specifically focused on identifying
targets in hate speech. The dataset dedicated to this
sub-task consists of 699 training samples, along
with 150 samples each for validation and testing.
There are three classes in this dataset, these are
‘individual’, ‘organization’, and ‘community’. The
labels were encoded to 1 (‘individual’), 2 (‘organi-
zation’), and 3 (‘community’).

3.3 Sub-Task C: Stance Detection
The last sub-task revolves around identifying the
stance in a given text, classifying it as ‘support’,
‘oppose’, and ‘neutral’. This is particularly valuable
for discerning whether activism is being supported
or opposed by individuals. The dataset for sub-
task C comprises of 7,284 training samples, 1,561
validation samples, and 1,562 test samples. The
labels were encoded to 1 (‘support’), 2 (‘oppose’),
and 3 (‘neutral’).

However, the dataset details are presented in
Tables 1 and 2.

Tasks Class Initial
Duplicate
Samples
Removal

After
sampling

Task
A

1 6,385 5,899 5,899
2 899 543 4,000

Task
B

1 563 61 105
2 105 105 105
3 31 31 105

Task
C

1 4,328 4,105 4,328
2 700 190 2,000
3 2,256 2,115 4,105

Table 1: Number of training samples per class after
oversampling, considering the initial distribution and
subsequent removal of duplicate entries.

4 Methodology

In this section, we delineate our methodology step
by step. Figure 1 depicts a visual representation of
the methodology.

4.1 Preprocessing of Data
Initially, we cleaned the provided dataset for all
three sets—training, validation, and test. Em-
ploying a manually defined procedure using the
Python regular expression library ‘re’, we removed
URLs, emojis, digits, and punctuation from the
text. After that, we employed spaCy’s 3 lemma-
tization by utilizing the English language model
‘en_core_web_sm’. Considering that stopwords
may not always be essential for classification and
given the higher average length of the text, we
removed stopwords using NLTK’s 4 package ‘stop-
words’ (Jefriyanto et al., 2023).

4.2 Duplicate Samples Removal from Dataset
To strengthen the instances of class ‘hate’ in sub-
task A, samples from sub-task B were combined
with sub-task A, labeling them as ‘hate’. It was pos-
sible to do so because all the samples in sub-task
B correspond to hate tweets targeting a specific au-
dience. Samples of ‘hate’ class increased to 1,898,
while ‘non-hate’ class samples remained at 6,385
after concatenation. However, the sub-tasks A, B,
and C contain 1,008, 49, and 874 duplicate samples,
which were removed eventually.

3https://spacy.io/
4https://www.nltk.org/
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Task Class Train Dev Test
SC TW UW AL SC TW UW AL SC TW UW AL

Task
A

1 5,899 10,343 12,521
155

1,371 23,820 5,178
17

1,374 23,603 5,278
17

2 543 10,211 3,157 190 2,962 970 188 3,171 1,078

Task
B

1 61 1,213 738
169

120 1,595 261
15

121 1,573 200
152 105 2,166 1,142 23 472 330 23 500 367

3 31 588 407 7 181 154 6 130 112

Task
C

1 4,105 74,452 10,513
156

897 16,365 4,226
18

921 16,364 4,238
172 190 3,530 1,657 153 2,177 587 141 2,005 538

3 2,115 37,360 7,463 511 88,857 3,048 500 8,405 2,772

Table 2: Overall statistics of the dataset after the removal of duplicate entries. Here, SC, TW, UW, and AL denote
sample count, total words, unique words, and average length, respectively.

4.3 Data Oversampling

This section is crucial as all tasks face a class imbal-
ance issue, requiring an effective class distribution
handling strategy for an improved f1 score. In all
the sub-tasks, random oversampling (Gosain and
Sardana, 2017) was employed to address the im-
balance and enhance the model’s ability to learn
minority class patterns. While doing oversampling,
careful consideration was given to the class distri-
bution scenario after duplicate samples removal. It
ensured a balanced approach by not oversampling
a particular class too much, especially one with
a very low distribution, and avoided the potential
loss of focus on the majority class. The number of
training samples after oversampling is provided in
Table 1.

4.4 Extraction of Features

We employed various feature extraction methods,
namely TF-IDF and Word2Vec for machine learn-
ing, fastText and GloVe for deep learning models.

TF-IDF is a numerical statistic indicating the
importance of a term within a document relative
to its occurrence across the entire dataset. For TF-
IDF, we employed the default character n-gram as
the analyzer.

Word2Vec embeddings (Mikolov et al., 2013)
were generated using the ‘en_core_web_sm’ model
in spaCy. Word2Vec is a popular technique for
mapping words to dense vectors in a continuous
vector space.

fastText embeddings with 300 dimensions were
used for training DL models. fastText, an extension
of Word2Vec, represents words as bags of character
n-grams, enabling it to capture subword informa-
tion, especially effective for morphologically rich
languages and handling out-of-vocabulary words
(Bojanowski et al., 2017).

GloVe constructs word vectors based on global
statistical information of word co-occurrences
across the entire corpus, capturing comprehensive
semantic relationships for word meanings (Pen-
nington et al., 2014). ‘Glove.twitter.27B.100d’
model was utilized as GloVe embedding, leverag-
ing 100-dimensional word embeddings.

4.5 Machine Learning Models

Our exploration into ML model selection com-
menced with the consideration of four prominent
models: RF, LR, SVM, and Multinomial Naive
Bayes (MNB) (Sarker, 2021). These models have
demonstrated superior performance in text classifi-
cation tasks, motivating our choice. However, iden-
tifying optimal hyperparameters is critical, given
their substantial impact on model performance. To
address this challenge, we conducted a systematic
search to determine the most suitable parameters
for each model.

Model Hyper-parameters

RF
n_estimators = 1000,

min_samples_split = 2
min_samples_leaf = 1

MNB
alpha = 0.1, fit_prior = true,

class_prior = false
SVM C = 1, kernel = ‘linear’
LR solver = ‘liblinear’, penalty = ‘l2’

Table 3: ML model’s hyperparameter setting.

4.6 Deep Learning Models

In the development of text classification models,
diverse deep learning architectures were investi-
gated to tackle the intricacies of the task.
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Figure 1: Visual representation of methodology.

BiLSTM: The initial model, employing a Bidi-
rectional Long Short-Term Memory (BiLSTM)
(Kalchbrenner et al., 2015) layer, served as the
foundation. It featured a 100-dimensional embed-
ding layer initialized with pre-trained word embed-
dings, a BiLSTM layer with 64 units for sequential
data processing, followed by flattening and dense
layers with dropout for regularization. This archi-
tecture laid the groundwork for subsequent models.

BiLSTM+CNN: The second model expanded
on the BiLSTM design by integrating Convolu-
tional Neural Network (CNN) components to make
a hybrid BiLSTM+CNN model (Gehring et al.,
2017). Additional Conv1D and MaxPooling1D
layers were introduced to capture local features,
enhancing the model’s ability to discern patterns
within the data.

CNN+GRU: The third model adopted another
hybrid approach, combining CNN and Gated Re-
current Unit (GRU) layers to make CNN+GRU
(Gehring et al., 2016). A Conv1D layer with 128
filters and a kernel size of 5 was followed by max-
pooling, enhancing feature extraction. The bidirec-
tional GRU (BiGRU) layer with 64 units provided
a nuanced understanding of sequential dependen-
cies. The model incorporated dense layers with
dropout for regularization and concluded with an
output layer.

BiGRU: The final model leveraged Bidirectional
GRU (Cho et al., 2014) layers exclusively. It fea-
tured a 300-dimensional embedding layer, BiGRU
with 256 units, and subsequent dense layers lead-
ing to an output layer. All the models underwent
some common hyperparameters, which are shown
in Table 4.

Parameters Value
Learning Rate 1e−3

Optimizer Adam
Batch Size 32

AF(Hidden Layer) Relu

AF(Output Layer)
Sigmoid (task A)

Softmax (task B & C)
Dropout Rate 0.2

Table 4: DL model’s hyperparameter setting, AF de-
notes the Activation Function.

4.7 Transformer-based Models

We conducted experiments using four pre-trained
transformer-based models: m-BERT (Devlin et al.,
2019), Distil-BERT (Sanh et al., 2019), XLM-R
(Conneau et al., 2020), and Climate-BERT (We-
bersinke et al., 2021). To optimize training, we

Models LR Epochs Batch
Size

Max
Length

m-BERT 3e−5 10 16

256
Distil-BERT 3e−5 12 16

XLM-R 2e−5 10 8
Climate-BERT 3e−5 10 16

Table 5: Transformer-based model’s hyperparameter
setting. Here LR means Learning Rate.

leveraged the ‘fitonecycle’ method from the ktrain
library (Maiya, 2022). Prior to model training, we
employed the ‘find’ method to visualize the learn-
ing rate curve, aiding in the identification of the
optimal learning rate for each transformer-based
model. Consequently, the learning rates and epochs
varied among the models. Due to the substantial
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volume of words and text size in tasks A and B, we
adjusted the batch size accordingly, particularly for
models such as XLM-R, ensuring efficient process-
ing of the extensive textual data. We imported the
transformer-based models from the ‘Hugging Face’
(Wolf et al., 2019). The detailed parameter settings
are given in Table 5.

4.8 Hybrid Models
We experimented with BERT embedding by
proposing two hybrid models. We consid-
ered m-BERT+BiLSTM (Jia, 2023) and m-
BERT+BiLSTM+CNN (Mustavi Maheen et al.,
2022) models. Figure 2 shows the overview of
the hybrid models for both BiLSTM and BiL-
STM+CNN utilizing BERT embedding.

Figure 2: Overview of hybrid models.

m-BERT+BiLSTM: The first model integrates
BERT embeddings, Bidirectional LSTM, and pool-
ing layers for text classification. BERT embed-
dings are subject to dropout regularization and re-
shaped into a 3D tensor. A Bidirectional LSTM
layer captures sequential context, while global pool-
ing extracts key features. These pooled outputs

are concatenated and processed through dense lay-
ers with ReLU activation and dropout. The final
layer utilizes an activation function for ultimate
prediction. This architecture leverages BERT’s
contextual embeddings and Bidirectional LSTM’s
sequential learning for enhanced text classification.

m-BERT+BiLSTM+CNN: The second model,
combines BERT embeddings, Bidirectional LSTM,
and a Convolutional Neural Network (CNN) to cap-
ture diverse contextual and sequential patterns in
the input text. BERT embeddings undergo dropout
regularization, followed by reshaping and process-
ing through a bidirectional LSTM and a 1D CNN
layer. Global average pooling, global max pool-
ing, and flattened CNN outputs are concatenated.
Two dense layers with dropout provide additional
abstraction, leading to an output layer. This archi-
tecture aims to leverage the strengths of BERT em-
beddings, LSTM, and CNN to enhance the model’s
ability to discern patterns in sequential data for ac-
curate classification. The parameter setting remains
the same as the parameter settings for DL models
(see Table 4).

5 Results and Analysis

In this section, we delve into a comprehensive com-
parative analysis of our proposed models across all
three sub-tasks. Table 6 presents such a compre-
hensive evaluation.

5.1 Sub-Task A

In sub-task A, RF with Word2Vec demonstrated
superior efficiency in achieving a higher f1 score
compared to the TF-IDF counterpart. It outper-
formed all other ML models with a notable f1
score of 0.89. Even though several ML mod-
els performed almost nearly well, the MNB ap-
peared to perform poorly on non-oversampled data.
MNB struggled to handle class imbalance and due
to the lack of minority class instances (‘hate’),
it is classifying all the samples into ‘non-hate’.
Among DL models, the hybrid CNN+BiGRU with
GloVe embedding attained an impressive f1 score
of 0.91 even before oversampling. As GloVe
utilized global statistical information by offering
improved representation of word meanings, the
CNN+BiGRU model took benefit of this. It also
performed better with fastText embedding as well.
For transformer-based models, m-BERT excelled
with a f1 score of 0.91, which was similar to
CNN+BiGRU (GloVe). Its performance before
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Without Oversampling With Oversampling
FET Models Task A Task B Task C Task A Task B Task C

f1 Acc f1 Acc f1 Acc f1 Acc f1 Acc f1 Acc

TF-IDF

RF 0.81 0.91 0.56 0.88 0.67 0.69 0.80 0.92 0.69 0.89 0.28 0.68
LR 0.83 0.91 0.65 0.91 0.65 0.91 0.85 0.93 0.59 0.87 0.39 0.64

SVM 0.86 0.95 0.63 0.89 0.63 0.89 0.88 0.95 0.63 0.89 0.39 0.63
MNB 0.47 0.88 0.56 0.88 0.56 0.88 0.83 0.91 0.66 0.89 0.34 0.62

Word2Vec

RF 0.89 0.95 0.54 0.87 0.54 0.87 0.88 0.94 0.67 0.86 0.53 0.64
LR 0.73 0.83 0.70 0.89 0.67 0.88 0.72 0.83 0.70 0.89 0.55 0.57

SVM 0.86 0.95 0.71 0.89 0.67 0.89 0.72 0.83 0.71 0.89 0.56 0.59
MNB 0.47 0.87 0.54 0.87 0.55 0.87 0.71 0.84 0.71 0.89 0.27 0.60

GloVe

BiLSTM 0.87 0.95 0.61 0.87 0.65 0.65 0.47 0.88 0.63 0.86 0.66 0.67
BiGRU 0.90 0.96 0.53 0.88 0.66 0.69 0.80 0.89 0.63 0.89 0.67 0.68

BiLSTM+CNN 0.87 0.95 0.58 0.88 0.64 0.65 0.47 0.88 0.57 0.85 0.63 0.63
CNN+BiGRU 0.91 0.96 0.61 0.87 0.59 0.67 0.47 0.88 0.51 0.82 0.66 0.68

fastText

BiLSTM 0.56 0.86 0.54 0.83 0.56 0.61 0.56 0.86 0.56 0.87 0.64 0.65
BiGRU 0.70 0.81 0.57 0.85 0.60 0.61 0.70 0.81 0.59 0.87 0.64 0.64

BiLSTM+CNN 0.85 0.92 0.62 0.88 0.63 0.65 0.84 0.92 0.68 0.87 0.66 0.66
CNN+BiGRU 0.90 0.95 0.59 0.83 0.64 0.67 0.90 0.95 0.65 0.88 0.66 0.66

m-BERT 0.91 0.96 0.64 0.86 0.63 0.62 0.91 0.96 0.74 0.89 0.66 0.65
Distil-BERT 0.88 0.95 0.65 0.85 0.62 0.64 0.86 0.94 0.74 0.89 0.67 0.65

XLM-R 0.82 0.93 0.63 0.85 0.60 0.62 0.88 0.88 0.70 0.88 0.65 0.69
Climate-BERT 0.90 0.96 0.63 0.88 0.67 0.71 0.91 0.96 0.71 0.89 0.67 0.68

m-BERT+BiLSTM 0.83 0.94 0.54 0.87 0.25 0.59 0.73 0.85 0.53 0.86 0.25 0.59
m-BERT+BiLSTM+CNN 0.66 0.77 0.48 0.82 0.31 0.61 0.31 0.32 0.50 0.85 0.62 0.62

Table 6: Result comparison over test data. Here FET means feature extraction technique, f1 denotes macro-averaged
f1 score and Acc means Accuracy.

and after oversampling remains the same. Finally,
m-BERT and CNN+BiGRU (GloVe) embedding
were identified as the best-performing models for
this sub-task.

5.2 Sub-Task B

Turning to the sub-task B, m-BERT and Distil-
BERT exhibited identical f1 scores of 0.74 in the
oversampled dataset. Which suggests a very cru-
cial improvement after increasing minority classes.
Due to the increased number of samples, the BERT
models were able to effectively identify the seman-
tic and contextual meaning of the tweets rigorously.
But interestingly the hybrid model with BERT
embedding underperformed, even trailing behind
some ML and DL models. The BERT’s complex
pre-trained architecture didn’t provide substantial
benefits compared to other embeddings like GloVe
and fastText. ML models showed improved per-
formance after oversampling. SVM and MNB
achieved a f1 score of 0.71 in the oversampled
dataset with Word2Vec embedding. DL models
like BiLSTM and BiGRU with GloVe embedding
performed better on oversampled data compared
to non-oversampled counterparts. However, BiL-
STM+CNN with fastText embedding appeared to
be the best-performing DL model with a f1 score

of 0.68. Consequently, m-BERT and Distil-BERT
were identified as the best models for this sub-task.
We submitted all the models for the shared task
and finalized m-BERT for the final leaderboard
standings.

5.3 Sub-Task C

In the case of ML models, it is seen that the per-
formance of ML models on oversampled data de-
graded significantly. The reason is that the heavily
imbalanced dataset along with the two most chal-
lenging and confusing classes ‘support’ and ‘neu-
tral’ made classification difficult. The confusion
of the classification was further fueled by over-
sampled data, resulting in poor performance with
TF-IDF and Word2Vec. Nevertheless, transformer-
based models surpassed the baseline score, indi-
cating promise. Climate-BERT consistently per-
formed best with a f1 score of 0.67, on both over-
sampled and non-oversampled data. As it is heavily
trained on climate-related texts, therefore oversam-
pling didn’t affect its performance in this case. On
the other hand, hybrid models that utilized BERT
embedding performed better in oversampled data.
Because of the capability to handle larger datasets,
the BERT embedding appeared to perform better
when dataset size increased by oversampling.
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5.4 Performance Comparison
Table 7 shows that the performance of our team
was promising as compared to other participating
teams. In all of the sub-tasks, we were able to beat
the baseline scores provided by the organizer on
the ClimaConvo dataset.

Team Name Sub-Task A
R P f1 Acc Rank

CUET_Binary_Hackers 0.9173 0.9116 0.9144 0.9635 1st
AAST-NLP 0.8654 0.9231 0.8914 0.9571 2nd

MasonPerplexity 0.8689 0.9112 0.8885 0.9552 5th
Baseline Score - - 0.708 0.901 -

Sub-task B
MasonPerplexity 0.7823 0.8133 0.7858 0.9133 1st

AAST-NLP 0.7706 0.7689 0.7665 0.9133 3rd
CUET_Binary_Hackers 0.7533 0.7431 0.7433 0.9000 6th

Baseline Score - - 0.716 0.901 -
Sub-Task C

Hamison-Generative 0.7223 0.7827 0.7479 0.7478 1st
CUET_Binary_Hackers 0.6691 0.6908 0.6794 0.6613 15th

Z-AGI Labs 0.6294 0.7926 0.6372 0.6908 16th
Baseline Score - - 0.651 0.545 -

Table 7: Short rank list for all sub-tasks. P , R, f1, Acc
denote precision, recall, macro f1 score, and accuracy
respectively.

6 Error Analysis

The study investigated the performance of m-BERT
(sub-task A and B) and Climate-BERT (sub-task C)
models using quantitative and qualitative methods.
Text samples were randomly chosen for all sub-
tasks to facilitate quantitative analysis.

6.1 Sub-Task A

Figure 3: Confusion matrix for sub-task A by the m-
BERT model.

Figure 3 indicates that out of 1,370 ‘non-hate’
samples, 30 were misclassified, while 27 ‘hate’
samples were misclassified as ‘non-hate’, despite

oversampling achieving nearly 85% accuracy in
‘hate’ samples. The presence of common hashtags
in most of the samples led to the misclassification
of samples.

Table 8 describes the qualitative analysis of sub-
task A, where samples 1, 2, and 3 were predicted
the same as their actual label. However, samples
4, 5, and 6 resulted in misclassification by the m-
BERT model.

Test Sample Actual Predicted
Sample 1: Love the artwork despite doubting its
factual accuracy

non-
hate

non-
hate

Sample 2: Vladimir Putin is a global warming
accelerationist. CdnNatSec FridaysForFuture

hate hate

Sample 3: Happy EarthDay!
non-
hate

non-
hte

Sample 4: apparently now we have a "Planet Farm"
nearby, guys!!climatechange ConsciousPlanet
FridaysForFuture

non-
hate

hate

Sample 5: Germany goes nuclear! Atomkraft
NuclearPower FridaysForFuture Gruenen GruenerMist

non-
hate

hate

Sample 6: Stop with the bullshit forecasts.
@ExtinctionR ClimateStrike PeopleNotProfit
FridaysForFuture 1BillionClimateVoices

hate
non-
hate

Table 8: Some test samples for sub-task A, predicted by
the m-BERT.

6.2 Sub-Task B

Figure 4: Confusion matrix for sub-task B by the m-
BERT model.

Figure 4 reveals a higher misclassification rate
in class 3 (‘community’) due to the lower number
of training samples, resulting in a 50% misclassi-
fication rate. Classes 1 (‘individual’) and 2 (‘orga-
nization’) exhibited lower misclassification rates,
with class 2 slightly higher due to class imbalance
issues.

Qualitative analysis of sub-task B was presented
in Table 9, where samples 1, 2, and 3 were misclas-
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sified by the m-BERT model. However, samples
4, 5, and 6 were predicted correctly, matching the
actual labels of the samples.

Test Sample Actual Predicted
Sample 1: @Citi spent the last 5 years investing
$285 billion into destroying our futures.
FridaysForFuture Divest

individual organization

Sample 2: Vladimir Putin is a global warming
accelerationist. CdnNatSec FridaysForFuture

individual organization

Sample 3: If any politicians you encounter
tomorrow have been reluctant about
ClimateActionNow and/or providing
Reparations for LossAndDamage,
PLEASE trap them in a WallPinOfLove
(or, in this case, confrontation)!!!
GlobalClimateStrike FridaysForFuture
PeopleNotProfit @GretaThunberg

community organization

Sample 4: Fuck Greta not the planet
savetheplanet FridaysForFuture

individual individual

Sample 5: Elections matter. Stop electing
climate deniers and fossil fuels industry
puppets.PeopleNotProfit ActOnClimate
Australia auspol ClimateCrisis
ExtinctionRebellion environment
FFF FridaysForFuture

organization organization

Sample 6: @dw_environment
@Luisamneubauer @Fridays4future
has remained influenced
by strong left ideology/persons and denies
the science using (existing) nuclear in
climate/independence policies.

community community

Table 9: Some test samples for sub-task B, predicted by
the m-BERT.

6.3 Sub-Task C

Figure 5: Confusion matrix for sub-task C by the
Climate-BERT model.

Figure 5 illustrates misclassifications, particu-
larly prominent between class 1 (‘support’) and
class 3 (‘neutral’) in sub-task C. Among the pre-
dictions, 236 samples were classified as class 2
(‘oppose’), while 243 were classified as class 3.
The issue was exacerbated by class imbalance, re-

sulting in 31 misclassified samples out of 141. The
model struggled to differentiate between classes 1
and 3 due to their proximity.

Table 10 presents the output of several sample
texts analyzed by the Climate-BERT model. Sam-
ples 1, 2, 3, and 4 were predicted dissimilar to their
actual labels, whereas samples 5, 6, and 7 were
predicted correctly, aligning with the actual labels.

Test Sample Actual Predicted
Sample 1: 4 year of FridaysForFuture neutral support
Sample 2: Gretas Gamlingar stockholm
FridaysForFuture

neutral oppose

Sample 3: Fuck Greta not the planet
savetheplanet FridaysForFuture

oppose support

Sample 4: Education is a human right!
FridaysForFuture EducateGirlsForClimateJustice

support neutral

Sample 5: Love and kindness are never wasted.
KindnessMatters FridaysForFuture GlobalGoals

support support

Sample 6: Germany goes nuclear! Atomkraft
NuclearPower FridaysForFuture Gruenen GruenerMist

oppose oppose

Sample 7: Is anything more dangerous than
ClimateCrisis? FridaysForFuture

neutral neutral

Table 10: Some test samples for sub-task C, predicted
by the Climate-BERT model.

7 Conclusion

In this paper, we present a fine-tuned approach uti-
lizing various models, specifically proposing fine-
tuned m-BERT, Distil-BERT, Climate-BERT, and
CNN+BiGRU. The results indicate that m-BERT
achieved a higher f1 score for both sub-tasks A
and B. The highest f1 score that we achieved for
sub-task A is 0.91, for sub-task B it is 0.74, and for
sub-task C it is 0.67. Several models like Climate-
BERT, BiGRU, LR, and SVM performed equally
well with the same f1 score for sub-task C. Our pa-
per includes a detailed comparison among several
models, both before and after addressing the class
imbalance in the datasets. Notably, in most cases,
the performance showed significant improvement.
This paper also delved into effective preprocessing
of data and data oversampling. These findings will
create new opportunities for upcoming research
work, drawing inspiration from this paper.

Limitations

Our system exhibits some key limitations:

• The significance and novelty of the research
findings could be increased by introducing
novel models or approaches.

• The efficiency of imbalance handling in detec-
tion models can be increased by including a
wider range of data augmentation approaches.
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