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Abstract

The automatic identification of offensive lan-
guage such as hate speech is important to keep
discussions civil in online communities. Iden-
tifying hate speech in multimodal content is
a particularly challenging task because offen-
siveness can be manifested in either words or
images or a juxtaposition of the two. This paper
presents the MasonPerplexity submission for
the Shared Task on Multimodal Hate Speech
Event Detection at CASE 2024 at EACL 2024.
The task is divided into two sub-tasks: sub-
task A focuses on the identification of hate
speech and sub-task B focuses on the identifica-
tion of targets in text-embedded images during
political events. We use an XLM-roBERTa-
large model for sub-task A and an ensem-
ble approach combining XL.M-roBERTa-base,
BERTweet-large, and BERT-base for sub-task
B. Our approach obtained 0.8347 F1-score in
sub-task A and 0.6741 F1-score in sub-task B
ranking 3" on both sub-tasks.

1 Introduction

In the context of polarized political discussions,
when feelings and perspectives are strong, identi-
fying offensive content is essential to moderation
efforts in online communities. The challenge is
increased by the use of text-embedded images in
which negative emotions can be expressed both
verbally and visually. Besides, in the current era
of vlogging and reels, people are inclined to uti-
lize memes and emojis or opt for text-embedded
images to express their sentiments and comment
on online content. As a result, the task of detect-
ing hate speech is expanding to encompass images,
posing a new challenge beyond the realm of textual
content and across diverse languages.

The Shared Task on Multimodal Hate Event De-
tection at CASE 2024 (Thapa et al., 2024) deals
with the identification of hate speech and its targets

* denotes equal contribution.
This paper contains offensive examples.

in text-embedded images during political events.
The main objective is to automatically determine
if an image that includes text contains hate speech
(sub-task A) and, if so, to identify its targets cate-
gorized as community, individual, and organization
(sub-task B). Identifying the target of offensive
messages is vital to understanding their potential
harm as demonstrated by annotation taxonomies
such as OLID (Zampieri et al., 2019) and TBO
(Zampieri et al., 2023).

In this paper, we discuss transformer-based ap-
proaches to hate speech detection in political events
using the Multimodal Hate Speech Event Detec-
tion dataset (Bhandari et al., 2023). The paper
sheds light on the challenges of handling mul-
timodal content, particularly text-embedded im-
ages. For sub-task A (hate speech detection),
we employ the XLM-roBERTa-large (Conneau
et al., 2020) model. For sub-task B (target detec-
tion), we adopt an ensemble approach combining
XLM-roBERTa-base, BERTweet-large (Ushio and
Camacho-Collados, 2021), and BERT-base (De-
vlin et al., 2019). These models are selected to
effectively address the unique challenges posed by
diverse multimodal content. We report that our ap-
proach obtained a 0.8347 F1-score in sub-task A
and a 0.6741 Fl-score in sub-task B, ranking 3¢
on both sub-tasks.

2 Related Work

Offensive Content and Hate Speech Offensive
content is pervasive in social media motivating the
development of systems capable of recognizing it
automatically. While definitions may vary, hate
speech is arguably the most widely explored type
of offensive content (Schmidt and Wiegand, 2017;
Fortuna and Nunes, 2018). Several studies have
proposed new datasets and models to label hateful
posts on social media (Davidson et al., 2017; Zia
et al., 2022). More recently, studies have focused
on recognizing the specific parts of an instance that
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may be considered offensive or hateful, as in the
case of HateXplain (Mathew et al., 2021), TSD
(Pavlopoulos et al., 2021), and MUDES (Ranas-
inghe and Zampieri, 2021). The vast majority of
work on text-based hate speech detection is on En-
glish but several papers have created resources and
models for languages such as Bengali (Raihan et al.,
2023b), French (Chiril et al., 2019), Greek (Pitenis
et al., 2020), Marathi (Gaikwad et al., 2021), and
Turkish (Coltekin, 2020).

Multimodal Hate Speech While the aforemen-
tioned studies have focused on the identification
of hateful content in texts, there has been growing
interest in identifying hateful content in text and im-
ages simultaneously. Hermida and Santos (2023),
Ji et al. (2023), and Yang et al. (2022) highlight
the significance of multimodal analysis offering
a comprehensive overview of various methodolo-
gies employed to detect hate speech in images and
memes. Various datasets have been introduced
for multimodal hate speech detection (Grimminger
and Klinger, 2021; Bhandari et al., 2023; Thapa
et al., 2022) The study by Grimminger and Klinger
(2021) presents a Twitter corpus with content re-
lated to the US elections of 2020. The study by
Boishakhi et al. (2021) explores the combination of
various modalities for hate speech detection such
as text, video, and audio. While the clear majority
of studies deal with English, research on different
languages (Karim et al., 2022; Rajput et al., 2022;
Perifanos and Goutsos, 2021).

Related Shared Tasks Thapa et al. (2023) orga-
nizes CASE 2023, a series of shared tasks iden-
tifying Multimodal Hate Speech Event Detection.
There are two sub-tasks to identify hate speech
and targets in the different sub-tasks. Participants
present the utilization of transformer models like
BERT, RoBERTa, and XLNet, as well as effec-
tive approaches such as vision transformers and
CLIP which contributed to the outstanding out-
comes. Similarly, different shared tasks have been
organized to identify offensive language from texts
i.e. (Aragén et al., 2019), (Modha et al., 2021).
All of this research highlights how important it is
to combine several data modalities in order to im-
prove hate speech or offensive language detection.

3 Datasets

In sub-task A, the training dataset provided by the
organizers contains 3,600 images. Additionally, a

development set and a testing set were provided
by the organizers each including 443 instances. In-
stances in the sub-task A dataset (Bhandari et al.,
2023) are annotated using two labels: NO-HATE
(labeled as 0) and HATE (labeled as 1). We present
an example of the training data of sub-task A in
Figure 1.
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Figure 1: Training data example (Left: NO-HATE,
Right: HATE)

The label distribution, presented in Table 1, is
skewed in the dataset, with a slightly higher per-
centage of instances labeled as HATE in the train-
ing, testing, and evaluation sets.

sub-task A
Label Train Eval Test
HATE 53.95 54.85 54.85

NO-HATE 46.05 45.15 45.15

Table 1: Distribution of labels in the training, evalua-
tion, and test sets of the sub-task A dataset in terms of
percentage.

In sub-task B, the training, evaluation, and test sets
include 1,942, 244, and 242 images respectively.
Instances in the sub-task B dataset (Thapa et al.,
2022) are labeled into three categories: Individual
(labeled as 0), Community (labeled as 1), and Orga-
nization (labeled as 2). Examples of training data
for sub-task B are shown in Figure 2.
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Figure 2: Training data example (Left: Organization,
Top-right: Individual, Bottom-right: Community)
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There is an imbalance among the three labels and
the distribution is shown in Table 2. The class INDI-
VIDUAL is the most prevalent. The imbalance can
impact the model’s ability to generalize across dif-
ferent classes, potentially leading to biased results.
Addressing this imbalance through techniques like
data augmentation or re-balancing strategies may
be crucial for developing robust models that per-
form well across all label categories.

sub-task B
Label Train Eval Test
INDIVIDUAL 42.38 41.80 42.15
COMMUNITY 17.25 1640 17.35
ORGANIZATION 40.37 41.80 40.50

Table 2: label wise data percentage of sub-task B

We have used Google Vision API! to retrieve text
from the images of all the phases of both the sub-
tasks. Although the OCR can detect text in a variety
of languages, the accuracy may change depending
on the language. It’s possible that some languages
are more accurate and supported than others. The
input image quality has an impact on OCR accu-
racy. In certain situations, the original formatting
may not be preserved by the API.

4 Experiments

In sub-task A, we use BERTweet-large (Ushio
and Camacho-Collados, 2021) (Ushio et al., 2022),
BERT-base (Devlin et al., 2019), and XLM-R (Con-
neau et al., 2020) models. Notably, XLM-R shows
the best F1 score. We also use GPT-3.5% zero-
shot and few-shot prompting with test F1 score
0.73, 0.77. For sub-task B, we also start with
BERTweet-large, BERT-base, and XLM-R using
the same learning rate and epochs as in sub-task
A. Later, we apply a weighted ensemble approach
to these models, resulting in the 0.65 F1 score for
the task. To tackle class imbalance in sub-task B,
we employed back translation, converting the train-
ing data through Xosha to Twi to English and Lao
to Pashto to Yoruba to English. This significantly
improves overall model performance from 0.65 to
0.67.

The ensemble method with majority voting is
proven helpful in this type of case where a single
model may not be able to label the data correctly

"https://cloud.google.com/vision/
https://platform.openai.com/docs/models/
gpt-3-5-turbo

due to class imbalance (Goswami et al., 2023).
Moreover, we follow the approach of back trans-
lation of (Raihan et al., 2023a). We follow the ap-
proach of back translation of (Raihan et al., 2023a).
For this, we select languages that demonstrate lim-
ited or no cultural overlap with the original lan-
guage featured in the dataset. Xosha, Twi, Lao,
Pashto, and Yoruba are languages that are very di-
verse culturally and geographically. This diversity
underscores the significance of considering a wide
range of cultural and geographical influences when
working with these languages. By intentionally
selecting these languages without cultural overlap,
we introduce a purposeful aspect of diversity, miti-
gating potential biases, and enhancing the dataset
with a broader spectrum of linguistic expressions.
Moreover, the Ensemble method with majority vot-
ing is also proven helpful in this type of case where
a single model may not label the data correctly due
to class imbalance (Goswami et al., 2023). For in-
stance, when two out of three models predict a sen-
tence as a hate event, the sentence is subsequently
labeled as a hate event through the application of
majority voting. We also use GPT-3.5 zero-shot
and few-shot prompting with test F1 scores of 0.53,
and 0.57. The prompt provided to GPT3.5 is avail-
able in Figure 3.

Role: You are a helpful Al assistant. You
are given the task of <sub-task_name>.

Definition: <sub-task_definition>.
You will be given a text to label ei-
ther <labell> or <label2> or <label3>.

Task: Generate the label for this text
in the following format: <label>
Your_Predicted_Label <\label>. Thanks.

Figure 3: Sample GPT-3.5 prompt.

We also utilize GPT-3.5 through the OpenAl API
for two primary sub-tasks: Hate Speech Detection
(sub-task A) and Hate Speech Target Detection
(sub-task B). We fine-tune GPT-3.5 using specif-
ically curated training and evaluation datasets,
conducting the process over four epochs. It is
worth noting that, no other hyper-parameter can
be set other than epochs while fine-tuning GPT3.5
through the API. Notably, the OpenAl API does
not provide conventional metrics such as training
loss, validation loss, precision, or recall. Upon
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completion of the fine-tuning, the API assigns a
unique ID to our model. We use this ID to process
the test dataset for both sub-tasks. For labeling
and predictions, the API returns results based on
the test dataset. In sub-task A, which focuses on
detecting hate speech, our model achieves an F1
score of 0.82, indicating a high level of accuracy.
Conversely, in sub-task B, where the objective is
to identify the targets of hate speech, the model
attains a lower F1 score of 0.63, reflecting the in-
herent challenges in this particular aspect of hate
speech analysis.

Hyperparameters of all the models used exclud-
ing GPT3.5 in the experiments are available in Fig-
ure 3.

Parameter Value
Learning Rate le=5
Train Batch Size 8
Test Batch Size 8
Epochs 5

Table 3: Training Configuration Parameters

5 Results

The detailed experimental results of the models in
sub-task A and sub-task B are available in Tables
4, and 5, respectively. In sub-task A, we evaluate a
BERT-base, BERTweet-large, and XLM-R model.
XLM-R delivers the best performance with a 0.83
Fl-score. In sub-task B, our ensemble approach
was provides the best F1-score of 0.67.

Model Eval F1 Test F1
GPT3.5 (ZERO SHOT) - 0.73
GPT3.5 (FEW SHOT) - 0.77
GPT3.5 (FINETUNED) 0.86 0.82
BERT-BASE 0.81 0.75
BERTWEET-LARGE 0.89 0.81
XLM-R 0.95 0.83

Table 4: Results of sub-task A.

6 Error Analysis

In sub-task A, our aim is to detect non-hate (labeled
as 0) and hate (labeled as 1) speeches. Therefore,
the task of our model is to categorize text into two
categories: non-hate or hate. The confusion matrix,
presented in Figure 4, illustrates both the true la-
bels and predicted labels, indicating that our model

Model Eval F1 Test F1

GPT3.5 (ZERO SHOT) - 0.53
GPT3.5 (FEW SHOT) - 0.57
GPT3.5 (FINETUNED) 0.65 0.63
BERT-BASE 0.61 0.60
XLM-R 0.63 0.61
BERTWEET-LARGE 0.68 0.64
ENSEMBLE 0.69 0.65
BERT-BASE (AUG.) 0.63 0.61
XLM-R (AUG.) 0.65 0.64
BERTWEET-LARGE (AUG.) 0.70 0.66
ENSEMBLE (AUG.) 0.71 0.67

Table 5: Results of sub-task B (before and after data
augmentation).

excels in recognizing hate speech than the non-hate
ones. The observed bias towards recognizing hate
speech in the model may stem from the prevalence
of HATE-Iabeled texts in both training and evalua-
tion datasets. As both the training and evaluation
datasets are used to train the model, the model may
develop a bias, impacting its accuracy when deal-
ing with non-hate speeches.

Confusion Matrix

True Labels
non-hate

hate

|
non-hate hate
Predicted Labels

Figure 4: Confusion matrix of sub-task A evaluation
set.

In sub-task B, our ensemble model is assigned
the challenge of categorizing targets from text-
embedded images into three labels: individual (la-
beled as 0), community (labeled as 1), and organi-
zation (labeled as 2). Analysis of the Confusion
Matrix shown in Figure 5, indicates that our model
shows difficulties in identifying community cat-
egories, compared to labeling organizations and
individuals. However, the model excels in accu-
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Figure 5: Confusion matrix of sub-task B evaluation set.

rately categorizing individuals. This underscores
the significance of having a balanced dataset. The
observed challenges in the model’s performance,
particularly in identifying the community category,
can be attributed to an imbalance in the training
and evaluation datasets.

According to our initial analysis, there are some
challenges that can affect our results. Firstly, there
is an imbalance in label distribution within our
dataset, where certain data classes contain more
Instances than others. This makes it difficult for
the model to learn properties of classes that con-
tain fewer examples. Secondly, we observed that
some labels in the dataset are correctly attributed.
This is the case of many offensive and hate speech
datasets due to the intrinsic subjectivity of the task,
as noted by Weerasooriya et al. (2023). Incorrect
labels can confuse our model, making it harder for
it to learn properly and leading to mistakes in the
evaluation state. It may also explain why GPT3.5
underperformed, even after finetuning. Also, as
this is primarily a text classification task - models
like XILM-R do better than GPT3.5.

Finally, another limitation lies in the impact of
external factors on the reliability of our Multimodal
Hate Event Detection Model over time. The dy-
namic nature of online discourse and political shifts
may affect its efficacy. Even though our mod-
els achieve good results, recognizing and dealing
with these challenges is important when develop-
ing high-performing models that work well in the
ever-changing world of online conversations and
political events.

7 Conclusion and Future Work

This paper evaluated various approaches to Multi-
modal Hate Event Detection. We tested multiple
models such as GPT, XLLM-R, and BERT on sub-
task a and sub-task b of the competition and we
addressed the difficulties associated with handling
multimodal content. Our XLM-R model performed
well in subtask A ranking third, achieving an F1
score of 0.83. In the same way, for subtask B, our
ensemble method, which combined BERT base,
BERTweet large, and XLLM-R, also ranked third,
achieving an F1 score of 0.67.

Despite encountering label distribution imbal-
ances in the training and evaluation sets, our ap-
proaches successfully navigated these challenges.
Future studies will focus on exploring potential bi-
ases in our models and further refining strategies
for handling class imbalance as in Akhbardeh et al.
(2021). Moreover, as online communication con-
tinues to increase multimodality, developing robust
hate speech detection systems requires fusing in-
formation from different modalities. Future work
should focus on faceted annotation schemes and
semi-supervised approaches to improve generaliza-
tion. Evaluating model biases, and exploring the
impacts of label imbalance are also important areas
needing attention. We hope our experiments pro-
vide a valuable starting point for further research
towards safer online spaces.
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