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Abstract

Sparse AutoEncoders (SAEs) have gained pop-
ularity as a tool for enhancing the interpretabil-
ity of Large Language Models (LLMs). How-
ever, training SAEs can be computationally in-
tensive, especially as model complexity grows.
In this study, the potential of transfer learning
to accelerate SAEs training is explored by cap-
italizing on the shared representations found
across adjacent layers of LLMs. Our exper-
imental results demonstrate that fine-tuning
SAEs using pre-trained models from nearby
layers not only maintains but often improves
the quality of learned representations, while
significantly accelerating convergence. These
findings indicate that the strategic reuse of pre-
trained SAEs is a promising approach, particu-
larly in settings where computational resources
are constrained.

1 Introduction

Transformer-based models have become ubiqui-
tous in a large variety of different application
fields (Dubey et al., 2024; Kirillov et al., 2023; Rad-
ford et al., 2023; Chen et al., 2021; Zitkovich et al.,
2023; Waisberg et al., 2023). Given their tremen-
dous impact on society, concerns about their inter-
pretability have been raised by various stakehold-
ers (Bernardo, 2023). Mechanistic Interpretabil-
ity (MI) (Conmy et al., 2023; Nanda et al., 2023),
seeks to reverse-engineer how Neural Networks,
and in particular LLMs, generate outputs by uncov-
ering the circuits they have learned during training,
stored inside their parameters, and executed dur-
ing a forward pass (Nanda et al., 2023; Conmy
et al., 2023; Gurnee et al., 2023). A promising in-
terpretability technique is dictionary learning (Cun-
ningham et al., 2023; Gao et al., 2024; Karvonen
et al., 2024) which seeks to capture interpretable
and editable features within the internal layers of
LLMs. This method implies training Sparse Au-
toencoders (SAEs) to reconstruct the model’s ac-

Figure 1: Visualization of our method. From left to
right: baseline method where each Sparse AutoEn-
coder (SAE) is trained from scratch (solid line); for-
ward method where SAEs are initialized with weights
from the previous layer’s SAE and fine-tuned (dashed
line) with the new layer activations; backward method
where SAEs are initialized with weights from the fol-
lowing layer’s SAE.

tivations using sparse learned features. However,
training SAEs is computationally intensive, par-
ticularly when applied across multiple layers in
deep networks. This computational burden poses
a significant barrier to their widespread applica-
tion, especially in resource-constrained environ-
ments where the cost of training from scratch is
prohibitive. Recent research has highlighted the po-
tential of transfer learning as a strategy to mitigate
these challenges (Kissane et al., 2024). In partic-
ular, it has been shown in Gromov et al. (2024)
that adjacent layers in LLMs are often redundant,
suggesting that the knowledge encoded in one layer
is also present in neighboring ones and that it can
effectively be transferred. This observation forms
the basis of our investigation: we hypothesize that
SAEs trained on one set of layers can serve as ef-
fective initialization for SAEs designed for closely
related layers. Specifically, the forward approach is
defined as initializing an SAE with the weights of
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a previous layer SAE, and the backward approach
as initializing an SAE with the weights of a subse-
quent layer SAE. The overall training procedure is
summarized in Figure 1. We tested this hypothe-
sis on Pythia-160M, a small 12-layer decoder-only
transformer from the Pythia family (Biderman
et al., 2023). By reusing the representations learned
in earlier layers, computational demands of training
can be reduced by at least 25%1 while maintain-
ing, or even improving, the quality of the resulting
models. Our contributions are as follows:

• We demonstrate that SAEs exhibit partial
transfer to adjacent layers in a zero-shot set-
ting, though fine-tuning is recommended for
optimal performance.

• We show that both Forward-SAEs and
Backward-SAEs, when fine-tuned on adja-
cent activations, consistently transfer across
all tested checkpoints, achieving comparable
or superior performance to SAEs trained from
scratch, while using significantly less training
data.

• We train and publicly release SAEs for Pythia-
160M (Biderman et al., 2023), the model uti-
lized in this study.

Code, data, and trained models will be publicly
released after the double-blind review.

2 Background and objectives

2.1 Linear representation hypothesis and
superposition

Although it has been demonstrated that LLMs rep-
resent some of their feature linearly (Park et al.,
2024), a key challenge in LLM interpretability is
the lack of clear neuron interpretation. Recent
work of Elhage et al. (2022) tries to explain this
phenomenon by showing that models can use n-
dimensional activations to represent m ≫ n sparse
almost-orthogonal features in superposition. Super-
position theory is based on three key concepts: (i)
the existence of a hypothetical large and disentan-
gled model where each neuron perfectly aligns with
a single feature, with each neuron activating for ex-
actly one feature at a time. The observed models
can be thought as dense, almost-orthogonal projec-
tions of this larger, ideal model. (ii) Features are

1Assuming training half of SAEs from scratch and the
other half with transfer from an adjacent layer with half of the
training tokens.

sparse, reflecting the idea that in the natural world,
many features are inherently sparse. (iii) The im-
portance of features varies depending on the task
at hand. These assumptions, combined with two
mathematical principles2, suggest that the hidden
sparse features can be recovered by projecting the
dense model back to the hypothetical large and dis-
entangled one. SAEs serve this purpose: learning
a set of sparse, interpretable, and high-dimensional
features from an observed model’s dense and su-
perposed activations.

2.2 Sparse Autoencoders
Recently, Sparse AutoEncoders have become a pop-
ular tool in Large Language Model (LLM) inter-
pretability as they effectively decompose neuron ac-
tivations into interpretable features (Bricken et al.,
2023; Cunningham et al., 2023). For a given in-
put activation x ∈ Rdmodel , the SAE computes a
reconstruction x̂ as a sparse linear combination of
dsae ≫ dmodel features vi ∈ Rdmodel . The recon-
struction is given by:

(x̂ ◦ f)(x) = Wdf(x) + bd (1)

where vi are the columns of Wd, bd is the bias
term of the decoder and f(x) are feature activations.
The latter are computed as:

f(x) = ReLU(We(x− bd) + be) (2)

where be is the encoder bias term. SAEs are trained
to minimize the following loss function:

Lsae = ∥x− x̂∥22 + λ∥f(x)∥1 (3)

In Equation 3, the first term corresponds to the re-
construction error, to which an ℓ1 regularization
term on the activations f(x) is added to promote
sparsity in the feature activations. In SAEs train-
ing, it is common to set dsae = c dmodel with c ∈
{2n | n ∈ N+}. So, the training process of a SAE
can become computationally intensive, particularly
as model size increases. For example, training a
single SAE of a widely used model such as Llama-
3-8b (Dubey et al., 2024) (dmodel = 4096) with an
expansion factor of c = 32 (i.e., dsae = 131072)
requires ≈ 1B parameters. Under these circum-

2The Johnson-Lindenstrauss lemma, which ensures that
points in a high-dimensional space can be embedded into
a lower dimension while almost preserving distances, and
compressed sensing, which exploits sparsity to recover signals
from fewer samples than required by the Nyquist–Shannon
theorem
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Config Value

Layers (L) 12
Model dimension (dmodel) 768
Heads (H) 12
Non-Embedding params 85,056,000

Equivalent models3 GPT-Neo
OPT-125M

Table 1: Pythia-160M model specifics

stances, transfer learning is a useful resource to
reduce the number of trained SAEs, with the trans-
fer that can happen intra-model, where SAEs train-
ing is shared between layers of the same model
(our case), or inter-model, where SAEs are shared
between different fine-tuned versions of the same
model as shown in Kissane et al. (2024).

2.3 Evaluating SAEs
Evaluating SAEs and the features they have learned
presents significant challenges. In our work, the
techniques employed can be divided into recon-
struction and interpretability metrics. The first
includes:

• The Cross-Entropy Loss Score (CES), is de-
fined as

CES =
CE(ζ)− CE(x̂ ◦ f)

CE(ζ)− CE(Id)
(4)

where x̂ ◦ f is the autoencoder function,
ζ : x → 0 the zero-ablation function and
Id : x → x the identity function. Accord-
ing to this definition, a SAE would get a CES
equal to 1 if it perfectly reconstructs x (> 1
if it improves the CE loss), ≤ 0 when the re-
construction is not better than zero-ablation,
otherwise the score is comprised in the unit
interval.

• The L2 loss (reconstruction loss) is the first
term of Equation 3, which measures the recon-
struction error made by the SAE.

• The L0 loss of the learned features, defined as

∥f∥0 =
|f |∑

j=1

I[fj ̸= 0] (5)

3As specified in (Biderman et al., 2023)

which represents the number of non-zero SAE
features used to compute the reconstruction.

Measuring the quality of the features learned by a
SAE is not straightforward, and multiple strategies
exist. As reported in Makelov et al. (2024), inter-
pretability metrics can be categorized as follows:

• Indirect Geometric Measures: Sharkey et al.
(2023) proposed using mean maximum co-
sine similarity (MMCS) between features
learned by different SAEs to assess their qual-
ity. Given two feature dictionaries D and D′,
with |D| = |D′|, MMCS is defined as:

MMCSD,D′ =
1

|D|
∑

u∈D
max
v∈D′

CosSim(u,v)

(6)

• Auto-Interpretability: Bricken et al. (2023),
Bills et al. (2023), and Cunningham et al.
(2023) used LLMs to generate natural-
language descriptions of SAE features based
on highly activating examples and measured
interpretability as the prediction quality on
previously unseen text.

• Manually Crafted Proxies for Ground Truth:
(Bricken et al., 2023) developed computa-
tional proxies for a set of SAE features, re-
lying on manually formulated hypotheses.

• Faithfulness and Completeness of task feature
circuits: Marks et al. (2024) compute faith-
fulness and completeness as measures to es-
timate the task sufficiency and necessity of
learned SAE features. In particular, given a
task, they first compute a circuit C of SAE
features by selecting them according to their
importance, estimated via their Indirect Ef-
fect4 (Pearl, 2022):

IE(m; f; ac, aw) =
m[M(ac|do(f =fw), x);M(ac|x)] (7)

where x is a given prompt and m : Rdvocab →
R is the logit-difference computed by a
LLM M over two contrastive answer tokens
ac, aw.5 In this equation, fw represents SAE
feature activations during the computation of

4We estimate the IE through Attribution Patching
(AtP) (Syed et al., 2023; Nanda, 2023) A formal definition of
AtP is given in Appendix A

5E.g., x = “The square root of 9 is”, ac = 3, and aw = 2
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M(aw|x), and M(ac|do(f = fw), x) refers
to the value of M(ac) under an intervention
where the activation of feature f is set to fw.
Then, they estimate the faithfulness as

m(C)−m(∅)
m(M)−m(∅) (8)

where m(C) is the model logit difference
when using only the important SAE features
while mean-ablating the others; m(M), m(∅)
represent the logit-difference achieved by the
model alone and with the mean-ablated SAE
reconstructions, respectively. Completeness is
estimated by replacing m(C) with m(M \C)
in Equation 8. Intuitively, faithfulness cap-
tures the proportion of the model’s perfor-
mance the circuit C explains, relative to mean-
ablate the full model, thus modeling suffi-
ciency. On the other hand, completeness
captures the necessity of the learned features
by measuring low downstream performance
whenever the important SAE features are
mean-ablated.

• Supervised Dictionary Benchmarking:
Makelov et al. (2024) introduced a technique
that benchmarks unsupervised SAE dictionar-
ies against supervised dictionaries based on
task-relevant attributes to ensure extracted
features are interpretable and relevant to
specific tasks.

In our work, evaluation metrics employed include
all the reconstruction techniques listed above, the
MMCS between features from SAEs trained with
transfer learning and the ones from SAEs trained
from scratch, and a Human Interpretability Score
defined in Section 3. Moreover, we evaluate both
faithfulness and completeness on three standard
downstream tasks: Indirect Object Identification
(IOI) (Wang et al., 2023), Greater Than (Hanna
et al., 2023), and Subject-Verb Agreement (Marks
et al., 2024), all of them comprising a set of exam-
ples in the form of {(x, ac, aw)i}. Additionally, for
faithfulness and completeness computation we fix
the number of top important features N through-
out all the experiments: for faithfulness we let
N vary in {123, 246, 368, 492}, which correspond
to 2%, 4%, 6% and 8% of top active features; for
completeness, N varies in {4, 36, 68, 100}.6 Fi-
nally, in Appendix B we report the Direct Logit

6Top important features are computed on a per-example
basis.

Figure 2: Cross-Entropy Loss Score (CE-Loss Score)
(Eq. 4), where the cell (i, j) in the plot represents the
CE-Loss Score obtained by reconstructing the activa-
tions from layer i with SAEj . This plot has to be read
column-wise.

Attribution (DLA), as specified by Bricken et al.
(2023).

2.4 Transfer Learning
Transfer learning (Goodfellow et al., 2016) is a
powerful technique in machine learning where
knowledge gained from one task is applied to im-
prove performance on a related, but distinct, task.
This approach is particularly useful when train-
ing from scratch is computationally expensive or
when labeled data is scarce. In the context of SAEs
for LLMs, transfer learning enables the reuse of
weights learned in one layer to initialize and accel-
erate the training of SAEs in adjacent layers.

2.5 Objectives
In this work transferability and generalization of
intra-model SAEs have been studied, aiming to
answer the following research questions:

Q1. Are SAEs transferable between layers? I.e.,
can a SAE trained on the activations of layer
i be reused to reconstruct activations of layer
j ̸= i?

Q2. Is Transfer Learning applicable to SAEs?
Specifically, can a SAE initialized with the
weights of a neighboring SAE and then fine-
tuned achieve equal or superior performance,
potentially using only a fraction of the data,
compared to an SAE trained from scratch?
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Figure 3: Average CE-Loss Score, L2-Loss and L0-Loss. The average is computed over layers for a single
checkpoint. The “No Transfer” average is computed considering the performance obtained by SAEi(xi),∀i =
0, ..., 11.

3 Experimental setup

To address the questions raised in Section 2, we
first trained from scratch one SAEi for each layer
i of Pythia-160M, a 12-layer decoder-only Trans-
former model from the Pythia family (Biderman
et al., 2023). Each SAE was trained using the
JumpReLU activation function (Rajamanoharan
et al., 2024), with activations taken from the cor-
responding layer’s residual stream after the MLP
contribution. The model configuration details are
provided in Table 1. Let also j ̸= i be another
layer index. Then SAEi←j is defined as the SAE
initialized with weights from the j-th SAE and fine-
tuned with activations of the i-th layer. In particular,
this work is focused on SAEi←i−1 and SAEi←i+1,
named Forward-SAE (Fwd-SAE) and Backward-
SAE (Bwd-SAE) respectively. Figure 1 summa-
rizes the overall training and fine-tuning procedure,
with the hyperparameters specified in Table 2. The
dataset adopted for both training and fine-tuning
is the Pile-small-2b7, an already tokenized version
of the Pile dataset (Gao et al., 2020) with a total
of 2b tokens. To effectively measure the recon-
struction performance of a SAE before and after
fine-tuning with transfer learning, the normalized
CE-Loss Score is adopted and defined as:

CESi,j =
CES(SAEi←j(xi))− CES(SAEj(xi))

CES(SAEi(xi))− CES(SAEj(xi))
(9)

by assuming CES(SAEj(xi)) and CES(SAEi(xi))
being, respectively, the lower and the upper
bound for the CES on xi. With the definitions
above, CESi,i−1 and CESi,i+1 are the normalized
CE-Loss Score of the Fwd-SAE and Bwd-SAE re-

7https://huggingface.co/datasets/NeelNanda/
pile-small-tokenized-2b

spectively. Finally, to evaluate feature quality, a
Human Interpretability Score has been defined as
the ratio of features that have been evaluated in-
terpretable by human annotators. To generate the
score, all the SAEs have been run on approximately
1M tokens randomly sampled from the training
dataset. With their activations, max activating to-
kens and top/bottom attribution logits have been
computed and analyzed from the labelers.

4 Results

4.1 SAE transferability
Figure 2 shows the CE-Loss Score achieved by ev-
ery SAEj reconstructing the activations of layer
i, for every i, j = 0, ..., L − 1, i.e., the zero-shot
setting. It is clear that a certain degree of trans-
ferability exists between SAEj and the activations
of adjacent layers, with this being more noticeable
when i = j − 1 (i.e., SAEs are more effective at
reconstructing the activations of preceding layers
than those of subsequent ones). These findings can
also be attributed to the fact that, as demonstrated
by Gromov et al. (2024), angular distances between
adjacent layers are smaller, enabling neighboring
SAEs to operate on a similar basis with respect to
the activations they were trained on. The answer to
Q1 is, therefore, yes; however, although transfer-
ability between layers exists, it remains partial and,
potentially, not completely reliable for downstream
applications.

4.2 SAE transfer learning
Figure 3 shows all reconstruction metrics aver-
aged for all layers across every tested checkpoint.
Detailed results for single layer and aggregated
over time can be found in Appendix C (Figures 9
- 17) along with the normalized CE-Loss Score
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Figure 4: Average Faithfulness and Completeness. The average is computed over layers and the number of important
active SAE features for a single checkpoint. The “No Transfer” average is computed considering the performance
obtained by SAEi(xi),∀i = 0, ..., 11.

(Eq. 9) in Tables 3 and 4. Looking at the plots,
it can be seen that forward and backward SAEs
achieve almost equal or even superior performance
than the ones trained from scratch with as little
as 1/10-th (100M tokens) of the original training
data (1B tokens), with the scores constantly in-
creasing with the number of tokens used for fine-
tuning. As a result, it can be said that both forward
ad backward are effective strategies to reduce the
number of SAEs trained from scratch. Between
the two, the backward technique is the one that
constantly shows better results, both in terms of
CE-Loss Score, L2, and L1 loss. So, the answer to
Q2 is also yes if we just consider the reconstruction
metrics. To fully respond to Q2 beyond reconstruc-
tion performance, the quality of the learned SAE
features have to be inspected.

4.3 Feature Evaluation
Figure 4 displays the layer-averaged faithfulness
and completeness scores for each tested checkpoint.
The plot reveals that both forward and backward

Figure 5: Per-layer MMCS of the Forward and Back-
ward SAEs.

transfer SAEs consistently achieve better scores
than the baseline SAEs, with minimal differences
between the two transfer methods. Therefore, both
the forward and backward SAEs maintain suffi-
ciency and necessity during their transfer. Figure
5 presents the MMCS between SAEs trained with
transfer learning and those trained from scratch.
The metric value decreases for deeper layers, sug-
gesting a slight divergence in the features learned
by the transfer SAEs. Notably, SAEL−1←L ex-
hibits a sharp decline in the score, indicating that
transferring on the last layer should be approached
with caution. Lastly, from human interpretability
scores (Figure 7), no significant differences can be
observed between each transfer type. By manually
looking at the learned features, a key pattern has
emerged: many features learned by SAEs trained
with transfer learning remain shared with the SAE
used for initialization. This phenomenon, termed
Feature Transfer, particularly affects the most inter-
pretable features (see an example in Figure 23). To
further investigate this phenomenon, a metric was
developed to quantify it. Given a SAEi and another
trained via transfer learning from it, SAEi←i±1,
the number of shared “top”, “bottom”, and “max
activating tokens”8 for each feature have been com-
puted (features have been compared using the same
indices). The transfer score has been then defined
as the percentage of shared tokens across all three
heuristics. Figure 6 presents the scores across all
the layers for the last evaluated checkpoint. Except
for layer 1, backward transfer consistently exhibits
lower scores. It’s important to note that this phe-

8“Top” and “bottom” logit tokens refer to those whose
unembedding directions are most and least aligned, respec-
tively, with the projection of the feature in the unembedding
space. “Max activating” tokens are those for which the feature
exhibits the highest activations.
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Figure 6: Per-layer number of shared tokens for
the Forward and Backward SAEs, as defined in Sec-
tion 4.3. Each bar represents the percentage of shared
token between SAEi trained from scratch and forward
SAEi+1←i and backward SAEi−1←i, respectively.

nomenon is easily recognized in SAEs trained with
transfer learning when compared to their initializa-
tion, as feature indices are preserved. Evaluating
this in SAEs trained from scratch is more demand-
ing due to the exponential growth in the number
of comparisons required, and although relevant, it
falls outside the scope of this work.

4.4 Compute Efficiency
Leveraging forward and backward transfer, we
were able to reduce total training steps when uti-
lizing forward transfer and backward transfer by
42% and 46%, respectively. Check Appendix B.1
for details.

5 Related works

5.1 Scaling and evaluating SAEs
As SAEs gain popularity for LLMs interpretabil-
ity and are increasingly applied to state-of-the-art
models (Lieberum et al., 2024), the need for more
efficient training techniques has become evident.
To address this, Gao et al. (2024) explored scaling
laws of autoencoders to identify the optimal combi-
nation of size and sparsity. However, training SAEs
is only one aspect of the challenge; evaluating them
presents another significant hurdle. This evalua-
tion is a crucial focus within MI. While early ap-
proaches in Cunningham et al. (2023) and (Bricken
et al., 2023) relied on unsupervised metrics like
reconstruction loss and L0 sparsity to assess SAE
performance, these metrics alone cannot fully cap-
ture the efficacy of a SAE. They provide quantita-
tive measures of how well SAEs capture informa-

Figure 7: Human Interpretability Scores (Section 3) for
32 features randomly sampled from each SAE layer and
type of transfer.

tion in model activations while maintaining spar-
sity, but they fall short of addressing the broader
utility of these features. More recent techniques,
such as auto-interpretability (Bricken et al. (2023),
Bills et al. (2023), Cunningham et al. (2023)) and
ground-truth comparisons (Sharkey et al., 2023),
have shifted towards a more holistic evaluation,
focusing on the causal relevance of the extracted
features (Marks et al., 2024) and evaluating SAEs
on different downstream tasks in which they can
be employed (Makelov et al., 2024). In particular,
Makelov et al. (2024) introduced a framework for
evaluating SAEs on the Indirect Object Identifica-
tion (IOI) task, focusing on three key aspects: the
sufficiency and necessity of activation reconstruc-
tions, the ability to control model behavior through
sparse feature editing, also called feature steering
(Templeton et al., 2024), and the interpretability
of features in relation to their causal role. Kar-
vonen et al. (2024) further advanced principled
evaluations by introducing novel metrics specifi-
cally designed for board game language models.
Their approach leverages the well-defined structure
of chess and Othello to create supervised metrics
for SAE quality, including board reconstruction
accuracy and coverage of predefined board state
properties. These methods provide a more direct
assessment of how well SAEs capture semantically
meaningful and causally relevant features, offering
a complement to the earlier unsupervised metrics
like L0 and L2.

5.2 SAEs transfer learning
Recent work by Kissane et al. (2024) and Lieberum
et al. (2024) has demonstrated the transferability of
SAE weights between base and instruction-tuned
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versions of the Gemma-1 (Team et al., 2024a) and
Gemma-2 (Team et al., 2024b), respectively. This
finding is significant as it suggests that many in-
terpretable features are preserved during the fine-
tuning process. While this transfer occurs be-
tween model variants (inter-model) rather than be-
tween layers (intra-model), it complements our
work by indicating that SAE features can remain
stable across different stages of model develop-
ment. The preservation of these features through
fine-tuning not only offers insights into the robust-
ness of learned representations but also suggests
potential efficiency gains in interpreting families of
models derived from a common base SAE.

6 Conclusions

We hypothesized and validated whether SAE trans-
fer is an effective method to accelerate and opti-
mize the SAE training process. We investigated
whether SAE weights derived from adjacent layers
could maintain efficacy in reconstruction, which
our results affirmed. Furthermore, we examined
whether the transferred SAEs, when fine-tuned on a
layer’s activations, could reliably capture monose-
mantic features comparable to the original SAE,
which has been also confirmed by our experiments.
The transferred SAEs (both forward and backward)
demonstrated comparable and occasionally supe-
rior reconstruction loss relative to the original. Em-
pirically, we observed frequent overlap in the most
strongly activated features across adjacent layers
(e.g. Figure 23). For a given feature index i, the
features learned by SAEi←i+1 (Backward), SAEi

(No Transfer), and SAEi←i−1 (Forward) appeared
to represent similar concepts.

7 Limitations and future works

While our study successfully demonstrates the fea-
sibility of reconstruction transfer and the transfer
learning of SAE weights to adjacent layers, there
are several limitations that warrant consideration
and pave the way for future research directions.

• Model Size and Scope: We trained base and
transfer SAEs on the activations of Pythia-
160m, a model mcuh smaller than state-of-
the-art LLMs. Although not being tested, as
model size and training complexity increase,
the benefits of transfer learning are expected
to become more pronounced. In such sce-
narios, transfer learning can significantly ac-
celerate training and reduce associated costs,

making our approach potentially more impact-
ful for larger models. Therefore, a critical
area for future research is to extend these in-
vestigations to larger models, exploring how
scaling affects the efficacy of transfer learning
and how these benefits can be maximized in
real-world settings.

• Inter-Model and Intra-Model transferability:
In our study, we focused on the transfer of
intra-model SAEs, particularly assessing the
transferability between SAEs in adjacent lay-
ers. Given that model architectures are now
commonly shared across different model fam-
ilies, a direction for future research would be
to evaluate the transferability of intra-model
SAEs within models from different families
that utilize the same architecture. This explo-
ration could offer valuable insights into the
broader applicability of SAEs beyond closely
related model families.

• Experimental Scale and Hyperparameter In-
teractions: Our study was conducted on a lim-
ited scale in terms of model components in-
volved and the range of training hyperparame-
ters explored. The fixed set of hyperparame-
ters used may not fully capture the potential
of our transfer learning approach across differ-
ent configurations. Future research should in-
volve a broader exploration of hyperparameter
spaces, especially the λ coefficient and expan-
sion factor c, along with component variations
to determine the robustness and versatility of
the method.

• Feature Transfer Phenomenon: Our find-
ings reveal a “feature transfer” phenomenon,
where features learned in one layer are exactly
replicated in another during transfer learning.
This can be problematic, as it may prevent
the fine-tuned SAEs from discovering new,
layer-specific features. However, it also of-
fers an interesting opportunity to study how
similar features are encoded across layers. Fu-
ture research should focus on understanding
and managing this phenomenon to either har-
ness or mitigate its effects, depending on the
desired outcomes, thereby improving the flex-
ibility and effectiveness of transfer learning.
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A IE estimation through Attribution
Patching

In Equation 7 we reported the Indirect Effect
(IE) (Pearl, 2022), which measures the importance
of a feature with respect to a generic downstream
task T . To reduce the computational burden of esti-
mating the IE with a single forward pass per feature,
we employed Attribution Patching (AtP) (Nanda,
2023; Syed et al., 2023). AtP employs a first-order
Taylor expansion

ÎEAtP(m; f ; ac, aw) = ∇fm
∣∣
f=fc

(fw − fc) (10)

which estimates Equation 7 for every f in two for-
ward passes and a single backward pass.

Figure 8: Direct Logit Attribution Scores averaged
across layers for every tested checkpoint compared to
the “No Transfer” baseline, i.e. the DLA scores ob-
tained by SAEi(xi),∀i = 0, ..., 11.

B Direct Logit Attribution

We also report the Direct Logit Attribution
(DLA) between forward SAEi←i−1 and backward
SAEi←i+1 transfer SAEs. Introduced by Bricken
et al. (2023), DLA assesses the direct effect of a
feature on the next-token distribution, providing
insights into the causal role of features. The attri-
bution score is computed as follows:

attri(x; ac; aw) = fi vi · ∇xL(ac, aw) (11)

where x is a given prompt and ∇xL is the
gradient of the logit difference between two
contrastive answer tokens ac, aw (E.g., x =
“The square root of 9 is”, ac = 3, and aw = 2).
We report the feature averaged DLA computed
on a custom dataset comprising 64 handcrafted
prompts in the form of {(x, ac, aw)i}. Figure 8

displays the layer-averaged DLA scores for each
tested checkpoint. The plot reveals that forward
transfer SAEs consistently achieves higher scores
than the baseline, while backward transfer SAEs
consistently scores lower. This outcome contrasts
with the reconstruction metrics, where the back-
ward technique consistently outperformed the for-
ward approach. A detailed per-layer DLA scores
plot is reported in Figure 22.

B.1 Compute Efficiency
This work proposes a novel method leveraging
transfer learning to significantly reduce compu-
tational costs in training SAEs in the context
of LLMs. We demonstrate that both Fwd-SAE
SAEi←i−1 and Bwd-SAE SAEi←i+1, trained with
our fine-tuning strategy, are both valid alternatives
to the standard layer-by-layer training of SAEi, in
terms of both reconstruction quality of the learned
representation and performance on downstream
tasks. In practice, our approach consists of the
following steps:

1. Train a SAEi on alternate layers, depending
on the transfer direction. For Forward trans-
fer i ∈ {0, 2, 4, ..., L}, while for Backward
transfer i ∈ {1, 3, 5, ..., L− 1}.

2. Initialize the current SAEi by either
SAEi←i−1 for forward transfer or SAEi←i+1

for backward transfer.

3. Apply transfer learning by training the remain-
ing SAEs and stop when some criteria are
matched (e.g., when the loss converges to a
specific value or when a computational budget
has been reached).

Empirical results demonstrate substantial efficiency
gains. In our experiments with a 12-layer Pythia-
160M (Biderman et al., 2023) model, we observed
a performance increase after fine-tuning on 10%
of the training data (Figure 3 and Figure 4), with
performance increasing over time. Extrapolating
these findings, we can compute empirical lower
and upper bounds on the training efficiency. Given
a model with L (in our particular case L = 12)
layers and a training set consisting of 1B tokens,
we have:

• Baseline training: Train one SAEi ∀i ∈
{1, ..., 12} for 1B tokens: 12B tokens

• Forward/Backward transfer - 10% of data:
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– Train one SAEi for half of the layers for
1B tokens: 6B tokens

– Fine-tune the remaining SAEi←i−1 or
SAEi←i+1 for 100M tokens: 0.6B to-
kens

– Total: 6.6B tokens

• Forward/Backward transfer - 50% of data:

– Train one SAEi for half of the layers for
1B tokens: 6B tokens

– Fine-tune the remaining SAEi←i−1 or
SAEi←i+1 for 500M tokens: 3B tokens

– Total: 9B tokens

• Computational savings:

– Lower bound Forward/Backward trans-
fer: 12B - 6.6B = 5.4B tokens

– Upper bound Forward/Backward trans-
fer: 12B - 9B = 3B tokens

• Relative reduction in compute cost:

– Lower bound Forward/Backward trans-
fer: 5.4B

12B × 100% = 45%

– Upper bound Forward/Backward trans-
fer: 9B

12B × 100% = 25%

Our analysis indicates that the proposed transfer
learning approach can reduce compute costs by
25% to 45% for forward and backward transfer
when fine-tuned for 50% and 10% of the training
data respectively, improving efficiency and reduc-
ing costs by a great margin, while maintaining both
reconstruction quality and performance on down-
stream tasks.

C Additional plots and tables

Hyperparameter Value

c 8
λ 1.0
Hook name resid-post
Batch size 4096
Adam (β1, β2) (0, 0.999)
lr (Train) 3e-5
lr (Fine-tuning) 1e-5
lr scheduler constant
lr deacy steps 20% of the training steps
l1 warm-up steps 5% of the training steps
# tokens (Train) 1B
# tokens (Fine-tuning) 500M
Checkpoint freq. 100M

Table 2: Training and fine-tuning hyperparameters
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Checkpoint i

1 2 3 4 5 6 7 8 9 10 11

100M 0.962 0.960 0.983 0.920 0.865 0.439 0.955 0.948 0.858 0.944 1.003

200M 0.968 0.968 0.996 0.933 0.873 0.459 0.970 0.956 0.894 0.965 1.005

300M 0.969 0.971 1.000 0.941 0.877 0.475 0.981 0.960 0.911 0.972 1.005

400M 0.971 0.974 1.003 0.944 0.879 0.479 0.988 0.963 0.921 0.978 1.006

500M 0.972 0.975 1.005 0.946 0.881 0.488 0.991 0.964 0.929 0.981 1.006

Table 3: Normalized CE-Loss Scores CESi,i−1 (Eq. 9) of the Fwd-SAE at different checkpoints. On i = 6, the
Normalized CE-Loss Score increases over time even though it starts with a lower value w.r.t. the other checkpoints.
From Figure 9 we note how the CE-Loss Score of SAE5(x6) and SAE6←5(x6) are nearly identical to the obtained
by SAE6(x6), thus the increment given by the fine-tuning over the baseline SAE5(x6), captured by the Normalized
CE-Loss Score in Eq. 9, is minimal and resulting in a lower value.

Checkpoint i

0 1 2 3 4 5 6 7 8 9 10

100M 0.988 0.927 0.964 1.052 0.803 0.375 0.801 1.044 0.920 1.005 0.939

200M 0.990 0.939 0.969 1.076 0.812 0.396 0.805 1.047 0.912 1.001 0.953

300M 0.991 0.945 0.972 1.084 0.823 0.412 0.808 1.049 0.913 0.999 0.965

400M 0.995 0.951 0.975 1.098 0.827 0.420 0.811 1.052 0.912 0.997 0.972

500M 0.997 0.951 0.975 1.098 0.827 0.425 0.814 1.056 0.913 0.998 0.976

Table 4: Normalized CE-Loss Scores CESi,i+1 of the Bwd-SAE at different checkpoints. On i = 5, the Normalized
CE-Loss Score increases over time even though it starts with a lower value w.r.t. the other checkpoints. From
Figure 9 we note how the CE-Loss Score of SAE6(x5) and SAE5←6(x5) are nearly identical to the obtained by
SAE5(x5), thus the increment given by the fine-tuning over the baseline SAE6(x5), captured by the Normalized
CE-Loss Score in Eq. 9, is minimal and resulting in a lower value.
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Figure 9: Detailed per-layer CE-Loss Score at the final checkpoint (500M). SAEi−1(xi) and SAEi+1(xi) are the
baselines for the Fwd-SAE and Bwd-SAE respectively.

Figure 10: Detailed per-layer L2-Loss at the final checkpoint (500M). SAEi−1(xi) and SAEi+1(xi) are the
baselines for the Fwd-SAE and Bwd-SAE respectively. The y-axis is on a logarithmic scale.

Figure 11: Detailed per-layer L0-Loss at the final checkpoint (500M). SAEi−1(xi) and SAEi+1(xi) are the
baselines for the Fwd-SAE and Bwd-SAE respectively. The y-axis is on a logarithmic scale.
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Figure 12: Detailed per-layer CE-Loss Score over time (Checkpoint) after Forward Transfer.

Figure 13: Detailed per-layer CE-Loss Score over time (Checkpoint) after Backward Transfer.
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Figure 14: Detailed per-layer L2-Loss over time (Checkpoint) after Forward Transfer.

Figure 15: Detailed per-layer L2-Loss over time (Checkpoint) after Backward Transfer.
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Figure 16: Detailed per-layer L0-Loss over time (Checkpoint) after Forward Transfer.

Figure 17: Detailed per-layer L0-Loss over time (Checkpoint) after Backward Transfer.
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Figure 18: Faithfulness over time (Checkpoint) averaged by layer and N for the three downstream tasks.

Figure 19: Completeness over time (Checkpoint) averaged by layer and N for the three downstream tasks.

Figure 20: Faithfulness over N averaged by layer and time (Checkpoints) for the three downstream tasks.

Figure 21: Completeness over N averaged by layer and time (Checkpoints) for the three downstream tasks.
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Figure 22: Detailed per-layer feature averaged Logits Attribution scores over time (Checkpoint), as defined in
Equation 11.

Figure 23: Comparison of top activations of feature 949 across layer 8 SAE and two transfer SAEs pre-trained on
the former. SAE8 (Left), SAE7←8 (Middle), SAE9←8 (Right). Evidence of feature transfer across three layers.
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