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Abstract
This study presents an analysis of diachronic linguistic changes in English scientific writing, utilizing surprisal from
transformer-based language models. Unlike traditional n-gram models, transformer-based models are potentially
better at capturing nuanced linguistic changes such as long-range dependencies by considering variable context
sizes. However, to create diachronically comparable language models there are several challenges with historical
data, notably an exponential increase in no. of texts, tokens per text and vocabulary size over time. We address
these by using a shared vocabulary and employing a robust training strategy that includes initial uniform sampling
from the corpus and continuing pre-training on specific temporal segments. Our empirical analysis highlights
the predictive power of surprisal from transformer-based models, particularly in analyzing complex linguistic
structures like relative clauses. The models’ broader contextual awareness and the inclusion of dependency length
annotations contribute to a more intricate understanding of communicative efficiency. While our focus is on scientific
English, our approach can be applied to other low-resource scenarios.

Keywords:Scientific English, Digital Humanities, Language Change, Evaluation, Language Modeling, Trans-
former

1. Introduction

Language models, particularly those rooted in ma-
chine learning and neural networks, have revolu-
tionized the way we analyze and understand the
intricacies of linguistic change (Kim et al., 2014;
Hamilton et al., 2016; Dubossarsky et al., 2019).
Different models, such as n-gram, LSTM or trans-
former models, offer diverse possibilities for ana-
lyzing language variation and change due to their
underlying architectures. N-gram models are usu-
ally based on rather small and fixed-size context
windows, excelling in capturing local patterns of
variation. Transformer models, instead, employ
attention mechanisms and deep neural networks
capturing long-range dependencies and global
context in language data. While they are less effi-
cient in terms of training compared to n-gram mod-
els, they excel at capturing complex syntactic and
semantic relationships, making them well-suited
for analyzing possibly broader and more complex
linguistic trends.
Various studies, especially concerned with lexi-

cal semantic change, already employ transformer-
based models successfully (Giulianelli et al.,
2020). However, comparability of the models over
time is not a trivial task as the data sets often vary
greatly in terms of corpus and vocabulary size, es-
pecially for historical material where the data can-
not be extended.
In this paper, we apply transformer-based mod-

els to explore diachronic linguistic change in 300
years of English scientific writing. In particular,
we create models of surprisal (the predictability
of a word given its previous context, Shannon,
1948), which are comparable over time. Surprisal
models allow us to investigate how change in lan-
guage use is possibly driven by optimization ef-
fects, given that surprisal is proportional to cogni-
tive effort (Hale, 2001; Levy, 2008). A major as-
sumption for the evolution of scientific writing is
that it becomes more informationally dense over
time (Biber and Gray, 2016) due to the increas-
ing specialization and diversification of scientific
disciplines. On the other hand, conventionaliza-
tion effects are at play which modulate the infor-
mational load. This balance between highly infor-
mative content and conventionalized ways of ex-
pression allows for an optimal code for expert-to-
expert communication (Degaetano-Ortlieb and Te-
ich, 2019). Our overarching aim is to create ro-
bust diachronic language models capable of cap-
turing and quantifying optimization effects in lan-
guage use. We begin by outlining previous re-
search on changes in English scientific writing,
emphasizing the use of information-theoretic no-
tions (specifically surprisal) to capture changes
related to efficiency in communication. We con-
tinue by elaborating on the challenges in using
models with restricted window sizes (n-gram mod-
els) and the motivation to apply transformer-based
models as well as the challenges associated with
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the implementation of these models to diachronic
data. Next, we describe the dataset used in our
study and discuss the methods we adopt for ng-
modeling changes over time using transformer-
based models. Working with historical linguistic
data presents unique challenges, and we address
some of these in detail (vocabulary shifts and train
set bias). In our analysis section, we assess
our transformer-based surprisal models, compar-
ing surprisal trends with those found in earlier stud-
ies. We supplement this with a focused study on
relative clauses, which require understanding long-
range dependencies. These dependencies can be
effectively captured by transformer-based models
as they consider larger context windows.
The contributions of this study lie in address-

ing key modeling challenges inherent in historical
data analysis, however, our approach has broader
applications, extending to other areas where re-
sources are limited.

2. Previous Work and Rationale

Diachronic change in the English scientific regis-
ter has received ample attention in previous work.
Earlier, descriptive (Halliday, 1988; Halliday and
Martin, 1993) as well as corpus-based studies (e.g.
Biber et al., 1999; Biber and Gray, 2011, 2016)
report on a central mechanism in scientific lan-
guage which shifts grammatical complexity from
the clausal level (subordination and coordination)
to the phrasal level (see also Hundt et al.) leading
to an increasingly nominal instead of verbal style.
Another central development in the scientific regis-
ter is the conventionalization of lexico-grammatical
features, which has been detected to be a neces-
sary condition for innovation on the one hand and
grammaticalization on the other (?Schmid, 1994).
Innovation is probably the most obvious mecha-
nism, as a natural reaction to the need to create
new vocabulary for newly arising concepts. Fur-
thermore, diversification of certain features in in-
creasingly distinct contexts has been observed to
be at play in the course of the creation of new sci-
entific disciplines and the formation of their respec-
tive sublanguages (Halliday, 1988; Harris Sabbet-
tai, 1991).
While the mentioned studies are either qual-

itative in nature or at most frequency-based,
more recent studies have employed information-
theoretic measures such as n-gram-based sur-
prisal to detect diachronic changes in the reg-
ister (Degaetano-Ortlieb and Teich, 2016, 2018;
Teich et al., 2021). Surprisal is formalized as
the negative log probability of a unit in con-
text Surprisal(uniti) = −log2P (uniti|Context),
which results in bits of information (Shannon,
1948). The motivation to abandon a mere

frequency-based approach in favour of n-gram-
based surprisal is the assumption that linguistic
change underlies the rational strive for commu-
nicative efficiency. Since surprisal is a widely-
used measure of information, which has been
shown to be correlated with cognitive effort in on-
line language processing (e.g. Levy, 2008; Dem-
berg and Keller, 2008) it is well suited to giving
a communicative explanation for changes in the
lexical as well as grammatical level. Degaetano-
Ortlieb and Teich (2019), for instance, show that in
scientific writing certain grammatical patterns be-
come less surprising over time, i.e. increasingly
conventionalized in their contexts, while specific
lexical items show a trend toward “innovation and
increase in expressivity” (Degaetano-Ortlieb and
Teich, 2019, p. 26) indicated by phases of high
surprisal when new concepts enter the language
and phases of stability/consolidation when items
of lexical usage become conventionalized in their
contexts. An example of the interplay between lex-
ical innovation and grammatical consolidation is
the noun–preposition–noun pattern (e.g. oxide of
iron) becoming extremely predictable as a gram-
matical pattern while serving as a “habitual host
for lexical innovation and terminology formation”
Degaetano-Ortlieb and Teich (2019, p. 26). The
mentioned studies give a plausible explanation
for the underlying motives of language change,
however, their underlying 4-gram language mod-
els (i.e. surprisal based on a word’s predictabil-
ity given its previous three words as context) are
fairly restricted in terms of context size. While the
narrow context of only three preceding words is
well suited for detecting optimization of shorter lin-
guistic units such as the above-mentioned noun-
preposition-noun pattern, it is less well suited for
drawing conclusions about the diachronic develop-
ment of linguistic structures exceeding this window
size. A possible solution to this is to replace the
n-gram with a model covering a larger context win-
dow such as an LSTM (Hochreiter and Schmidhu-
ber, 1997) or Transformer (Radford et al., 2018),
which is the approach we present in the present
paper. However, applying such models, espe-
cially transformer-based ones, poses several chal-
lenges (e.g., varying corpus and vocabulary sizes
or selection of data for modeling). In this paper,
we work towards addressing some of these chal-
lenges (cf. Section 3.2). While there is a grow-
ing body of research on which language model ar-
chitecture to choose if restricted to a limited com-
pute budget (e.g. Scaboro et al., 2021) or a spe-
cific dataset size (e.g. Hoffmann et al., 2022), it
is less clear what approach one should take if ei-
ther one’s compute budget or dataset size is very
small. This becomes especially pressing in the
case of historical corpora as there are only limited
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ways of extending the data. While it is possible to
train large language models on historical English
data (e.g. Hosseini et al., 2021), doing so might
be undesirable for a number of reasons. When
the reason for training a language model is to cre-
ate a computational model which serves as an ap-
proximation – ideally a cognitively plausible one –
of a speaker of a specific time period, the option
of training the language model on large-scale text
data is not available, since the training data should,
for example, be restricted to a time period preced-
ing any text from that time period, with the basic
assumption that a speaker did not have access to
future text productions. This is of course a sim-
plified assumption; in the case of written text, it
is plausible to assume that every reader has ac-
cess to some amount of data that lie in the future
from the perspective of any given text. However,
there are domains in which this amount can plau-
sibly be assumed to be small, such as scientific
English writing.

3. Data and Methods

3.1. The Royal Society Corpus

We use the Royal Society Corpus (RSC) (Fischer
et al., 2020; Kermes et al., 2016) as a data set.
The RSC is based on the Philosophical Transac-
tions and the Proceedings of the Royal Society of
London. In total, it comprises 295 895749 tokens
and 47 837 texts, which were published between
1665 and 1996. The RSC incorporates a compre-
hensive set of metadata such as text categories
(e.g., articles, abstracts), authorship, title, publi-
cation date, and historical periods (ranging from
decades to half-centuries), along with linguistic an-
notations at multiple layers including tokens (fea-
turing to some extent both normalized and origi-
nal forms), lemmas, and parts of speech, utilizing
TreeTagger (Schmid, 1994), and Universal Depen-
dency parsing achieved by Stanza (Qi et al., 2020)
with combined models. Given that the texts under-
went OCR, several preliminary procedures were
employed to counteract OCR inaccuracies to the
greatest extent feasible (for an in-depth explana-
tion, refer to Kermes et al., 2016; Menzel et al.,
2021).
Even though the RSC is large enough for lan-

guage modeling, the distribution of texts and to-
kens poses a challenge. Figures 1 and 2 show that
texts and tokens are not equally balanced across
time. This can be attributed to an increase in pub-
lication activity as well as significantly longer texts
in recent time periods (see Figure 3).

Figure 1: Distribution of texts in the RSC.

Figure 2: Distribution of tokens in the RSC.

3.2. Modeling Diachronic Change with
Transformer-Based Models

Problem Statement Previous research on the
diachronic linguistic development of English sci-
entific writing (Degaetano-Ortlieb et al., 2018;
Degaetano-Ortlieb and Teich, 2018, 2019) has em-
ployed surprisal derived from n-gram language
models as a proxy of a model’s linguistic knowl-
edge. The hypothesis is that as syntactic struc-
tures are conventionalized (i.e. become more pre-
dictable) over time, surprisal from n-gram lan-
guage models fitted to texts from successive time
slices of the RSC decreases. While previous work
indeed found such an effect (Krielke, 2021), n-
gram language models are only a good approxi-
mation for local effects and ideally, a more cogni-
tively plausible model should have access to the
full sentence-level context.
A possible solution is to replace the n-gram by

a large language model with a larger context win-
dow (LSTM or Transformer). However, for histori-
cal data such as the RSC, this is far from trivial as
the number of texts and the number of tokens per
year decrease exponentially as we go back in time
(see Figure 2). In such a setting, it becomes in-
creasingly difficult to train and compare language
models for two reasons:

1. Vocabulary Shift. When sampling from peri-
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Figure 3: Average number of tokens per document
in the RSC.

ods t and t+1, the sets of word types or vo-
cabularies V t, V t+1 will be partially disjoint,
i.e. Vt ∩ V t+1 ̸= ∅. When training language
modelsM t, M t+1 on t and t+1, the probabil-
ity distributions PMt , PMt+1 cannot be directly
compared since they are defined over differ-
ent sets of events.

2. Train Set Bias. Let Ct be the set of texts
from period t. Since |Ct| << |Ct+1|, M t+1

will see much more training data than M t

when naively sampling from the corpus. The
probability estimates derived from M t+1 will
be tighter than those derived from M t as a
function of the train set size, if the vocabu-
lary stays constnat i.e. for an identical pre-
fix w0...i−1 we expect that PMt+1wi|w0...i−1 ≥
PMtwi|w0...i−1.

Approach

Continuous Pre-training While vocabulary
shifts can be addressed by sharing a unified
vocabulary over all models, train set bias requires
sampling the train set such that M t and M t+1 are
trained on a similar number of tokens, which is
problematic because for earlier periods we may
have only very little data. In order to alleviate
the effects of trains set bias, we make use of the
default NLP pipeline of pretraining a transformer
model on a more general dataset D0

PT sampled
uniformly from the each time period Ct, and then
continue pre-training on the documents of a spe-
cific year Ct. In our experiments we use the the
smallest version decoder-only OPT architecture
(Zhang et al., 2022), with randomly initialized
weights.

Pretraining Dataset We sample a pretraining
dataset D0

PT from all documents in the corpus
such that an equal number of tokens is sampled
from the documents Ct. Sampling 105 tokens

yields |D0
PT | ≈ 2×106. We derive a unified vocabu-

lary by training a BPE tokenizer with |V | = 5× 104

on DPT . We then pre-train on D0
PT , obtaining a

set of pre-trained weights θPT . Surprisal for words
that are split into subwords by the tokenizer is cal-
culated by summing their respective log probabili-
ties.

Pre-training on Individual Years We sample
datasets Dt

PT for each year t in the corpus. Each
Dt

PT consists of the documents from a period of k
years prior to t such that starting from t0 = t− k:

Dt
PT =

t−1∪
t′=t0

Ct′ (1)

We then initialize the model with θPT and fine-
tune on Dt

FT until validation loss converges. Hy-
perparameters for continuous pre-training can be
found in Table 1. This results in a similar number
of training steps (300-400) on eachDt

PT , indepen-
dent of |Dt

PT |.

Hyperparam Value

Batch Size 128
Learning Rate 1−3

Warmup Linear, 10%
Optimizer AdamW

Table 1: Pre-training hyperparameters

Implementation We used HuggingFace Trans-
formers (Wolf et al., 2020) to train the BPE to-
kenizer and to pretrain and fine-tune the OPT
model. The source code will be made available
on GitHub alongside instructions to replicate the
result upon publication.

4. Analyzing Linguistic Change

One main assumption regarding the development
of scientific English is a balance between infor-
mationally dense scientific content and conven-
tionalized scientific style (cf. Degaetano-Ortlieb
and Teich, 2019). In fact, it has been shown
that scientific English changes from a verbal in-
volved style with embedded clausal structure (see
Example (1)) toward a heavy nominal style with
long nominal phrases (see Example (2)) and pre-
dictable grammatical structures (Biber and Gray,
2016; Degaetano-Ortlieb and Teich, 2019).

(1) And if the greatest part of these Vessels are
Arteries, or other Vessels, that immediately re-
ceive liquors from them; I may prove, I think,
from another Experiment, made by Injection into
a part of the Arteria praeparans, before I began
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Figure 4: Surprisal on nouns, adjectives, relative pronouns (’which’+’that’ with XPOS tag ’WDT’) and
conjunctions/particles as defined by the UPOS annotations of the RSC. Error bars show standard error.

to expand the Body of the Testis; whereupon
opening the part, which I saw discoloured, I
found, that many of these Tubes had received
some of the fine particles of that matter, which
I tinged my injected Spirit with. (King and de
Grieff, 1669)

(2) On the other hand, a clear red-green stripe pat-
tern of predominantly positive or negative re-
sponse emerges in the vertical motion signal.
(Zanker, 1996)

We start by testing whether the results obtained
by transformer-based surprisal models are in line
with previous findings. We employ the Mann-
Kendall trend test (in the Python implementation
by Hussain and Mahmud (2019)) to confirm visu-
ally salient increases or decreases of surprisal (ei-
ther on specific words or averaged over POS tags).
In particular, we report the direction of the trend
(increasing, decreasing, or no trend), its slope s
and the p-value p associated with it. Figure 4
shows surprisal of the lexical word classes nouns
and adjectives as well as the grammatical func-
tion words relative pronouns (e.g.,which, that) and
conjunctions/ particles (e.g., and, to). The sur-
prisal values are calculated as the mean surprisal
of all words belonging to a class per decade, de-
termined by the word’s POS tag in the CoNLLU.
From the 1800s onward we can see an increase in
surprisal for word classes associated with nominal
style, nouns (s = 0.0181, p < 0.001) and adjectives
(s = 0.174, p < 0.001). Function words, instead,
show a steady decrease during the 17th up to the

1840s (s = −0.01, p < 0.001) followed by a slight
but not significant increase from the 1930s onward
(s = 0.0093, p = 0.2097). Thus, while nouns
and adjectives in general carry more information
(higher surprisal, between 7.5 - 12 bits) on aver-
age, function words carry much less information
(between 3-5 bits). While these findings are in line
with the general trend observed in previous work
(cf. Kermes and Teich, 2017), we should state that
considering average lexical surprisal of words be-
longing to specific word classes only shows a very
aggregated picture as a result of the confluence
of different factors, e.g. word frequency, vocab-
ulary diversity, collocational behaviours of words
per decade.

4.1. Modeling Convention and Innovation
with Surprisal

A more thorough inspection at the lexical level
(nouns and adjectives in Figure 4) seems to in-
dicate a wave-like tendency with periods of al-
ternating peaks (e.g., 1680, 1750, 1790, 1890,
1990) and troughs (e.g., 1730, 1780, 1820, 1910)
in surprisal. Considering that peaks in surprisal
indicate an increase in the use of unpredictable
words given their previous context and troughs
stand for more predictable usages, the observed
changes could be related to discoveries trigger-
ing new vocabulary in the corpus at hand, es-
pecially at points with abrupt changes such as
in the 1790s for nouns. In fact, this peak coin-
cides with the chemical revolution where the 100-
year-old phlogiston theory was replaced by the ev-
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Figure 5: Average surprisal and frequency of
nouns contributing to the surprisal increase and re-
lated to the chemical revolution. Error bars show
standard error over documents.

idence around the discovery of oxygen and hy-
drogen. Troughs, on the other hand, reflect peri-
ods of consolidation, where new vocabulary is in-
tegrated into language use possibly becoming es-
tablished terminology (cf. Degaetano-Ortlieb and
Teich, 2019). To test this assumption, we further in-
spect the nouns contributing most to the surprisal
increase in the 1790s (see Figure 5 showing sur-
prisal and frequency). At their first mentioning in
the 1790s, these nouns are relatively high in sur-
prisal, but strongly decrease in the decade 1800,
when their frequency increases, stabilizing at a
mid-surprisal range in the coming decades (1800-
1840). This is clearly an indication of a point in
time (1790s) of innovation in terms of the use of
new lexemes followed by a period of conventional-
ization, where new terminology was established in
the new chemistry field. Thereafter, the chemical
elements oxygen (s = 0.031, p < 0.001), hydrogen
(s = 0.0424, p < 0.001), and nitrogen (s = 0.0188,
p < 0.05) show a continuous increase in surprisal,
with a clear peak from the 1970s to the 1990s.
This tendency seems to indicate two distinct mech-
anisms that might have an impact on the nouns’
surprisal: (1) given that the frequency is not de-
creasing until the 1960s, the nouns might be used

in more diverse contexts which would explain their
increase in surprisal (e.g., thought that/permeable
to/the ketonic oxygen with high surprisal of oxy-
gen >10 bits), (2) in the period of the 1970s to the
1990s, their frequency decreases, which might ex-
plain their even stronger increase in surprisal in
that later period.

4.2. Modeling Surprisal for Long-Range
Dependencies

In this second analysis, we focus on relative
clauses (RCs), which inherently involve long de-
pendencies (see Example (3)), necessitating mod-
els that can appropriately handle such complex-
ities. In this regard, transformer-based models
are arguably more effective than n-gram or LSTM
models as they can make use of very long con-
texts, offering deeper, context-sensitive analysis
that is crucial for accurately capturing the nuanced
aspects of these linguistic structures.

(3) The protein, for which the detailed biochem-
ical pathway analysis conducted by the re-
searchers identified several novel interaction
partners, exhibits properties consistent with in-
creased metabolic resistance.

4.2.1. Surprisal of Relativizer

We start by considering the surprisal of the rela-
tive pronouns in Figure 4, which show a clear turn
in 1920, while conjunctions and particles seem to
stabilize in surprisal for more than 100 years be-
tween 1800 and 1920. Interestingly for relativiz-
ers, the development until the 19th century is not
exactly in line with previous research on the di-
achronic development of relativizer informativity
(cf. Krielke, 2021), which reports on an overall
slightly increasing surprisal of relativizers (which
and that). Krielke (2021) explains the upward
trend with the frequency decrease of relativizers
in scientific writing. However, they report on an
increasing conventionalization of which as the pre-
ferred relativizer in scientific writing occurring in in-
creasingly uniform contexts accounting for some
very low surprisal values. An explanation for the
differences in our results might be the different
modeling of surprisal since Krielke (2021) uses a
4-gram surprisal model based on probability esti-
mates of relativizers within 50-year periods. As
our estimates are based on a dynamic context size
and models are more precise in terms of surprisal
prediction in different time slices due to the bal-
anced vocabulary size of each slice, we can as-
sume that our results reflect changes in relativizer
informativity more reliably. Moreover, the increase
in surprisal in the 20th century in our datamay have
two mutually non-exclusive explanations: (a) rela-
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tivizers become less frequent in the 20th century,
and (b) they occur in increasingly diverse contexts
as a reaction to specialization, e.g., they might fol-
low a higher diversity of nouns, which are also less
predictable (cf. Figure 4).

4.2.2. Relativizers in Context

We furthermore inspect more thoroughly the rea-
sons for the increasing surprisal values of relativiz-
ers in the 20th century by examining a) the fre-
quency distributions of relativizers over time (Fig-
ure 6) as well as the immediate lexical contexts of
relativizers (that and which, Table 2).
The frequencies show that the overall strongest

decrease in relativizers over time happens roughly
in the 19th century. This shows that the sudden
increase in surprisal of relativizers in the 20th cen-
tury does not seem to be motivated by a major fre-
quency drop but rather by a specialization of con-
texts that relativizers tend to occur in. The most
frequent part-of-speech 3-grams preceding the rel-
ativizers that and which reflect this: that in the
decade 1990 mostly occurs after complex noun
phrases (Table 2), which can be assumed to de-
crease the predictability of the relativizer. The
preceding contexts of which are more predictive
since they introduce either prepositional RCs (e.g.,
the way in which) or restrictive RCs separated
from the matrix clause with a comma (e.g. the
experiment, which). What is interesting here is
the fact that the more predictable which steadily
drops in frequency while that steadily increases
from 1900 onward. This could explain the overall
increase in surprisal since the strongly convention-
alized which becomes less influential in the aver-
age surprisal while that becomes less predictable
in context and more frequent.

Figure 6: Distribution of relativizers in the RSC.

While this kind of pattern-based context analy-
sis would also be possible using 4-grams, our sur-
prisal model should also account for larger con-
texts and better surprisal estimates compared to
the 50-year-based 4-gram surprisal model used in

previous studies allowing more reliable interpreta-
tions of diachronic trends.

freq. trigram example
3034 IN DT NN of the acid that
2893 DT JJ NN the muriatic acid that
1627 NN IN NNS number of experiments that
1473 IN JJ NNS in various instances that
1415 DT NN NN the iron particles that
6392 DT NN IN the way in which
3123 JJ NN , unique solution, which
2866 JJ NN IN special case in which
2818 NN NN , length scale which
2722 DT JJ NN the complex plane which
1767 ( CD ) (3.1) which

Table 2: POS trigrams preceding that and which

4.2.3. Surprisal in Long-Range
Dependencies

Here we ask whether syntactic context has an in-
fluence on the predictability of syntactic elements
relying on longer distances to their syntactic heads.
As a plausible measure to define syntactic con-
text, we make use of the well-established metric
dependency length (DL) describing the distance
from an element X to its syntactic head (Heringer
et al., 1980; Hudson, 1995). We apply this metric
to measure the distance between the head noun of
an RC and its embedded verb to find out whether
the distance correlates with the predictability of the
embedded verb. One assumption could be that
the closer the relevant information (head noun) is
located to the upcoming dependent (embedded
verb) the lower the surprisal of the upcoming word
(see Example (4)).

(4) a. The woman who ate the sandwich was
hungry. (DL = 2)

b. The woman whom the manager of opera-
tions wanted to talk to was upset. (DL =
10)

We start by inspecting the diachronic development
of DL and the surprisal of embedded verbs in
RCs by decades (see Figure 7). DL and sur-
prisal are negatively correlated, i.e. the opposite of
our assumption is the case: in decades where the
embedded verb on average is further away from
its syntactic head the verb’s average surprisal is
lower, and in decades where the verb is closer to
its syntactic head the verb is more surprising (com-
pare Examples (5-a) and (5-b)).

(5) a. The questions that we might ask are not
easy to answer. (DL = 4)

b. The questions that lie on the table are not
easy to answer. (DL = 2)

One explanation is that at the point of encountering
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the relativizer the entropy (i.e. uncertainty about
the rest of the sentence, Hale, 2006) is higher than
at a later point in the relative clause.

Figure 7: Average surprisal on the verb in the RC
and dependency length to its head noun in the
RSC. Negative correlation for surprisal and depen-
dency length (Spearman’s ρ = −0.35, p < 0.05).

To get a better intuition about the reasons for
the lower predictability in shorter syntactic con-
texts and the higher predictability in longer syntac-
tic contexts, we extract the most surprising con-
texts of embedded verbs in RCs in 1990 plus the
least surprising contexts in 1820. Example (6) re-
flects two aspects we have mentioned so far. First,
the conventionalized pattern of prepositional RCs
(i.e. determiner noun preposition) contexts not only
seem to increase the predictability of the upcom-
ing relativizer but also that of the embedded verb.
Second, surprisal at the main verb (participle) in
the RC might be reduced due to being in a highly
predictable passive construction (has been + par-
ticiple).

(6) the first case in which a quantitative attempt has
been made (Surprisal = 0.0142) Conversely,
the high-surprisal contexts are extremely
short where the head noun is directly fol-
lowed by the relativizer and the embedded
verb (Example (7)).

(7) recordings in the region of the pontine nuclei
that VERB (Surprisal = 9.9998) The latter,
high-surprisal cases syntactically belong to
the subject RC type, while the first, low
surprisal cases belong to the oblique rela-
tive clause type. The negative correlation
between surprisal and DL can thus also
be explained with Hale’s Entropy Reduc-
tion Hypothesis (ERH, Hale, 2006) – un-
certainty about the rest of the sentence
tends to decrease as new words are in-
troduced, and the degree of this reduction
aligns with the information that the word

conveys within the context of the current
sentence (cf. Frank, 2013, p. 476). Thus,
a high surprisal value at the verb of a sub-
ject RC directly following the relativizer is
equivalent to a strong reduction of uncer-
tainty about the rest of the sentence since
at this point the relativized grammatical re-
lation can be resolved. The low surprisal
at the embedded verbs of RCs extracted
from other positions (e.g., oblique) implies
that entropy reduction here is much lower
since a lot of information for disambigua-
tion about the rest of the sentence has been
given before.

For comparison, we consider the 1820s where
DL is comparatively long, while surprisal is fairly
low. Example (8-a) shows a particularly long de-
pendency relation between the head noun (bun-
dles) and the embedded verb (composed) with ex-
tremely low surprisal.

(8) a. denote the bundles of fibres of which the
brain is composed (Surprisal = 0.1132)

Since the immediate left context (i.e. the brain is) of
composed is not particularly predictive, while the
head noun bundles is much more so, our surprisal
estimates seem to rely on a context beyond the
immediately preceding 3-gram. Thus, our model-
ing approach allows us to capture long-range syn-
tactic relations. Together with the fact that our re-
sults align with observations from psycho-linguistic
studies (e.g. Frank, 2013), we conclude that our
methodology for generating diachronically compa-
rable surprisal estimates provides plausible met-
rics to investigate the interplay between informa-
tion content and syntactic context in diachronic lan-
guage change.

5. Conclusion

We demonstrated the efficacy of transformer-
based surprisal models in analyzing diachronic lin-
guistic change, highlighting their capacity to ac-
commodate long-range dependencies and global
context. The application of these models to his-
torical data is not without challenges given the ex-
ponential increase in texts and tokens over time,
leading to partially disjoint vocabularies and non-
comparable probability distributions across differ-
ent periods. Significant disparities in training set
sizes between time periods further complicate the
modeling process. To address this, we implement
two key strategies: (1) sharing a unified vocabulary
over all models, (2) pre-training on a more general
dataset sampled uniformly from the whole corpus
and then continue pre-training on documents of a
specific year. Our models also uniquely incorpo-
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rate a temporal aspect, restricting training data to
texts published before the target period (which can
be adapted for other research questions).
Our empirical analysis, compared against prior

studies using n-gram models on the Royal Soci-
ety Corpus, revealed both corroborative and novel
insights. Specifically, the examination of linguis-
tic phenomena, such as relative clauses, under-
scored the superiority of transformer-based mod-
els in predicting changes not solely based on
changes related to frequency distributions. These
models, with their broader contextual awareness,
facilitated a more nuanced exploration of commu-
nicative efficiency, aligning with theoretical frame-
works like Hale’s Entropy Reduction Hypothesis.
The inclusion of DL annotations further enriched
our analysis, allowing for a more granular ex-
amination of syntactic structures. This provided
deeper insights into the adaptive mechanisms of
language, reflecting shifts in complexity and effi-
ciency within scientific discourse.
While our research focused on diachronic sci-

entific English, the methodologies employed are
universally applicable, especially in low-resource
environments facing similar challenges with vo-
cabulary consistency and corpus size disparities.
This universality significantly broadens the poten-
tial impact of our findings, suggesting that our ap-
proaches could be instrumental in diverse linguis-
tic and historical analyses.

6. Acknowledgements

This research was supported by the Deutsche
Forschungsgemeinschaft (DFG, German Re-
search Foundation), Project ID 232722074 – SFB
1102.

7. Bibliographical References

Alfred V. Aho and Jeffrey D. Ullman. 1972. The
Theory of Parsing, Translation and Compiling,
volume 1. Prentice-Hall, Englewood Cliffs, NJ.

Rie Kubota Ando and Tong Zhang. 2005. A frame-
work for learning predictive structures from mul-
tiple tasks and unlabeled data. Journal of Ma-
chine Learning Research, 6:1817–1853.

Galen Andrew and Jianfeng Gao. 2007. Scal-
able training of L1-regularized log-linear models.
In Proceedings of the 24th International Confer-
ence on Machine Learning, pages 33–40.

Douglas Biber and Bethany Gray. 2011. Grammat-
ical change in the noun phrase: the influence of
written language use. 15(2):223–250.

Douglas Biber and Bethany Gray. 2016. Grammat-
ical Complexity in Academic English: Linguistic
Change inWriting. Studies in English Language.
Cambridge University Press.

Douglas Biber, Stig Johansson, Geoffrey Leech,
Susan Conrad, and Edward Finegan. 1999.
Longman grammar of spoken and written En-
glish. Longman.

Ashok K. Chandra, Dexter C. Kozen, and Larry J.
Stockmeyer. 1981. Alternation. Journal
of the Association for Computing Machinery,
28(1):114–133.

James W. Cooley and John W. Tukey. 1965. An
algorithm for themachine calculation of complex
Fourier series. Mathematics of Computation,
19(90):297–301.

Stefania Degaetano-Ortlieb. 2021. The rise of
compounds as informationally dense structures
in 20th-century scientific English: Chapter 11.
measuring informativity. In Elena Seoane
and Douglas Biber, editors, Corpus-based Ap-
proaches to Register Variation, Studies in Cor-
pus Linguistics, pages 291–312. John Ben-
jamins Publishing Company.

Stefania Degaetano-Ortlieb, Hannah Kermes,
Ashraf Khamis, and Elke Teich. 2018. An
Information-Theoretic Approach to Modeling Di-
achronic Change in Scientific English. Brill.
Pages: 258-281 Section: From Data to Evi-
dence in English Language Research.

Stefania Degaetano-Ortlieb and Elke Teich. 2016.
Information-based modeling of diachronic lin-
guistic change: from typicality to productivity. In
Proceedings of the 10th SIGHUM Workshop on
Language Technology for Cultural Heritage, So-
cial Sciences, and Humanities, pages 165–173.

Stefania Degaetano-Ortlieb and Elke Teich. 2018.
Using relative entropy for detection and analy-
sis of periods of diachronic linguistic change. In
Proceedings of the Second Joint SIGHUMWork-
shop on Computational Linguistics for Cultural
Heritage, Social Sciences, Humanities and Lit-
erature, pages 22–33, Santa Fe, New Mexico.
Association for Computational Linguistics.

Stefania Degaetano-Ortlieb and Elke Teich. 2019.
Toward an optimal code for communication: The
case of scientific English. Corpus Linguistics
and Linguistic Theory, 18(1):175–207.

Vera Demberg and Frank Keller. 2008. Data from
eye-tracking corpora as evidence for theories of
syntactic processing complexity. 109(2):193–
210.

https://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf
https://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf
https://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf
https://dl.acm.org/doi/abs/10.1145/1273496.1273501
https://dl.acm.org/doi/abs/10.1145/1273496.1273501
https://doi.org/10.1017/S1360674311000025
https://doi.org/10.1017/S1360674311000025
https://doi.org/10.1017/S1360674311000025
https://doi.org/10.1017/CBO9780511920776
https://doi.org/10.1017/CBO9780511920776
https://doi.org/10.1017/CBO9780511920776
https://doi.org/10.1145/322234.322243
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://doi.org/10.1075/scl.103.11deg
https://doi.org/10.1075/scl.103.11deg
https://doi.org/10.1075/scl.103.11deg
https://doi.org/10.1075/scl.103.11deg
https://doi.org/10.1163/9789004390652_012
https://doi.org/10.1163/9789004390652_012
https://doi.org/10.1163/9789004390652_012
https://aclanthology.org/W18-4503
https://aclanthology.org/W18-4503
https://doi.org/10.1515/cllt-2018-0088
https://doi.org/10.1515/cllt-2018-0088
https://doi.org/10.1016/j.cognition.2008.07.008
https://doi.org/10.1016/j.cognition.2008.07.008
https://doi.org/10.1016/j.cognition.2008.07.008


21

Haim Dubossarsky, Simon Hengchen, Nina Tah-
masebi, and Dominik Schlechtweg. 2019. Time-
out: Temporal referencing for robust modeling
of lexical semantic change. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics, pages 457–470, Flo-
rence, Italy. Association for Computational Lin-
guistics.

Stefan Fischer, Jörg Knappen, Katrin Menzel, and
Elke Teich. 2020. The Royal Society Corpus 6.0:
Providing 300+ years of scientific writing for hu-
manistic study. In Proceedings of the Twelfth
Language Resources and Evaluation Confer-
ence, pages 794–802, Marseille, France. Euro-
pean Language Resources Association.

Stefan L. Frank. 2013. Uncertainty reduction as a
measure of cognitive load in sentence compre-
hension. Topics in Cognitive Science, 5(3):475–
494.

Richard Futrell, Kyle Mahowald, and Edward Gib-
son. 2015. Large-scale evidence of depen-
dency length minimization in 37 languages.
112(33):10336–10341. Publisher: National
Academy of Sciences.

Mario Giulianelli, Marco Del Tredici, and Raquel
Fernández. 2020. Analysing lexical seman-
tic change with contextualised word representa-
tions. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 446–457. Association for Computa-
tional Linguistics.

Dan Gusfield. 1997. Algorithms on Strings, Trees
and Sequences. Cambridge University Press,
Cambridge, UK.

John Hale. 2001. A probabilistic earley parser
as a psycholinguistic model. In Proceedings
of the Second Meeting of the North American
Chapter of the Association for Computational
Linguistics on Language Technologies, NAACL
’01, pages 1–8, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

John Hale. 2006. Uncertainty about the rest of the
sentence. Cognitive Science, 30(4):643–672.

M.A.K. Halliday. 1988. On the language of phys-
ical science. In Mohsen Ghadessy, editor,
Registers of written English: Situational factors
and linguistic features, pages 162–177. Pinter.
Tex.date-added: 2010-03-09 11:19:11 +0100
tex.date-modified: 2010-03-30 15:16:26 +0200.

M.A.K. Halliday and James R. Martin. 1993. Writ-
ing science: Literacy and discursive power.
Falmer Press.

William L. Hamilton, J. Leskovec, and Dan Juraf-
sky. 2016. Cultural shift or linguistic drift? com-
paring two computational measures of seman-
tic change. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguis-
tics.

Zellig Harris Sabbettai. 1991. A Theory of Lan-
guage and Information: A Mathematical Ap-
proach. Oxford University Press, Oxford, New
York.

Hans Jürgen Heringer, Bruno Strecker, and
Rainer Wimmer. 1980. Syntax: Fragen, Lösun-
gen, Alternativen. Fink.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Jordan Hoffmann, Sebastian Borgeaud, Arthur
Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne
Hendricks, Johannes Welbl, Aidan Clark,
Thomas Hennigan, Eric Noland, Katherine
Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karén
Simonyan, Erich Elsen, Oriol Vinyals, Jack
Rae, and Laurent Sifre. 2022. An empirical
analysis of compute-optimal large language
model training. In Advances in Neural Informa-
tion Processing Systems, volume 35, pages
30016–30030. Curran Associates, Inc.

Kasra Hosseini, Kaspar Beelen, Giovanni Colav-
izza, and Mariona Coll Ardanuy. 2021. Neural
Language Models for Nineteenth-Century En-
glish. ArXiv:2105.11321 [cs].

Richard Hudson. 1995. Measuring syntactic diffi-
culty. Manuscript, University College, London.

Marianne Hundt, David Denison, and Gerold
Schneider. Relative complexity in scientific dis-
course. 16(2):209–240.

Md. Hussain and IshtiakMahmud. 2019. pymannk-
endall: a python package for non-parametric
Mann Kendall family of trend tests. Journal of
Open Source Software, 4(39):1556.

Tom S Juzek, Marie-Pauline Krielke, and Elke Te-
ich. 2020. Exploring diachronic syntactic shifts
with dependency length: the case of scientific
English. In Proceedings of the Fourth Work-
shop on Universal Dependencies (UDW 2020),
pages 109–119, Barcelona, Spain (Online). As-
sociation for Computational Linguistics.

Hannah Kermes, Stefania Degaetano-Ortlieb,
Ashraf Khamis, Jörg Knappen, and Elke Teich.

https://doi.org/10.18653/v1/P19-1044
https://doi.org/10.18653/v1/P19-1044
https://doi.org/10.18653/v1/P19-1044
https://aclanthology.org/2020.lrec-1.99
https://aclanthology.org/2020.lrec-1.99
https://aclanthology.org/2020.lrec-1.99
https://doi.org/10.1073/pnas.1502134112
https://doi.org/10.1073/pnas.1502134112
https://pure.uva.nl/ws/files/63250055/2020.acl_main.365.pdf
https://pure.uva.nl/ws/files/63250055/2020.acl_main.365.pdf
https://pure.uva.nl/ws/files/63250055/2020.acl_main.365.pdf
https://www.cambridge.org/core/books/algorithms-on-strings-trees-and-sequences/F0B095049C7E6EF5356F0A26686C20D3
https://www.cambridge.org/core/books/algorithms-on-strings-trees-and-sequences/F0B095049C7E6EF5356F0A26686C20D3
https://doi.org/10.1207/s15516709cog0000_64
https://doi.org/10.1207/s15516709cog0000_64
https://doi.org/10.18653/v1/D16-1229
https://doi.org/10.18653/v1/D16-1229
https://doi.org/10.18653/v1/D16-1229
https://doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
http://arxiv.org/abs/2105.11321
http://arxiv.org/abs/2105.11321
http://arxiv.org/abs/2105.11321
https://doi.org/10.1017/S1360674312000032
https://doi.org/10.1017/S1360674312000032
https://doi.org/10.21105/joss.01556
https://doi.org/10.21105/joss.01556
https://doi.org/10.21105/joss.01556
https://aclanthology.org/2020.udw-1.13
https://aclanthology.org/2020.udw-1.13
https://aclanthology.org/2020.udw-1.13


22

2016. The Royal Society Corpus: From un-
charted data to corpus. In Proceedings of the
Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages
1928–1931, Portorož, Slovenia. European Lan-
guage Resources Association (ELRA).

Hannah Kermes and Elke Teich. 2017. Average
Surprisal of Parts-of-(s)peech. Birmingham, UK.
Corpus Linguistics 2017.

Yoon Kim, Yi-I Chiu, Kentaro Hanaki, Darshan
Hegde, and Slav Petrov. 2014. Temporal analy-
sis of language through neural languagemodels.
In Proceedings of the ACL 2014 Workshop on
Language Technologies and Computational So-
cial Science, pages 61–65, Baltimore, MD, USA.
Association for Computational Linguistics.

Reinhard Kneser and Hermann Ney. 1995. Im-
proved backing-off for M-gram language model-
ing. In 1995 International Conference on Acous-
tics, Speech, and Signal Processing, volume 1,
pages 181–184, Detroit, MI, USA. IEEE.

Marie-Pauline Krielke. 2021. Relativizers as
markers of grammatical complexity: A di-
achronic, cross-register study of English and
German. Bergen Language and Linguistics
Studies, 11(1):91–120.

Marie-Pauline Krielke, Luigi Talamo, Mahmoud
Fawzi, and Jörg Knappen. 2022. Tracing syn-
tactic change in the scientific genre: Two Uni-
versal Dependency-parsed diachronic corpora
of scientific English and German. In Proceed-
ings of the Thirteenth Language Resources and
Evaluation Conference, pages 4808–4816, Mar-
seille, France. European Language Resources
Association.

Roger Levy. 2008. Expectation-based syntactic
comprehension. Cognition, 106(3):1126–1177.

Katrin Menzel, Jörg Knappen, and Elke Teich.
2021. Generating Linguistically Relevant Meta-
data for the Royal Society Corpus.

StephenMerity, Nitish Shirish Keskar, and Richard
Socher. 2018. An Analysis of Neural Language
Modeling at Multiple Scales. Publisher: arXiv
Version Number: 1.

Tomas Mikolov, Stefan Kombrink, Anoop Deoras,
Lukas Burget, and Jan Honza Cernocky. 2011.
RNNLM - Recurrent Neural Network Language
Modeling Toolkit. In IEEE Automatic Speech
Recognition and Understanding Workshop. Edi-
tion: IEEE Automatic Speech Recognition and
Understanding Workshop.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason
Bolton, and Christopher D. Manning. 2020.
Stanza: A Python natural language processing
toolkit for many human languages. In Proceed-
ings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics: System
Demonstrations.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training.

Mohammad Sadegh Rasooli and Joel R. Tetreault.
2015. Yara parser: A fast and accurate depen-
dency parser. Computing Research Repository,
arXiv:1503.06733. Version 2.

Simone Scaboro, Beatrice Portelli, Emmanuele
Chersoni, Enrico Santus, and Giuseppe Serra.
2021. NADE: A benchmark for robust ad-
verse drug events extraction in face of nega-
tions. In Proceedings of the Seventh Workshop
on Noisy User-generated Text (W-NUT 2021),
pages 230–237, Online. Association for Compu-
tational Linguistics.

Hans-Jörg Schmid. 2015. A blueprint of the
Entrenchment-and-Conventionalization model.
3(1):3–26. Publisher: De Gruyter Mouton.

Helmut Schmid. 1994. Probabilistic part-of-speech
tagging using decision trees. In Proceedings of
the International Conference on New Methods
in Language Processing, Manchester, UK.

Claude E. Shannon. 1948. A Mathematical The-
ory of Communication. Bell System Technical
Journal, 27(3):379–423.

Andreas Stolcke. 2002. SRILM - an extensible lan-
guage modeling toolkit. In 7th International Con-
ference on Spoken Language Processing (IC-
SLP 2002), pages 901–904. ISCA.

Jannik Strötgen and Michael Gertz. 2012. Tem-
poral tagging on different domains: Challenges,
strategies, and gold standards. In Proceedings
of the Eight International Conference on Lan-
guage Resources and Evaluation (LREC’12),
pages 3746–3753, Istanbul, Turkey. European
Language Resource Association (ELRA).

Elke Teich, Peter Fankhauser, Stefania
Degaetano-Ortlieb, and Yuri Bizzoni. 2021.
Less is more/more diverse: On the commu-
nicative utility of linguistic conventionalization.
5:142.

ThomasWolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick

https://aclanthology.org/L16-1305
https://aclanthology.org/L16-1305
https://www.birmingham.ac.uk/Documents/college-artslaw/corpus/conference-archives/2017/general/paper207.pdf
https://www.birmingham.ac.uk/Documents/college-artslaw/corpus/conference-archives/2017/general/paper207.pdf
https://doi.org/10.3115/v1/W14-2517
https://doi.org/10.3115/v1/W14-2517
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.15845/bells.v11i1.3440
https://doi.org/10.15845/bells.v11i1.3440
https://doi.org/10.15845/bells.v11i1.3440
https://doi.org/10.15845/bells.v11i1.3440
https://aclanthology.org/2022.lrec-1.514
https://aclanthology.org/2022.lrec-1.514
https://aclanthology.org/2022.lrec-1.514
https://aclanthology.org/2022.lrec-1.514
https://doi.org/10.48550/ARXIV.1803.08240
https://doi.org/10.48550/ARXIV.1803.08240
https://www.microsoft.com/en-us/research/publication/rnnlm-recurrent-neural-network-language-modeling-toolkit/
https://www.microsoft.com/en-us/research/publication/rnnlm-recurrent-neural-network-language-modeling-toolkit/
http://arxiv.org/abs/1503.06733
http://arxiv.org/abs/1503.06733
https://doi.org/10.18653/v1/2021.wnut-1.26
https://doi.org/10.18653/v1/2021.wnut-1.26
https://doi.org/10.18653/v1/2021.wnut-1.26
https://doi.org/10.1515/gcla-2015-0002
https://doi.org/10.1515/gcla-2015-0002
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.21437/ICSLP.2002-303
https://doi.org/10.21437/ICSLP.2002-303
https://doi.org/10.3389/fcomm.2020.620275
https://doi.org/10.3389/fcomm.2020.620275


23

von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexan-
der M. Rush. 2020. Huggingface’s transformers:
State-of-the-art natural language processing.

Susan Zhang, Stephen Roller, Naman Goyal,
Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Vic-
toria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh
Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. 2022. Opt: Open pre-trained trans-
former language models.

8. Language Resource References

Fischer, Stefan and Knappen, Jörg and Menzel,
Katrin and Teich, Elke. 2020. The Royal Soci-
ety Corpus 6.0: Providing 300+ Years of Scien-
tificWriting for Humanistic Study. European Lan-
guage Resources Association. [link].

Kermes, Hannah and Degaetano-Ortlieb, Stefa-
nia and Khamis, Ashraf and Knappen, Jörg and
Teich, Elke. 2016. The Royal Society Corpus:
From Uncharted Data to Corpus. European Lan-
guage Resources Association (ELRA). [link].

http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
https://aclanthology.org/2020.lrec-1.99
https://aclanthology.org/L16-1305

	Introduction
	Previous Work and Rationale
	Data and Methods
	The Royal Society Corpus
	Modeling Diachronic Change with Transformer-Based Models

	Analyzing Linguistic Change
	Modeling Convention and Innovation with Surprisal
	Modeling Surprisal for Long-Range Dependencies
	Surprisal of Relativizer
	Relativizers in Context
	Surprisal in Long-Range Dependencies


	Conclusion
	Acknowledgements
	Bibliographical References
	Language Resource References

