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Abstract

We present the findings and results of our
pseudonymisation system, which has been de-
veloped for a real-life use-case involving users
and an informative chatbot in the context of
the COVID-19 pandemic. Message exchanges
between the two involve the former group pro-
viding information about themselves and their
residential area, which could easily allow for
their re-identification. We create a modular
pipeline to detect PIIs and perform basic dei-
dentification such that the data can be stored
while mitigating any privacy concerns. The use-
case presents several challenging aspects, the
most difficult of which is the logistic challenge
of not being able to directly view or access the
data due to the very privacy issues we aim to
resolve. Nevertheless, our system achieves a
high recall of 0.99, correctly identifying almost
all instances of personal data. However, this
comes at the expense of precision, which only
reaches 0.64. We describe the sensitive infor-
mation identification in detail, explaining the
design principles behind our decisions. We ad-
ditionally highlight the particular challenges
we’ve encountered.

1 Introduction and Context

With current advances in NLP relying on data-
hungry machine learning systems and even more
data-hungry language models, user-generated data
is becoming increasingly important: data from con-
versations with chatbots, crawls of internet forums,
posts on social media, etc can and are often used
to train deep learning systems. At the same time,
respecting user privacy is critical.

The General Data Protection Regulation (GDPR)
came into effect as of the 25th of May 2018, af-
fecting any data identifying or allowing the iden-
tification of a natural person. For instance, in the
previous examples of user-generated data, identifi-
able data could take the form of a username, a full
name, or an address, among others (Francopoulo

and Schaub, 2020). At its core, the aim of the
GDPR is to bring EU data protection legislation in
line with the new ways that personal data is now
being used by giving users more control over the
ways their data is bring processed.

One of the implications of the GDPR is for there
to be no way to trace data back to a specific individ-
ual or a group thereof. As a result, anononimized
data is exempt of GDPR requirements. In turn,
much effort has gone into perfecting anonymization
and pseudonymisation techniques to allow NLP
practitioners to work directly with user-generated
data.

However, each domain presents its own unique
challenges. In this paper we tackle anonymiza-
tion in user-generated messages with a virtual chat-
bot. Text originating from this domain presents
the same characteristics as other instances noisy
user-generated text; we encounter different types
of text, with some of the messages being charac-
terised with non-standard spelling, use of slang,
etc, while others are written in a formal register
(Barbieri et al., 2020; Baldwin et al., 2015a). Fur-
thermore, information is exchanged between the
user and the virtual agent in a dialog fashion, such
that it is possible for no individual message to allow
the identification of the user, but the conversation,
taken as a whole, could.

In this paper we describe findings from our par-
ticular real-life scenario of automatically identify-
ing PIIs in user-generated data from conversations
involving a virtual agent serving as an informative
tool while not being able to directly access the data.
Users adhering to the contemplated use-case could
use the virtual assistant to make inquiries regarding
COVID restrictions in their area of residence. Such
exchanges are a perfect example of personal infor-
mation that can be used to identify an individual
based on their location.

As stated, different domains present different
challenges for anonymization. With this in mind,
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we design a flexible and modular pipeline1 to
anonymize GDPR protected text by allowing for
different components that perform sensitive data
identification and subsequent deidentification. We
describe our experimental setup and methods used,
and highlight particularly difficult aspects of work-
ing on real-life user-generated data in both Spanish
and Catalan that we could not directly access.

2 Literature Review

The task of pseudonymisation is generally consid-
ered to be complex given that based on context,
one can re-identify pseudonymised information and
the. These difficulties can be in turn modulated by
each domain’s characteristics. Up until recently,
most techniques were applied in either medical or
legal domains, which were considered to be sen-
sitive domains well before the GDPR (Sánchez-
León, 2019; Langarizadeh et al., 2018; Yuwono
et al., 2016). Methods typically vary between ap-
plications; generally speaking, pseudonymisation
occurs in at least two steps: the first step is iden-
tifying personal information, where most of the
our efforts in this paper are centered. Most meth-
ods that are applied to highly regular data rely on
simple regular expressions, whereas less structured
information requires more sophisticated Named
Entity Recognition (NER) systems based on ma-
chine learning. Deidentification can vary more in
terms of applicable methods, and is more depen-
dent on the properties of the source text. That is
to say, there are different methods that are more of
less preferable depending on the use case (Belkadi
et al.). Typically methods involve substituting sen-
sitive information with a random sequence, a label,
or a random entity of the same or similar type.

Nevertheless, Adams et al. (2019) posit that the
need for robust anonymization is being extended
to other domains, due to the GDPR affecting other
sources of data, which has made the task of auto-
matic text pseudonymisation more relevant than
ever. To that end they develop a machine learning-
based toolkit to perform automatic pseudonymisa-
tion in human-computer dialogue while taking into
account information that could potentially identify
persons (PIIs) but also corporations (CIIs).

1https://github.com/langtech-bsc/
AnonymizationPipeline

2.1 Regular expression-based sensitive
information identification

Hassan et al. (2019) create ReCRF, a named entity
extraction system that extracts features based on
orthography, lexis and regular expressions from a
specific token and its surrounding context to clas-
sify a token as containing PII or not in medical
text. The interesting aspect to their feature craft-
ing method is the use of a data-driven method to
automatically generate regex-based rules. These
features are then used as input to Conditional Ran-
dom Field models.

Still involving the medical domain, Sánchez-
León (2019) develop a pseudonymisation system
for Spanish clinical text. They enrich a simple
grammar formalism with regular expressions to
take into account spelling variations and then ap-
ply each rule in order of reliability, with generally
favourable results.

Yuwono et al. (2016) apply regular expressions
similarly to detect PIIs in clinical discharge papers.
On top of the regular expressions they construct
hand-crafted heuristics involving minimum edit
distance to account for spelling and formatting in-
consistencies between documents. Their simple
heuristics-based approach does not require any sort
of fine-tuning, model training, or manual annota-
tion, but they do make use of their own database
when detecting patient information.

2.2 Machine learning-based detection of
sensitive data

A variety of machine learning methods can be
utilised in several ways when detecting sensitive
information. Juez-Hernandez et al. (2023) perform
a comprehensive assessment of PII detection meth-
ods using current state-of-the-art methods and pro-
pose a few of their own, with a focus on several
languages. They perform several experiments to
derive optimal solutions for PII identification in
different types of Spanish text (clinical texts and
law-enforcement reports). They pose different re-
search questions regarding the performance of NER
models of PII detection. Specifically, they contem-
plate the effects of using off-the-shelf models on
performance in comparison to training a model for
each specific domain, as well as if an ad hoc trained
model can be used in a cross-domain fashion. Their
findings suggest that while off-the-shelf models can
be used for PII detection, training domain-specific
models yields superior results, given the variabil-
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ity across domains. Specifically, they note that a
model trained on one domain can be used in another
with acceptable performance, but performance will
degrade when used on out-of-domain data.

In terms of methods, they test different NER ar-
chitectures ranging from off-the-shelf Stanza (Qi
et al., 2020) and Flair (Akbik et al., 2019) NER
models to recurrent neural architectures with dif-
ferent combinations of embeddings, to pretrained
transformers available on HuggingFace that were
then fine-tuned on their task-specific data.

2.3 Challenges

Examining the requirements of the GDPR, and
what constitutes genuinely anonymized data, a
question that is continually asked is how do we
manage the trade-off between privacy and utility?
Francopoulo and Schaub (2020) determine that for
an anonymization framework to be successful, it
needs to: (1) avoid identifying the individuals in the
text, (2) allow posterior analysis of the anonymized
text, (3) allow for off-the-shelf NLP tools to be
applied to the anonymized text, (4) produce a prov-
able anonymization, (5) be usable in different Eu-
ropean languages. They highlight that some of
these are contradictory or at least that some require-
ments directly interfere with the effectiveness of
the others, even if we assume a perfect detection
of PIIs. The problem lies in that if resulting data
from an anonymization or deidentification process
is indistinguishable from a non-anonymized text,
there would be no way to prove that it has actually
been anonymized. For instance, anonymization
by redaction (i.e. the elimination of PIIs by sub-
stituting them with a fixed character such as an X)
leaves proof of the anonymization, but severely lim-
its any posterior usability of the text. On the other
hand, if a more sophisticated substitution is applied
to the text, the result maximises posterior useful-
ness, but by definition should not leave a trace of
the anonymization. As a solution they propose a
relaxation of requirements based on the specific
circumstance. They argue that requirement (3) is
vital when using off-the-shelf tools within a secure
environment, where requirement (4) can be relaxed,
while requirement (4) is more important outside of
a secure environment, where requirement (3) can
be relaxed.

These concerns are echoed in Mozes and Klein-
berg (2021). They argue that current methods do
not correctly quantify anonymization performance,

given that if a text contains several instances of
PIIs, it is enough for one of them to go unde-
tected to identify the person in question. Many
metrics would still assign a high performance to the
anonymization system, as evaluation is typically
applied on a sentence or instance level, despite the
anonymization essentially failing.

They propose specific evaluation criteria to mea-
sure the effectiveness of the anonymization. The
criteria presented in TILD take into account an
anonymization system’s technical performance, the
information loss resulting from the anonymiza-
tion, and the human ability to deanonymize the
redacted documents. They highlight the impor-
tance of information loss and robustness against
de-anonymization; to guarantee posterior utility,
the authors argue that the anonymization process
must introduce as minimal changes as possible to
the original document such that utility loss (dif-
ference in performance when using anonymized
data in comparison to the original data) and con-
struct loss (difference according to a higher order
construct) are minimised. However, while ensur-
ing minimal differences between anonymized and
original texts, the anonymization process must be
irreversible, such that a human intruder with the
ability to use external resources would not be able
to identify the original PIIs.

We can draw parallelisms between Francopoulo
and Schaub (2020) and Mozes and Kleinberg
(2021). Both papers highlight the importance of
the actual detection component (requirement (1)
of Francopoulo and Schaub (2020) and criterion T
of TILD), and both are concerned with the poste-
rior utility of the data in terms of the analyses that
can still be carried out (requirements (2) and (3) in
Francopoulo and Schaub (2020) and criterion IL
of TILD). However, we observe that Francopoulo
and Schaub (2020) suggest modulating the impor-
tance of that requirement based on intended use and
level of exposure of the anonymized data, while
Mozes and Kleinberg (2021) make no such state-
ment. After that point, both criteria diverge. Fran-
copoulo and Schaub (2020) highlight the impor-
tance of having a provable anonymization, while
Mozes and Kleinberg (2021) place more emphasis
on the anonymization being non-reversible while
maintaining the properties of the original data.
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Figure 1: Diagram of our experimental design. round 1 was performed on the randomly sampled dataset (left, in
pink), while rounds 2 and 3 were performed on the entire conversation dataset (top and right, in green).

3 Methods

3.1 Anonymization Data

As stated in section 1, our evaluation data originates
from conversations between users and a virtual
agent. For context, the conversations took place
during the COVID-19 pandemic. We examine two
subsets of the data. Initially, we randomly sample
23.000 messages for simplicity. However, after
our initial assessment, discussion with annotators,
and following Mozes and Kleinberg (2021), we
decide to include full conversations, given that in
some occasions, referents can be identified using
contextual cues that do not individually constitute
PIIs.

We decide to include messages from full con-
versations such that the individual messages sum
to 23.000; annotators were instructed to compile
a second dataset such that all messages sent by
the users from a conversation were included. This
resulted in the generation of a second evaluation
dataset consisting of 23.000 messages from 953
unique conversations. We highlight that due to
privacy restrictions, we only use the data for evalu-
ating our system, as the data cannot be used to train
or fine-tune a base model.

Regarding the annotation process, the data was
selected and processed by two annotators, and then
revised by a third such that the third annotator could
essentially act as a tie-breaker. Cases where no
consensus was reached were excluded from the
experiments (this was the case for fewer than 15
messages in total, taking into account both datasets)

In terms of structure, only messages from the
users are included. Messages are assigned two iden-
tifiers: a unique identifier and an identifier spec-
ifying to which conversation it belongs. Within
each conversation, messages are ordered chrono-
logically. Furthermore, the messages are unlabeled.
We do not explicitly work with a gold standard.
Instead, we rely on the annotators to examine the
data on our behalf. They additionally analyse the
performance of our system by checking what in-
formation is correctly pseudonymised and which
information is incorrectly pseudonymised.

Our setup is as shown in Figure 1. The data is
kept by the third party such that we cannot directly
access or manipulate it. Given this data access con-
straint, the annotators were hired to perform three
evaluation rounds. In each round, we submit a ver-
sion of the pipeline which is run on the third party’s
systems. They in turn evaluate the PII identification
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component performance.

3.2 The Anonymization Pipeline

Input

Ingestor

Truecaser

RE-based PIINER-based PII

PII-tagged texts

Random 
Anonymization

Labelled 
Anonymization

Intelligent 
Anonymization

Figure 2: Diagram of the presented pipeline.

Despite the complexity of the task of
pseudonymisation, the pipeline we present
in this paper is relatively straightforward. In this
subsection we proceed to describe our pipeline as
shown in Figure 2.

Input data is provided textually. Currently, the
pipeline supports different forms of textual input
through different ingestors that, when fed a specific
format, would output the data in a normalized for-
mat that the rest of pipeline can manipulate. The
pipeline currently has ingestors for .csv, .json and
.txt formats.

As explained in section 2, user-generated data is
known to be noisy; while we do not explicitly add
a preprocessing module, we have empirically deter-
mined during initial testing that in our specific case,
performance is hindered by poor textual formatting.
To mitigate this issue, we apply an implementation
of the NLTK truecaser module2 (Bird et al., 2009).
This resolves simple cases where names of people,
locations, organizations, etc are incorrectly cased.

Following ingesting the data, normalizing the
input representation, and applying mild preprocess-
ing, we proceed to the sensitive information iden-
tification task by combining regular expressions
and machine learning models as described in sub-
section 3.3. While we take into account the labels

2https://huggingface.co/HURIDOCS/
spanish-truecasing

provided by our regular expressions and one NER
module, we highlight that the pipeline supports
the use of multiple NER modules. In the case of
a mismatch between any of the components, we
establish a ranking such that the labelling of one
can be determined to be more "trustworthy" and
therefore take scope over the other in case of a
discrepancy.

Once the sensitive information has been identi-
fied within the text, the pipeline can perform sim-
ple deidentification. Three methods are included:
random, labelled, and intelligent. The random
method substitutes the sensitive span with a se-
ries of random characters of varying length, the
labelled method substitutes the span with the cat-
egory of sensitive data detected (e.g. PERS, ID,
LOC, etc). The intelligent method performs a
limited substitution that attempts to substitute the
marked span with a different entity of the same
category. Currently, it is entirely possible for the
intelligent anonymization system to substitute a
street name with a city for instance, as we do not
have a more fine-grained method of PII detection
available. We conduct all of our experiments with
the labelled setting to ease the annotation task.

3.3 PII identification

Given that pseudonymisation is a complex task and
PIIs can occur in varying contexts, our pipeline is
designed with flexibility and modularity in mind,
such that components can be substituted based on
the requirements and difficulty of the task. We dif-
ferentiate between structured and non-structured
PIIs and detect them using different methods; in-
stances of structured data include phone numbers,
zip codes, emails, etc. On the other hand, non-
structured PIIs could include person and location
names.

We take into account the domain properties of
our domain of intended use. User-generated text is
notorious for being noisy (Baldwin et al., 2015b;
Jose and Raj, 2014). This can harm the robustness
of PII detection module of our pipeline, increasing
the number of false positives and negatives. We
mitigate these problems in our pipeline differently
for structured and unstructured data.

According to the intended use-case of the virtual
agent, users are expected to provide information
regarding their location, identity and contact in
the form of structured PIIs of zip codes, ID num-
ber, email, phone number, and even land registry
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identifiers. To detect this sort of information we
hand-craft regular expressions to match such infor-
mation, allowing for some variation by users (e.g.
a missing digit in a phone number, lower-case let-
ters rather than upper-case letters in a license plate
number).

For non-structured data such as location names
and full names whose formats can vary, we use ma-
chine learning and deep learning methods for detec-
tion. We experiment with a large spacy model3 and
a RoBERTa NER4 model that have been fine-tuned
on Catalan and Spanish NER data. We additionally
experiment with a truecasing module to ease the
detection of named entities.

During each of the three evaluation rounds, we
ask the annotators to classify each message using
criteria that we provide. We establish the following
typology to categorise PII detection performance:

A) Information that should not be anonymized
(false positives)

B) PIIs that should have been detected but were
not (false negatives)

C) PIIs that have been detected but assigned an
incorrect type (true positives)

D) Correctly identified PIIs (true positives)

E) Potential PII but not in this context (true posi-
tives)

F) Not PIIs (true negative)

Many PIIs are contextually modulated, in the sense
that the same span of text may allow the identifica-
tion of the individual depending on the information
in the surrounding context. For instance, a first
name on its own might not identify an individual,
but a full name probably would, and both would be
detected by most off-the-shelf NER models. Simi-
larly with locations, a user stating their city of resi-
dence may not be providing sensitive information.
However, the likelihood of being able to identify
the user increases the fewer the inhabitants that
live in the area denoted by the message. Given our
limited access to the data, we cannot use any of the
messages to fine-tune a model and tailor it to our
specific domain, and must rely on models trained

3https://huggingface.co/PlanTL-GOB-ES/
es_anonimization_core_lg

4https://huggingface.co/BSC-LT/
roberta_model_for_anonimization

on other datasets. This limits our system’s ability
to take this contextual modulation into account.

That being said, we still instruct the annotators to
take into the account all messages sent by the user
during the exchange in line with the points raised in
Mozes and Kleinberg (2021) and the TILD evalua-
tion framework; in one of our evaluation paradigms,
if our system fails to detect critical PIIs that allow
the identification of the individual, the entire ex-
change is labelled as B). We additionally instruct
the annotators to highlight instances where users
specify entities that would typically be detected by
NER systems, but do not constitute PIIs, thereby
creating category E). As stated, the models we use
in this case are not specialised in anonymization,
and therefore they are unable to pick up on explicit
contextual cues that allow distinguishing PIIs from
named entities (NEs). In light of this and that that
sensitivity of specific entities is contextually mod-
ulated, for our evaluation we still consider them
to be true positives. Similarly, we also consider
correctly detected PIIs that are not correctly cate-
gorised (e.g. a location that is classified as a name)
to be true positives, given that our main focus is
PII identification.

3.4 Evaluation Rounds
Cleaning and aggregation On one hand, we be-
lieve that whatever PII detection system that is ap-
plied or deployed in a given environment should
show robust performance despite noisy input. But
on the other, in our specific case, without being
able to adapt a model to this type of task and do-
main, the noise in the input negatively skews our
results, both in terms of performance and evalua-
tion. With the aid of the annotators, we identify
two main issues:

1. Much of the input is noisy. Many users will
misspell several words (e.g. weno chao in-
stead of bueno ciao to end a conversation) in
their messages or simply send nonsense (e.g.
button mashing or sending the same random
characters multiple times) to the virtual agent,
which is detected by the model

2. Some users send several instances of the same
message. If PII detection of that specific mes-
sage is incorrect, it is then overrepresented in
the data

Essentially, the first problem causes the model
to detect several false positives through errors of
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type A). By sending several copies of some mes-
sages, the first problem is essentially exacerbated,
such that false positives are overrepresented in our
evaluation.

To mitigate this problem, we first detect
poorly formatted or spelled messages similarly to
Kudugunta et al. (2023); we apply the fasttext lan-
guage identifier (Joulin et al., 2016) to each mes-
sage. The language identifier outputs a probability
distribution over languages. Poorly formed mes-
sages will have a lower probability associated with
the expected languages. We discard any message
with a probability lower than 0.8 of being either
in Spanish or Catalan. Furthermore, in addition to
evaluating performance by considering each mes-
sage individually, we also examine performance
by considering entire conversations. That is to say,
rather than assign labels to individual messages,
we assign them to the entire conversation. We do
this by establishing a hierarchy of error types, such
that graver errors take higher scope. The hierar-
chy is as follows: B > A > C > D > E > F. For
instance, if in a conversation, one message is cor-
rectly anonymized (i.e. type D), but a critical PII is
missed in another message belonging to the same
conversation(i.e. type B, or a false negative), then
that whole conversation is marked as B.

As stated in subsection 3.1, we do not have di-
rect access to the data and instead provide the task
to a third party. We iteratively make improvements
to our pipeline based on their feedback. In Figure
1 we illustrate how we proceed through each evalu-
ation round. We perform three sequential rounds
of evaluation. During each round, we update the
pipeline and make the new version available to
the third party. The pipeline is then downloaded
and run on their systems where the data is kept.
For readability, model performance is based on
the label-based pseudonymisation. Model perfor-
mance is manually examined by comparing the
original data with the anonymized data to examine
if PIIs were correctly detected and replaced with
the correct labels. The results of the examination
are then forwarded back to us in terms of the error
typology presented in the beginning of subsection
3.1. This feedback is then taken into account for
the following round of evaluation.

Round 1 For the first round of evaluation, we
experiment with lightweight approaches. We use
a large spacy NER pipeline (which includes POS
tagger, dependency parser, attribute matcher, and

lemmatizer) (Honnibal et al., 2020). Initial experi-
ments in-house additionally showed a benefit in per-
formance by adding a truecaser as a preprocessing
step. We use our initial set of regular expressions
(RE1).

Round 2 For the second evaluation, we take into
account the results and feedback from the sec-
ond round and include a larger and more robust
RoBERTa NER model to increase the quality of
the PII detection. We additionally perform in-house
experiments to determine if the truecaser adds any
benefit and decide to still include it.

Round 3 After the second round, we observe
that our system manages to detect the majority of
the PII instances in the evaluation set. However,
discussion with the annotators revealed that some
instances were not detected due to user error (e.g. a
phone number missing a digit, a misspelled email).
We refine the regular expressions such that they are
more flexible to account for user error (RE2). We
additionally observe that the truecaser introduced
whitespaces in specific contexts which interfered
with the RoBERTa model tokenization, negatively
impacting precision. We resolved this issue for the
third and final round with the aim of reducing the
number of false positives.

We show the results for each round in Table
1, presenting precision, recall and Fβ (β = 2)for
each round. We additionally present results for
the datasets after filtering our the noisy text and
assigning a label to each conversation, rather than
each individual message.

4 Results

We present our results in Table 1. Within each
round, we evaluate the effects of data cleaning and
applying our evaluation metrics in different ways;
we explore the effects of aggregating the data dif-
ferently (as shown in the Aggregation column), and
the effects of removing poorly formatted messages
from consideration (expressed by the -c (for clean)
suffix). Each round is separated by a horizontal
line in the table. Cleaned and non-cleaned versions
of the data are separated by a dashed line within
each evaluation round.

In spite of not being able to directly access the
data, Table 1 shows the clear benefits of our iter-
ative evaluation paradigm. We can observe non-
trivial improvement from one round to the next; the
first round, using the Spacy model, yields moderate
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Round NER component RE set Aggregation Precision Recall Fβ

R1
Spacy RE1 Total 0.43 0.74 0.65

- - - - - -

R2 RoBERTa RE1
Total 0.06 0.95 0.23

CONV 0.27 0.93 0.62

R2-c RoBERTa RE1
Total 0.1 0.95 0.35

CONV 0.29 0.93 0.64

R3 RoBERTa RE2
Total 0.40 0.99 0.77

CONV 0.63 0.99 0.89

R3-c RoBERTa RE2
Total 0.54 0.99 0.85

CONV 0.64 0.99 0.90

Table 1: Results as classified by annotators for each evaluation round. Best performance in bold. β = 2. REn

indicates the set of regular expressions used, whereas the -c suffix indicates that noisy messages have been removed
from the dataset.

precision but relatively low recall. For the second
round, we incorporate a more robust RoBERTa
model into the pipeline, which drastically raises
recall at the cost of precision. For the third and
final round, we modify the system tokenization
scheme and augment the set of regular expressions,
further improving both recall and precision, ulti-
mately yielding the highest Fβ-score of 0.90.

Furthermore, we can see the clear impact of the
data quality on pipeline performance. For each
evaluated dataset, we create a clean counterpart
after filtering out messages we believe have signifi-
cant orthography or formatting issues. We observe
superior model performance on cleaner datasets,
especially in terms of precision. We observe this
effect in evaluation rounds 2 and 3.

However, we observe a much stronger difference
in precision based on the way we choose to aggre-
gate the data; by aggregating the data by conver-
sation we observe major improvements, which are
more representative of actual PII detection perfor-
mance. That is to say, by assigning a single label
to each conversation based on whether a correct
detection of PIIs was carried out, we attain much
better precision. We observe these effects in both
rounds where we collected several messages from
the same conversation (rounds 2 and 3).

5 Discussion

PII detection performance The results shown
in Table 1 in section 4 show clear improvement be-
tween consecutive iterations. In terms of trade-off
between precision and recall, we note that perfor-
mance is most balanced using the Spacy model.
However, it does also present the lowest recall,

which we consider to be the to be the most rele-
vant metric given the sensitive nature of the data.
In light of this, we find recall to be prohibitively
low using the Spacy model. Comparing perfor-
mance between the Spacy and RoBERTa models
in similar conditions (i.e. considering individual
messages and unclean data), it is clear that the
RoBERTa models show lower precision. That said,
their higher recall makes them more desirable in
this context.

Our findings are in line with those of Juez-
Hernandez et al. (2023). While we are able to
achieve high recall with models trained on out-of-
domain data, we do observe that performance is not
optimal, given the relatively low precision of the
RoBERTa models. That said, we have been able to
determine that the low performance is largely due
to the overrepresentation of noisy input in the data,
which essentially interacts with the imperfect ro-
bustness of our model in this context, contributing
to the deflation of the aforementioned metric. We
have more or less mitigated this issue so that the
results more accurately reflect model performance,
but we also highlight that if the NER models were
more robust to the noise in the input, the number
of false positives would be drastically lower.

Francopoulo and Schaub (2020) and TILD
Given the high recall of our system, we consider
that we fulfill the first item of the criteria presented
in TILD (Technical performance) and Francopoulo
and Schaub (2020), which is to ensure that the data
does not contain PIIs. However, we do note the
low precision of our system may negatively im-
pact Information loss, as obscuring more data than
necessary may render the data less useful. On the
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other hand, tagging more entities than necessary
as PIIs and their subsequent anonymization (via
redaction or substitution) is more likely to make
deanonymization much more difficult. In light of
this, we argue that depending on use, the system we
present in this paper could be more than adequate.

6 Conclusion and Future Work

In conclusion, we present the results and findings
from a real life use-case where we have had to
develop a PII detection system to pseudonymise
exchanges between users and a virtual agent. We
demonstrate the effectiveness of our system and
the issues that can arise when extending a NER sys-
tem beyond its original domain. We highlight the
specific problems we have encountered with user-
generated data. We additionally note that given the
differences between the domains of training and
deployment, our system performs well, achieving
very high recall. We argue that the inter-domain
differences may be detrimental to performance in
general, PII detection can be achieved with robust
off-the-shelf NER models, given that our system
managed to detect almost all instances of PII.

While the performance of our system is more
than adequate given the circumstances, anonymisa-
tion and pseudonymisation are tasks that are gain-
ing more and more urgency and importance. In
light of this we consider it of critical importance
to develop more resources for domain-specific and
domain-general pseudonymisation.

The focus of this paper has been examining the
effectiveness of adapting off-the-shelf NER sys-
tems to the task of PII detection. Our future work
should aim to address explore robust ways of dei-
dentifying the data in accordance with the estab-
lished literature (Francopoulo and Schaub, 2020;
Mozes and Kleinberg, 2021).

7 Limitations

Given the relatively novel nature of this task, one
of the major limitations of the work presented is
only taking into account the benefits of examin-
ing entire conversations over individual messages
from the second round of evaluation onwards. This
negatively impacts the comparability of our results;
we cannot compare the performance of the Spacy
model with the RoBERTa model when considering
entire conversations.

Additionally, we mention in section 3 that our
system contains a rudimentary deidentification

component that can substitute detected PIIs with
either a sequence of random characters, a label, or
a similar entity which was randomly sampled. For
the purposes of our experiments, we have only con-
sidered the label-based deidentification (which is
similar to redaction in the literature), as it made the
anonymized text much more readable, and subse-
quently simplified the annotation task. We leave
evaluating this component for future work.

8 Ethical Statement

The development of anonymisation or pseudonymi-
sation systems is central to people’s right to privacy.
We view the work presented in this paper as a pos-
itive contribution, given that we provide the tools
(pipeline, models, etc) to detect and deidentify sen-
sitive data in Spanish and Catalan. Furthermore, we
highlight the weaknesses we have observed both
in our system and in early iterations of our im-
provement cycle with the aim of helping researches
avoid similar pitfalls. However, while we do not
foresee the methods described here to be used for
unethical purposes, discussing any potential system
weaknesses may facilitate system attacks down the
line.
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