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Abstract

Linguistic data can — and often does — con-
tain PII (Personal Identifiable Information).
Both from a legal and ethical standpoint, the
sharing of such data is not permissible. Ac-
cording to the GDPR, pseudonymization, i.e.
the replacement of sensitive information with
surrogates, is an acceptable strategy for pri-
vacy preservation. While research has been
conducted on the detection and replacement
of sensitive data in Swedish medical data us-
ing Large Language Models (LLMs), it is un-
clear whether these models handle PII in less
structured and more thematically varied texts
equally well. In this paper, we present and
discuss the performance of an LLM-based PII-
detection system for Swedish learner essays.

1 Introduction

While there is a constant need for linguistic data —
fuelled recently by the advent of Large Language
Models (LLMs) which require copious amounts
of training data — legal and ethical sharing and
use thereof is problematic. The EU Commission
(2016) severely limits the use and sharing of data
containing Personal Identifiable Information (PII).
However, the regulation also presents a possible so-
lution: pseudonymizing the data, defined as: “[...]
the processing of personal data in such a manner
that the personal data can no longer be attributed
to a specific data subject without the use of addi-
tional information, provided that such additional
information is kept separately and is subject to tech-
nical and organisational measures to ensure that the
personal data are not attributed to an identified or
identifiable natural person” (Art. 4 of EU Commis-
sion, 2016). Within the field of Natural Language
Processing (NLP), this definition becomes more
narrow — and while various researchers formulate
it slightly differently, we understand pseudonymiza-
tion as “the process of replacing an individual’s

personal data with a pseudonym, which is not re-
lated to the original data,” with the same end goal
as outlined in the GDPR (Volodina et al., 2023).

Naturally, conducting such a de-identification
procedure manually is extremely time-consuming
and costly, especially when the data in question
is copious and very sensitive (Berg and Dalianis,
2020). It would therefore be beneficial to be able to
automatize the process in a reliable and robust way.
While there is existing research on automated de-
identification systems, many of them are restricted
to specific domains (especially healthcare), and not
as much work has been conducted on less struc-
tured types of input, which we expect to be more
problematic due to more varied types of personal
information as well as a higher likelihood of vari-
ous kinds of errors or non-standard forms (e.g. in
terms of spelling, syntax, or semantics). We choose
to work with L2 (second language) learner essays,
as this kind of texts not only fulfills the require-
ment of larger structural and thematic variety but,
as Volodina et al. (2020) show, the essays are also
likely to contain PIIs. Since L2 corpora are relevant
for various research applications, developing mod-
els that can handle PII detection and replacement
in this kind of texts would be useful.

What exactly constitutes sensitive information
can differ across domains, documents, or even para-
graphs, and is heavily context-dependent. We be-
lieve that algorithms could learn something akin
to human intuition about what is personal and/or
sensitive in the data. With this in mind, we ex-
periment with an approach where none of the
PII and sensitive categories are labeled for their
classes (e.g. name, city, etc.), but are binary (per-
sonal/sensitive or not). This distinction is for-
malized as inside-outside-beginning (IOB) classes,
where non-sensitive tokens are labeled O (outside),
while sensitive tokens or token spans are labeled
with B (beginning) and, in the case of multi-token
sensitive elements, I (inside) for every token after
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the first one. We replace manually assigned cate-
gories in our dataset of learner essays in Swedish
(SweLL-pilot, Volodina et al. (2016)) with B(I)
and O, and fine-tune two Large Language Mod-
els (LLMs, KB/bert-base-swedish-cased and
bert-base-multilingual-cased) to distinguish
between the two types of tokens (Malmsten et al.,
2020; Devlin et al., 2018). While we are aware that
pseudonym generation is likely to rely on a pre-
dicted PII class, we decide to focus on the detection
step, which can precede classification – presuming
that such a step is necessary in a pseudonymization
pipeline. Our hypothesis is that the model will learn
to distinguish between sensitive and non-sensitive
information in a given context, and potentially even
capture more types of personal information than
we at the moment envisage, helping us identify
new classes that can be added to the taxonomy or
refine the existing ones. Simultaneously, we hope
to assess the usefulness of fine-tuned LLMs for
PII detection, especially in more free-flowing and
error-prone genres such as learner essays.

2 Prior Research

As previously mentioned, pseudonymization, as
we understand it, entails the replacement of sen-
sitive tokens or groups of tokens with new and
somewhat unrelated — but still contextually ap-
propriate — surrogates. The replacement of PII
with a pseudonym presupposes a step at which
the sensitive data is detected and possibly classi-
fied; recently Eder et al. (2022) conceptualized the
pseudonymization pipeline as consisting of the two
aforementioned steps.

While Lison et al. (2021) consider the
pseudonym generation step to be more of an open
question than the detection of PIIs themselves,
many previously presented detection systems do
not account for, for example, misspellings or oth-
erwise non-normative writing, which is essential
when working with data like learner essays (Eder
et al., 2019). Although Accorsi et al. (2012) high-
lights the issues stemming from spelling variation,
these issues seem to mostly pertain to specific gen-
res, which so far have been underrepresented in
PII detection research, as the bulk of the existing
research is focused on medical data.

As shown by Yogarajan et al. (2020), many of
the well-performing systems for PII detection in
medical data rely on neural or hybrid approaches.
Recently, Pilán et al. (2022) have released a text

anonymization benchmark corpus consisting of
texts from the legal domain, and presented the re-
sults obtained by several models. While their cus-
tom metrics rely at least partly on there being more
than one possible way to annotate a text, they do
provide overall recall and precision as well, with
the best model — a LongFormer model with a large
window size — reaching 91.9% recall and 83.6%
precision; however, an F1 score is not reported.
Grancharova and Dalianis (2021), in turn, fine-
tuned a Swedish BERT model for Named Entity
Recognition and Classification (NERC) in Swedish
medical texts. The NER categories in the corpus
utilized in their experiment are actually PHI cat-
egories, which could be considered a type of PII,
rendering this task sufficiently similar to warrant a
comparison.

They report precision and recall scores for var-
ious models, with the best of them (KB-BERT
trained and tested on data from the same source)
reaching a weighted precision score of 92.26%
and a weighted recall score of 92.20% (with the
weighted F1 of 92.23%). They also reach relatively
good scores on M-BERT (multilingual BERT) with
the same data setup - 88.99% recall and 90.51%
precision (and F1 of 89.74%). While Berg and
Dalianis (2020) argue that high recall is more desir-
able in PII detection systems than high precision,
the latter is also important, as it means that the
model is not over-detecting the sensitive data and
flagging innocent passages. We believe that the
alterations to the text should be kept to a necessary
minimum as any changes made to the linguistic
data may affect its future usability in various types
of research (e.g. linguistics or machine learning).
While our experiment is meant to test an approach
similar to that of Grancharova and Dalianis (2021),
it is worth keeping in mind that the data we use is
less structured and may contain a bigger variety of
personal information, as described in Volodina et al.
(2020), which may lead to a worse performance by
the system.

3 Materials and Methods

In this experiment, we utilize 445 learner essays
from the SweLL-pilot corpus, representing a wide
variety of learner levels, topics, and types of writing
(e.g. descriptive or argumentative essays) (Volod-
ina et al., 2016). Some of the essays contain PIIs,
and some do not, predominantly due to the vari-
ation in types of writing and the prompts (e.g. a
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descriptive essay with the topic“about me" is much
more likely to contain PIIs than an argumentative
essay with the topic “stress in the modern society").
We use the unpseudonymized1 versions of the texts.
The essays have also been tokenized and reanno-
tated with tags for PII categories using the SVALA
tool according to the SweLL pseudonymization
guidelines developed for the SweLL-gold corpus
and the corresponding tagset (Wirén et al., 2019;
Megyesi et al., 2021; Volodina, 2024). This anno-
tation includes not only typically NER-like cate-
gories such as place names or surnames, but also
e.g. names of professions or references to one’s
faith, with only the tokens deemed sensitive in a
given context being annotated as such. In our ex-
periments, we ignore the categories of sensitive in-
formation and only differentiate between sensitive
and non-sensitive information. We transform the
existing category annotation into an inside-outside-
beginning (IOB) annotation to represent the dif-
ference between PIIs and non-PII tokens. Due to
BERT-imposed input sequence limitations, we sub-
divide the essays into sections that are at most 100
tokens long,2 resulting in a total of 651 such sec-
tions, out of which 165 contain at least one token
of sensitive information.

The data is then balanced so that the data splits
(training, testing, development) contain equally
many passages with PIIs as passages without PIIs,
meaning that these splits are composed of 165 frag-
ments with PIIs and 165 randomly chosen frag-
ments without PIIs out of 486 such fragments.
Importantly, this does not mean that half of the
tokens include sensitive information, and the ac-
tual distribution of sensitive and non-sensitive
tokens can be seen in Table 1. We also cal-
culate weights that represent class importance
for later use with a weighted loss function us-
ing Scikit-learn’s compute_class_weight func-
tion (Pedregosa et al., 2011). The class distribution
and the calculated weights for the data used in the
experiment are presented in Table 1.

1This version is used only within the context of the project
that this experiment is conducted in and is unavailable for
anyone except the project team. The released version of
SweLL-pilot is anonymized and the access form is linked
in Appendix A.

2While BERT’s maximum input sequence length is 512,
this applies to the sequence length after tokenization using
the BERT tokenizer, which often divides words into sub-word
units; since the sectioning of the essays occurred at a much
earlier step than BERT tokenization due to the framework
used, an arbitrary length was chosen to mitigate the impact of
the BERT tokenizer and maximum sequence length.

Instances (%) Count Weight
B 2.64% 1142 12.64419148
I 0.20% 86 167.90310078
O 97.16% 42091 0.34305829

Table 1: The proportions of token instances of classes
in the data used in the experiment and the corresponding
calculated class weights.

The PII-detection system used in this paper is
based on modified code for token classification
included in the transformers library (see Ap-
pendix A) (Wolf et al., 2020). This code allows
for the fine-tuning of a model of choice hosted
by HuggingFace for a token classification task
like NER (Named Entity Recognition) or part-of-
speech (POS) tagging; in our case, we have cho-
sen to work with the BERT model for Swedish
(KB/bert-base-swedish-cased, KB-BERT)3 de-
veloped by the National Library of Sweden (Kung-
liga Biblioteket, KB) as well as a multilingual
BERT model (bert-base-multilingual-cased,
M-BERT)4 (Malmsten et al., 2020; Devlin et al.,
2018). This was done to mirror the setup utilized
by Grancharova and Dalianis (2021) for an easier
comparison of results; simultaneously, our hope is
that using a multilingual model may help mitigate
the effect the foreign tokens found in learner es-
says may have on the performance of the system,
since those tokens may then be parsed as something
other than an unknown word. Additionally, having
an insight into whether multilingual models can
be used for this type of task could be useful when
working with languages that are only featured in
multilingual models.

We have fine-tuned the models on 80% of our
data (after balancing the set) twice, once with a
standard CrossEntropyLoss loss function, and
once with a weighted version thereof, with the in-
tent of accounting for the class imbalance in a task
of this type5. We have also reduced the batch size
to 8 since due to the length of the samples we did
not have the computational resources to process
that much data in one batch. Aside from that, we
have proceeded with the default settings for the
script (notably, 3 epochs and AdamW optimizer

3https://huggingface.co/KB/
bert-base-swedish-cased

4https://huggingface.co/
bert-base-multilingual-cased

5Similarly to regular NER tasks, sensitive and not sensitive
tokens are not equally prominent in the data, with the majority
of the tokens being not sensitive.
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with a learning rate of 5e-05). The fine-tuning pro-
cess also makes use of another 10% of our data for
evaluation between the epochs (development set).

The fine-tuned model has been tested on the
held-out test set (another 10% of the data). The
Transformers evaluation code calculates average
evaluation metrics but here we also additionally
calculate per-class metrics. Additionally, tokens
misclassified by the models relative to the manually
annotated gold standard have been extracted with
their contexts and analyzed manually to see if any
patterns of what the model struggled with could be
identified.

4 Results and Discussion

4.1 Evaluation Metrics

The standard KB-BERT model (using an un-
weighted cross-entropy loss function) performs bet-
ter in terms of accuracy, with the standard M-BERT
and weighted KB-BERT only slightly behind. Sur-
prisingly, the M-BERT model with a weighted loss
function performs drastically worse, as shown in
Table 2. However, it is important to remember that
accuracy is not a weighted metric and that the O
class outnumbers the other two.

Accuracy
Standard model Weighted model
KB M KB M

99.11% 97.78% 97.73% 29.16%

Table 2: The models’ accuracy.

Due to the aforementioned class imbalance, we
find it important to inspect measures like per-class
recall and precision instead of just accuracy in order
to gain a better understanding of the performance
of the models. We additionally follow the example
of Grancharova and Dalianis (2021) and provide
combined scores for the “sensitive” classes (B and
I).

Recall
Standard model Weighted model
KB Multi KB Multi

B 82.57% 38.53% 92.66% 74.31%
I 14.29% 0.00% 57.14% 0.00%
O 99.67% 99.46% 97.93% 28.05%

B+I6 77.79% 35.83% 90.17% 69.11%

Table 3: The models’ per-class recall.

Precision
Standard model Weighted model
KB Multi KB Multi

B 86.54% 64.62% 58.38% 2.58%
I 100.00% 0.00% 18.18% 0.00%
O 99.41% 98.28% 99.78% 97.46%

B+I8 87.48% 60.09% 55.57% 2.40%

Table 4: The models’ per-class precision.

The scores presented in Table 3 show that using
a weighted loss function in KB-BERT models has
improved the detection of the two classes that are
used to denote the sensitive information (B and I),
at the cost of a small drop in the recall for O.

Simultaneously, while it helps with the detection
of the B class in M-BERT models, it has no effect
on the detection of I and causes a drastic drop in
the detection of O. It is rather clear that the models
are struggling with the detection of I-tags, likely
due to them being extremely infrequent in the data,
with most of the sensitive data being restricted to
single tokens. Comparing this with the results ob-
tained by Grancharova and Dalianis (2021) for their
sensitive data detection models for the medical do-
main, we achieve 90.17% recall on the sensitive
data in our best model compared to their 92.20%,
leading us to the conclusion that in terms of re-
call, our weighted KB-BERT model is performing
rather well, especially taking into account the fact
that the types of PII present in learner essays are
more diverse and potentially harder to detect than
those found in medical data (a more narrow do-
main). However, the same cannot be said about
any of the M-BERT models which fail much more
noticeably when trained with the current hyperpa-
rameters: our 69.11% for the weighted M-BERT
model is much lower than 88.99% reported in the
aforementioned research. This is further illustrated
in Figure 1, Figure 2, Figure 3, and Figure 4, which
depict normalized confusion matrices for the mod-
els’ predictions, where the numbers on the main
diagonal correspond to per-class recall.7

6Weighted average of scores for the two sensitive classes.
7Please note that any value differences stem from different

rounding in the table than in the confusion matrices.
8Weighted average of scores for the two sensitive classes.
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Figure 1: Normalized confusion matrix for
PII detection with KB-BERT with the standard
CrossEntropyLoss.

Figure 2: Normalized confusion matrix for
PII detection with KB-BERT with the weighted
CrossEntropyLoss.

Figure 3: Normalized confusion matrix for
PII detection with M-BERT with the standard
CrossEntropyLoss.

Figure 4: Normalized confusion matrix for
PII detection with M-BERT with the weighted
CrossEntropyLoss.

Contrary to the results for recall, precision for
the sensitive classes is much better for the mod-
els without the weighted loss function, as shown
in Table 4. Once again, the M-BERT models are
overall performing worse, with the weighted ver-
sion thereof achieving the worst result. This indi-
cates that the weighted models are noticeably over-
detecting tokens as sensitive — so although they
now correctly identify more of the originally sen-
sitive passages, they are also marking completely
non-sensitive tokens as sensitive. While it is more
important to correctly detect as many PIIs as pos-
sible, we are of the opinion that for the data to
be useful for downstream tasks, such as seman-
tic meaning extraction or information retrieval, it
should be altered only as much as necessary, mean-
ing that high precision would also be desirable.

One way to reconcile the need for considering
both recall and precision in model evaluation is to
look at the F1 score. One drawback of this score is
that it assigns equal importance to its constituent
parts, which is less ideal in the current scenario,
where recall is considered to be more important.
However, it is a widely used metric and it still
allows us to compare the models to each other and
to results from other research. Table 5 contains the
per-class f1 scores alongside a weighted average of
that score for the two sensitive classes.

In terms of the F1 score, the KB-BERT model
with the standard cross-entropy loss function per-
forms best on two out of three classes and as far
as the combined B and I score is concerned. The
KB-BERT with a weighted loss function slightly
outperforms it on the I class. Both of the M-BERT
models display significantly worse performance.

The standard KB-BERT model achieves the best
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F1
Standard model Weighted model
KB Multi KB Multi

B 84.51% 48.28% 71.63% 4.99%
I 25.00% 0.00% 27.59% 0.00%
O 99.54% 98.86% 98.85% 43.56%

B+I9 80.34% 44.89% 68.55% 4.64%

Table 5: The models’ per-class F1 score.

result here - 87.48% weighted precision for the
sensitive classes, which is still somewhat below
92.26% reported by Grancharova and Dalianis
(2021); it is also not fair to compare only the
highest results, as they are not achieved by the
same model; the one with the best recall score
only achieved 55.57% precision. When it comes
to the F1 score, our best model (KB-BERT with a
standard loss function) with a score of 80.34% on
the sensitive classes is about 12 percentage points
behind the best model for medical data, which is re-
ported to have achieved 92.23% F1. This disparity
stems from our model’s decidedly lower precision.

Judging by all of the discussed metrics, KB-
BERT models perform better than the multilingual
BERT models. With the current hyper-parameters,
the standard models suffer from relatively low re-
call, especially for the rarest class; weighted mod-
els, in turn, are over-detecting sensitive data, lead-
ing to lower precision. Nevertheless, the results
seem to indicate that all the models except M-
BERT with a weighted loss function are capable of
distinguishing between sensitive and non-sensitive
passages with a reasonable level of correctness.
Importantly, the underdetection of the I class by
all of the models suggests that they struggle with
detecting multi-token spans of sensitive data.

It is also important to mention that we consider
the task of learning to simply distinguish between
sensitive and non-sensitive tokens or sequences
of tokens to be more difficult than distinguishing
specific classes of PIIs or PHIs, which is also re-
flected in the notably low precision of most of the
models that we have trained. However, the results
promisingly suggest that LLMs are indeed capable
of learning, to some extent at least, what makes
data sensitive in a given context.

9Weighted average of scores for the two sensitive classes.

4.2 Qualitative Prediction Analysis

A qualitative analysis of the predictions made by
the models allows us to investigate what types of
data marked as sensitive during manual annotation
are particularly problematic for the models — and
what kinds of generalizations lead to over-detection
of PIIs they make. Importantly, due to the sensitive
nature of the data used in this experiment sharing
specific examples raises ethical concerns. We have
decided to address this issue twofold: we manually
pseudonymize the sensitive tokens in the examples
and we provide the examples only in English (while
simultaneously trying to mirror any kinds of learner
errors).

The weighted M-BERT has failed to learn to
differentiate between sensitive and non-sensitive
data, as it does not mark some words with regular
spelling (common Swedish given names, names
of languages), and instead classifies words such as
pronouns, determiners, some verbs as sensitive, in
contexts where they with a great degree of certainty
are not sensitive, as Examples 1 and 2 in Table 6
show. Simultaneously, some clearly sensitive to-
kens do not get recognized as such (Example 4).
There are also instances of misspelled tokens being
assigned the wrong category, but sometimes it is
unclear whether the cause for the misclassification
was the spelling or the model’s disagreement as to
what private data is, as in Example 3, where one
could argue that reltivs “relatives” is a word de-
noting family members which could potentially be
sensitive. This could be due to a language-specific
model like KB-BERT being better at capturing spe-
cific semantic knowledge and being better able to
generalize over e.g. street or place names; alterna-
tively, it could be that while we have expected a
multilingual model to improve the results since it
would have representations for foreign language to-
kens, it actually struggled more with misspellings.
While we did not explicitly notice that in our re-
sults, it is also possible that a multilingual model
may have issues with tokens that have two separate
meanings in two different languages.

The M-BERT model with the standard loss func-
tion, which has achieved low recall but some-
what higher precision appears to make more in-
terpretable decisions: there are instances where
this classification could be up for debate, and per-
haps the token should have been marked as such
by the annotator. This can be seen in Example 5,
where Stockholm is not where the author lives, but
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№ Token Token in context Prediction Ground
truth

M-BERT WITH A WEIGHTED LOSS FUNCTION

1 was Historically, stress was a [...] B O
2 me me and johnny at school sit B O
3 reltivs Other reltivs have come B O
4 Alice [...] they are called Sally, Alice and Sam. O B

M-BERT WITHOUT A WEIGHTED LOSS FUNCTION

5 Stockholm We came to Stockholm city from Cairo directly B O
6 Germany [...] one stress muc more in Germany. B O
7 Malmö $$$$$10 $$$ $$ $$$$s in Malmö. Later w$ O B
8 Nobel street11 I live on Nobel street. O B

KB-BERT WITH A WEIGHTED LOSS FUNCTION

9 sweden tim lives in the family in sweden B O
10 novmber wynter is four months from novmber to February B O
11 small because I have a small family here. O B
12 family because I have a small family here. B I

KB-BERT WITHOUT A WEIGHTED LOSS FUNCTION

13 dad and my dad was dizzy always B O
14 Cairo Cairo has a verybig airport B O
15 Pierogi they eat Pierogi which are traditional fud O B
16 %olis% I am $olis$. We $$$$$$ $$$ $$ O B
17 don’t work12 I don’t work. O B, I

Table 6: Examples of errors made by the M-BERT model with a weighted loss function.

constitutes an intermediate point in their travel, or
in Example 6, where one can guess that someone
writing about the reality of living in a given coun-
try in an argumentative essay has likely been born
and raised there, or at least lived there for a longer
period of time. We believe it is likely that in this
case, the model has learned to classify all cities and
countries that it has recognized as sensitive; this ef-
fect could at least partly be attributed to a possible
imbalance between instances where such entities
are not sensitive versus when they are sensitive.

When it comes to KB-BERT, the model with the
weighted loss function provides even more exam-
ples of the model overgeneralizing certain entity
types to always be sensitive — in the SweLL anno-
tation, Sweden was not considered to be sensitive
(as it was certain that all of the essays came from
people living in Sweden), and yet in Example 9 the
model predicts it to be sensitive. Similarly, novem-
ber in Example 10 does not refer to a specific event

10$ is used to designate unintelligible handwriting.
11Names of streets are often just one token in Swedish.
12In Swedish the negation comes after the verb in the main

clause, so in the original the I tag would refer to the negation,
and the B tag to the verb. We have decided to display the two
tokens together in the table for the sake of simplicity.

in the author’s life, but rather to a description of
the climate, rendering it rather non-sensitive. An-
other interesting example here comes from two
subsequent words in a sentence – since we differ-
entiate between the start and the continuation of
a sensitive passage, misclassifying the first token
as non-sensitive, but classifying the second one as
sensitive still leads to two errors, as in the case of
the second error the class should be I, not B. Nev-
ertheless, this suggests that a small fraction of the
errors made by the model could be attributed to
such cases, meaning that the model’s performance
is slightly better than the evaluation metrics may
show.

The highest-scoring model in terms of evalua-
tion metrics, KB-BERT without a weighted loss
function, still has examples of the issue of overgen-
eralization (Example 14). However, it also illus-
trates that in some cases the annotators may have
missed data that should be considered sensitive
— like in Example 13, where the word for a spe-
cific family relation was not annotated as sensitive
when it should have been according to the guide-
lines. Understandably, the model struggles with
half-unintelligible tokens, such as in Example 16,
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where a human annotator is perhaps better able to
guess that the token refers to a nationality, while
the model has very little to go off of, not just in the
token, but also in the context. Finally, Example 15
shows that not all foreign-looking named entities
get classified as sensitive, and that at least in the
case of this sentence the model is not able to guess
that a token would be sensitive just from the sur-
rounding presence of the word "traditional" which
describes it.

Both for M-BERT and KB-BERT, the models
seem to run into difficulties when it comes to de-
termining the sensitivity of data in cases where the
tokens are misspelled, foreign, or surrounded by
misspelled or unintelligible tokens, as in Examples
3, 7, or 10. While the model with a weighted loss
function tends to flag more passages as sensitive
(such as the ones in Examples 1–3, 9, and 10),
the standard one errs on the side of caution in that
regard (as in Examples 7 and 8, as well as 15).

One more notable feature shared by some of the
under-detected PIIs is span. Most of the annotation
in the data marks distinct tokens (e.g. a given name
is separated from the surname, only the number of
a bus or tram is marked as sensitive, etc.), and the
multi-token instances are often somewhat longer
passages that could be considered sensitive but do
not fit into any of the categories in the annotation
guidelines, e.g. talking about a political event or
work status (e.g. being unemployed), as in Ex-
ample 17. This shows how difficult detecting PII
and determining what that concept means is, espe-
cially in the case where contextual information is
essential for resolving whether a token is sensitive.

5 Conclusions

Within this paper we have presented the re-
sults of an investigation into the performance
of LLMs on PII detection in learner essays,
framing it as a task similar to Named Entity
Recognition. We have shown that a finetuned
KB/bert-base-swedish-cased model is capable
of learning how to distinguish between sensitive
and non-sensitive information in this kind of data,
reaching up to 90.17% recall, suggesting that
LLMs are able to approximate a human intuition
when it comes to discerning what is sensitive in
a given context, although they may struggle with
overdetecting such data. We are also of the opinion
that some of the model’s disagreements with the
original PII annotation could be informative when

it comes to refining manual PII annotation, though
perhaps not to the extent we would have wished for
(the models did not discover any new kinds of PII).

While the current performance of the models
is behind the ones presented by Grancharova and
Dalianis (2021) (although they are relatively close
in terms of recall) and the one discussed by Pilán
et al. (2022) (comparing our top two models, one
is slightly ahead in precision, but much worse in
recall, while the other one has a similar recall with
much worse precision), they are promising for PII
detection in unstructured and non-standard texts in
Swedish, and — with some improvements — a fine-
tuned system like this could constitute a part of a
pseudonymization pipeline. The current challenge
is optimizing the model’s hyperparameters so as
to maximize the recall at the least possible cost
to precision. In its current form, a weighted loss
function does not seem to perform its function, but
some method of accounting for class imbalance is
necessary given the models’ low performance on
the I class.

Simultaneously, when discussing the perfor-
mance of our models in relation to the ones reported
by Grancharova and Dalianis (2021) we consider it
relevant to mention that the latter were trained and
tested on various medical datasets. We consider the
medical domain to be much more regular in terms
of the kinds of PII it may include (corresponding,
in large part, to what the authors of that paper de-
scribed as named entities), as well as less likely
to include errors of various kinds. Therefore, PII
detection in learner essays seems to us to be a more
difficult task than PII detection in medical data.

6 Future Work

Aside from trying to optimize the model for this par-
ticular kind of data, we would like to see how well
a model trained on our data would perform on other
PII datasets for Swedish like the Stockholm EPR
PHI Corpus, which consists of medical records or
data from social media, which would also allow us
to see what kinds of PII are present across domains,
and what kinds are more domain-specific (Velupil-
lai et al., 2009; Dalianis and Velupillai, 2010). Un-
fortunately, the TAB corpus mentioned earlier in
the paper is in English, and therefore not suitable
for such a comparison (Pilán et al., 2022).

Another step could be investigating to what ex-
tent the data from various domains like this can be
combined in the fine-tuning process, possibly in
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a semi-supervised fashion, in order to produce a
more universal PII detection model. The insights
from the analysis of model predictions could help
determine how to annotate data for sensitivity. In
terms of the differences between KB-BERT and
M-BERT it would be interesting to see whether the
poor performance of the latter was indeed due to
it being worse at handling misspelled tokens. It
would also be really interesting to be able to utilize
a Swedish version of the LongFormer architecture
in order to see if more contextual information helps
with PII detection — but, unfortunately, no such
model exists as of now (Beltagy et al., 2020).

Finally, we aim to follow up this experiment with
a pseudonym generation task where we intend to
have LLMs simply generate suitable replacements
for the passages flagged as sensitive, without the
intermediate PII classification step, with only the
surrounding context to inform the prediction.

Limitations

This paper presents only a short study, where we
are not really striving to create the best possible
model but we are instead more focused on explor-
ing what personal information is and how it can
be detected, with the only change from the default
settings of the fine-tuning script being the use of
a weighted loss function and smaller batch size (a
technical constraint). Therefore, hyperparameter
tuning may lead to a much better performance than
the presented results.

While this approach may work well, it is not a
universal solution, especially cross-linguistically,
as it relies on a large language model like BERT,
which need not be available for all the languages
in the world.

Ethics Statement

Various kinds of linguistic data are likely to contain
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how the data can be used in terms of ethics and
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of pre-existing language models and small amounts
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dance with the GDPR requirements and is made
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