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Abstract

The task of identifying public opinions on so-
cial media, particularly regarding climate ac-
tivism and the detection of hate events, has
emerged as a critical area of research in our
rapidly changing world. With a growing num-
ber of people voicing either to support or op-
pose to climate-related issues - understanding
these diverse viewpoints has become increas-
ingly vital. Our team, MasonPerplexity, partici-
pates in a significant research initiative focused
on this subject. We extensively test various
models and methods, discovering that our most
effective results are achieved through ensem-
ble modeling, enhanced by data augmentation
techniques like back-translation. In the spe-
cific components of this research task, our team
achieved notable positions, ranking 5", 15,
and 6" in the respective sub-tasks, thereby il-
lustrating the effectiveness of our approach in
this important field of study.

1 Introduction

In the ever-evolving landscape of climate change
activism, encouraging meaningful conversations
and comprehending how things change throughout
events depends critically on the ability to recog-
nize hate speech and the understanding of attitude
during these events. This paper presents our ef-
fort in the Shared Task on Hate Speech and Stance
Detection during Climate Activism (Thapa et al.,
2024), where our goal is to develop effective mod-
els for hate speech detection, target identification,
and stance detection.

This task consists of three subtasks that work
together to support an integrated approach to event
identification. The goal of the first subtask is to
identify whether the given text contains hate speech
or not. The second subtask focuses on identifying
if people, groups, or communities are targets of
hate speech. Lastly, Stance Detection provides in-
sight into the dynamics of climate activism protests

* denotes Equal Contribution

by assessing the support, opposition, or neutrality
indicated within texts.

Our paper serves as a comprehensive system
description, outlining the approaches and models
used to address these subtasks within the frame-
work of activist events related to climate change.
We present our ensemble method for identify-
ing hate speech, which combines robust models
like XLM-roBERTa-large (Conneau et al., 2019),
BERTweet-large (Ushio and Camacho-Collados,
2021a), and fBERT (Sarkar et al., 2021). Notably,
for Target Detection, the best-performing model
is BERTweet-large (Ushio and Camacho-Collados,
2021b) while BERTweet-base (Nguyen et al., 2020)
excels in Stance Detection.

We also discuss our fine-tuning strategies and
dataset augmentation techniques, demonstrating
our commitment to refining model performance.
Our approach’s effectiveness is demonstrated by
our remarkable F1 scores of 0.8885, 0.7858, and
0.7373. Furthermore, our team named MasonPer-
plexity has secured 5, 1%, and 6" ranks in the
respective subtasks, underscoring the competence
of our models in comparison to peers.

Through this paper, we aim to contribute to the
advancement of hate speech and stance detection
in the context of climate activism, fostering a safer
and more informed space for dialogue and under-
standing during crucial events. We employ en-
semble methods to better classify the texts - our
approach increases the accuracy metrics for the
first sub-task where we encounter a comparatively
larger amount of data. We also use data augmenta-
tion methods, which further improve our results.

2 Related Works

The paper (Parihar et al., 2021) explores the ris-
ing concern of hate speech on the internet and its
potential impact. It emphasizes machine learning
and deep learning models in automatically identify-
ing hate speech. In (Malmasi and Zampieri, 2017),
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English tweets are subjected to supervised classi-
fication using n-gram features and a linear SVM
classifier. Even at 78% accuracy, it is still difficult
to discern offensive language from hate speech. By
combining recurrent neural networks and user fea-
tures, (Pitsilis et al., 2018) outperforms current sys-
tems and achieves a remarkable F-score of 0.9320
on a Twitter dataset. Additionally, Warner and
Hirschberg (Warner and Hirschberg, 2012) define
hate speech and despite limitations in capturing
larger language patterns, SVM classification can
detect anti-Semitic speech with 94% accuracy.

The literature on target detection in hate speech
unveils valuable insights through various studies in
the field. (Lemmens et al., 2021) focuses on Dutch
Facebook comments, exploring hateful metaphors
to enhance hate speech type and target detection.
The study incorporates manual metaphor annota-
tions as features for SVM and BERT models, ob-
serving improvements in F1 scores. Conversely,
(Zampieri et al., 2019) proposes a hierarchical an-
notation scheme for offensive language in English
tweets, creating the OLID dataset. The study em-
ploys SVM, CNN, and BiLSTM models, achieving
notable results and providing a valuable resource
for offensive language research.

Stance detection, a crucial aspect of NLP, in-
volves determining a person’s position towards a
concept. (Kiiciik and Can, 2021) outlines the signif-
icance and challenges in this domain, emphasizing
its relation to sentiment analysis, emotion detection,
and other tasks. It highlights the evolution facili-
tated by shared tasks, varied approaches, including
traditional SVMs and newer LSTM models, and
the necessity of annotated datasets. Additionally,
(Upadhyaya et al., 2023) introduces a multitask-
ing approach, enhancing performance on multiple
datasets, and showcasing the potential of incorpo-
rating auxiliary tasks. Furthermore, (Kii¢iik and
Can, 2018) contributes a valuable stance-annotated
Turkish Twitter dataset, showcasing the diversity
of research efforts in stance detection.

3 Datasets

From the tables for Subtask 1, Subtask 2, and Sub-
task 3, it is evident that the dataset (Shiwakoti et al.,
2024) is imbalanced across different labels.

3.1 Hate Speech Detection

In subtask A, the distribution between NON-HATE
and HATE is heavily skewed towards NON-HATE,
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with approximately 87.66% in the training set,
87.83% in the evaluation set, and 87.96% in the
test set. This indicates a significant class imbalance,
which may pose challenges for model training and
evaluation.

3.2 Target Detection

In subtask B, there is an imbalance among the la-
bels INDIVIDUAL, ORGANIZATION, and COM-
MUNITY. The majority of instances belong to
the individual category, with around 80.54% in
the training set, 80.00% in the evaluation set, and
80.67% in the test set.

3.3 Stance Detection

Subtask C exhibits an imbalance, between the SUP-
PORT, OPPOSE, and NEUTRAL labels. SUP-
PORT dominates the dataset, comprising 59.42%
in the training set, 57.46% in the evaluation set,
and 58.96% in the test set, where OPPOSE has
respective percentages 9.61%, 9.80%, and 9.03%.

In summary, the dataset for all three subtasks is
not well-balanced, and addressing this imbalance
may be crucial for developing models that general-
ize well across different classes.

Subtask A
Label Train Eval Test
NON-HATE 87.66 87.83 87.96
HATE 12.34  12.17 12.04

Table 1: label wise data percentage of subtask A

Subtask B
Label Train Eval Test
INDIVIDUAL 80.54 80.00 80.67
ORGANIZATION 15.02 1533 15.33
COMMUNITY 444 467 4.00

Table 2: label wise data percentage of subtask B

Subtask C
Label Train Eval Test
SUPPORT 59.42 57.46 58.96
OPPOSE 9.61 9.80 9.03
NEUTRAL 30.97 3274 32.01

Table 3: label wise data percentage of subtask C



4 Experiments

In subtask A, we initially employ GPT3.5 (OpenAl,
2023) zero shot and few shot prompting with Test
F1 score 0.66 and 0.73. The prompt provided to
GPT3.5 is available in Figure 1.

Role: You are a helpful Al assistant. You
are given the task of <subtask_name>.

Definition: <subtask_definition>. You
will be given a text to label either
<labell> or <label2> or <label3>.

Task: Generate the label for this text
in the following format: <label>
Your_Predicted_Label <\label>. Thanks.

Figure 1: Sample GPT-3.5 prompt.

Then we use BERTweet large (Ushio and
Camacho-Collados, 2021a) (Ushio et al., 2022),
XLM-R (Conneau et al., 2019), HATE-BERT
(Caselli et al., 2021) and fBERT (Sarkar et al.,
2021). Following this, we adopt a weighted en-
semble approach (Ensemble 1) for the best three
models (BERTweet, XLM-R, fBERT). Similarly,
we perform another weighted ensemble approach
(Ensemble 2) with the same models only replacing
BERTweet with HATE-BERT, as these two models
show the same F1 score on test data with the same
setting. However, the former ensemble strategy
yields the highest F1 score for this task.

To address class imbalance in subtask A, we im-
plement back translation by converting the training
data of those specific labels that have a smaller ra-
tio with respect to the whole training set through
various languages, including Xosha to Twi to En-
glish, Lao to Pashto to Yoruba to English, Yoruba
to Somali to Kinyarwanda to English, and Zulu to
Oromo to Shona to Tsonga to English. This ap-
proach significantly contributed to improving the
overall F1 score of Ensemble 1 from 0.85 to 0.88
and Ensemble 2 from 0.86 to 0.89.

We follow the approach of back translation of
(Raihan et al., 2023). For this, we select languages
that demonstrate limited or no cultural overlap with
the original language featured in the dataset. Xosha,
Twi, Lao, Pashto, Yoruba, Somali, Kinyarwanda,
Zulu, Oromo, Shona, and Tsonga are languages
that are very diverse culturally and geographically.
This diversity underscores the significance of con-

sidering a wide range of cultural and geographical
influences when working with these languages. By
intentionally selecting these languages without cul-
tural overlap, we introduce a purposeful aspect of
diversity, mitigating potential biases, and enhanc-
ing the dataset with a broader spectrum of linguistic
expressions. Moreover, the Ensemble method with
majority voting is also proven helpful in this type
of case where a single model may not label the data
correctly due to class imbalance (Goswami et al.,
2023). For instance, when two out of three models
predict a sentence as a hate event, the sentence is
subsequently labeled as a hate event through the
application of majority voting.

In subtask B, we utilize BERTweet-large (Ushio
and Camacho-Collados, 2021a), BERT base (De-
vlin et al., 2018), and XLM-R (Conneau et al.,
2019). Additionally, like subtask 1, we imple-
ment back translation using the same language
sequences mentioned earlier to address class im-
balance. Notably, BERTweet large (Ushio and
Camacho-Collados, 2021a) demonstrates the high-
est F1- score among these models. We also use
GPT3.5 zero shot and few shot prompting with
0.63 and 0.64 test F1 scores.

BERTweet-large (Ushio and Camacho-Collados,
2021a), BERT base (Devlin et al., 2018), and
BERTweet base (Nguyen et al., 2020) models are
applied in subtask C for stance detection. Among
these models, the BERTweet base achieves the
highest F1 score. F1 score for GPT3.5 zero shots
and few shot prompting are 0.63 and 0.67.

Hyperparameters of all the models used exclud-
ing GPT3.5 in the experiments are available in Fig-
ure 4.

Parameter Value
Learning Rate le—5
Train Batch Size 8

Test Batch Size 8
Epochs 5
Dropout 0.2

Table 4: Training Configuration Parameters

5 Results

The results in Tables 5, 6, and 7 provide a compre-
hensive evaluation of various NLP models across
the three subtasks of the shared task.

In subtask A, our ensemble approach (Ensemble
2 with HATE-BERT, XLLM-R and fBERT models)
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secures the fifth rank. For subtask B, BERTweet
large secures the top position (Rank 1), while

in subtask C, we achieve the sixth rank utilizing
BERT-Base.

Model Eval F1 Test F1
GPT3.5-(ZERO SHOT) - 0.66
GPT3.5-(FEW SHOT) - 0.73
HATE-BERT 0.88 0.83
BERTWEET-LARGE 0.89 0.84
XLM-R 0.89 0.85
F-BERT 0.90 0.85
*ENSEMBLE 1 0.90 0.85
**ENSEMBLE 2 091 0.86
HATE-BERT (AUG.) 0.91 0.87
BERTWEET-LARGE (AUG.) 0.92 0.87
XLM-R (AUG.) 0.91 0.88
F-BERT (AUG.) 0.93 0.88
*ENSEMBLE 1 (AUG.) 0.93 0.88
**ENSEMBLE 2 (AUG.) 0.94 0.89

Table 5: Results of subtask A (before and after data aug-
mentation). *Ensemble 1 (BERTweet-large, XLM-R,
fBERT), **Ensemble 2 (HATE-BERT, XLLM-R, fBERT)

Model Eval F1 Test F1
GPT3.5-(ZERO SHOT) - 0.63
GPT3.5-(FEw SHOT) - 0.64
XLM-R 0.75 0.60
BERT-BASE 0.86 0.69
BERTWEET-LARGE 0.97 0.79

Table 6: Results of subtask B.

Model Eval F1 TESTF1
GPT3.5-(ZERO SHOT) - 0.63
GPT3.5-(FEW SHOT) - 0.67
BERT-BASE 0.71 0.69
BERTWEET-LARGE 0.71 0.70
BERTWEET-BASE 0.80 0.74

Table 7: Results of subtask C.

6 Error Analysis

Upon evaluating our models’ performance across
the three subtasks, we identify several key sources
of errors that contributed to limiting our scores.

In subtask A on hate speech detection, our en-
semble model struggles with longer text segments
that express hate in subtle or nuanced ways. The
models are not always able to pick up on the un-
derlying mocking or criticism woven into complex
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rhetorical devices. Additionally, sarcasm and irony
continue to pose challenges, as models interpret
literally what is meant to convey the opposite mean-
ing.

For subtask B on target identification, errors fre-
quently occur in distinguishing between organiza-
tions and communities as categories. Our models
have difficulty consistently applying the definitions
and criteria that delineate these two groups as tar-
gets of hate speech. There are also inconsistencies
in labeling individual people who are associated
with or represent a broader community.

Regarding subtask C on stance detection, our
models struggle to some extent with longer text
segments, having more trouble identifying stances
from among nuanced discussions. Shorter, more
direct statements of opposition or support were
simpler for the models to categorize accurately.

To visualize label-wise models’ performance we
can see the Figures 2, 3, and 4 of confusion matri-
ces for all the subtasks.

Confusion Matrix for Subtask-1
1200
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True label

hate 46 142
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Figure 2: Confusion Matrix for Hate Speech Detection
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Figure 3: Confusion Matrix for Target Detection



Confusion Matrix for Subtask-3
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Figure 4: Confusion Matrix for Stance Detection

7 Conclusion

In conclusion, the MasonPerplexity team has made
significant strides in the domain of detecting cli-
mate activism stances and hate events on social
media. Through a comprehensive evaluation of var-
ious models, our research underscores the efficacy
of ensemble modeling coupled with data augmenta-
tion techniques like back-translation. Our achieve-
ments in the shared task, marked by rankings of 5,
15t, and 6" in the respective subtasks, reflect the
potential of our methodologies in addressing the
complexities of sentiment analysis in the context
of climate activism.

There are several avenues for future research.
Firstly, addressing the challenge of label imbal-
ance in our dataset could enhance the accuracy and
reliability of our models. Exploring advanced tech-
niques in data sampling or synthetic data generation
may provide viable solutions. Secondly, the refine-
ment of label quality through more rigorous annota-
tion processes or leveraging semi-supervised learn-
ing techniques could further improve model perfor-
mance. Finally, the integration of Large Language
Model (LLM) fine-tuning presents a promising di-
rection. Fine-tuning pre-trained models specifi-
cally for the nuances of climate activism discourse
and hate speech detection could yield more nu-
anced and contextually aware results. Addition-
ally, expanding our research to include multilin-
gual datasets would enhance the applicability and
relevance of our findings in a global context, foster-
ing a more comprehensive understanding of public
sentiment on climate issues worldwide.

Limitations

This study encounters some limitations that affect
its outcomes. The first issue is with the balance of
labels in our dataset. We have more examples of
some types of data than others, a problem known
as label imbalance. This imbalance can lead our
model to be better at recognizing the more com-
mon types and not as good with the rare ones,
creating a bias in our results. The second limi-
tation is the quality of the labels themselves. In our
dataset, some labels are incorrect or not consistent
with each other. This poor quality can confuse the
model, making it harder for it to learn correctly and
possibly leading to inaccurate results. Lastly, we
did not fine-tune Large Language Models (LLMs)
for our specific task. Fine-tuning is a process where
a pre-trained model, like an LLM, is further trained
on a specific type of data. Not doing this fine-
tuning means we may not be taking full advantage
of the LLLM’s capabilities, which can improve our
model’s understanding of complex patterns in cli-
mate activism and hate event data. However, due
to a lack of computing resources, we are not fine-
tuning.
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