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Abstract

Medical coding is the process by which stan-
dardized medical codes are assigned to patient
health records. This is a complex and challeng-
ing task that typically requires an expert human
coder to review health records and assign codes
from a classification system based on a standard
set of rules. Since health records typically con-
sist of a large proportion of free-text documents,
this problem has traditionally been approached
as a natural language processing (NLP) task.
While machine learning-based methods have
seen recent popularity on this task, they tend
to struggle with codes that are assigned less
frequently, for which little or no training data
exists. In this work we utilize the open-source
NLP programming language, NLP++, to design
and build an automated system to assign Inter-
national Classification of Diseases (ICD) codes
to discharge summaries that functions in the ab-
sence of labeled training data. We evaluate our
system using the MIMIC-III dataset and find
that for codes with little training data, our ap-
proach achieves competitive performance com-
pared to state-of-the-art machine learning ap-
proaches.

1 Introduction

Medical coding is the process by which healthcare
institutions assign standardized codes to patient
health records for downstream use in applications
such as statistical analysis, indexing patient health
records, coding medical billing claims (Moriyama
et al., 2011), and assessing quality of patient care
(O’Malley et al., 2005). While these systems of
classification represent a critical infrastructure with
extensive significance in the healthcare domain,
the success of their implementation largely rests
on the efficient and precise assignment of these
codes to a patient’s health record. We focus on
the task of assigning International Classification
of Diseases (ICD) codes to patient health records,
which is a complex, multi-stage process with many

possible points of failure, often resulting in improp-
erly assigned or missing codes. The Department
of Health and Human services found in 2010 that
approximately half of all claims for evaluation and
management services were incorrectly coded, re-
sulting in $6.7 billion in improper payments by
Medicare (Levinson et al., 2014). Medical coding
thus presents itself as a critical task which would
greatly benefit from increased automation.

Since much of the information required for as-
signing codes is contained within unstructured text
documents, the problem of medical coding has
traditionally been approached through the frame-
work of natural-language processing (NLP). Much
research has been conducted in this area but it
remains a challenging problem. Inherent limita-
tions of state-of-the-art approaches tend to restrict
their practical utility (Dong et al., 2022). Chal-
lenges include large label spaces and long docu-
ment lengths, user requirements for explainability,
and adaptability to local facility needs and medical
advances. Classical machine-learning and deep-
learning based approaches tend to be limited by
the need for quality labeled data for supervised
training. Due to restrictions on the distribution of
patient medical data, collecting and curating useful
datasets for these tasks is a major challenge (John-
son et al., 2016a; Searle et al., 2020; Johnson et al.,
2016b). Annotation costs to develop gold-standard
datasets can be prohibitive (Searle et al., 2020).

In this paper we propose a system for ICD cod-
ing that provides support for explainability and
functions without training data. Our system first
extracts medical entities from an input document,
then maps these entities to concepts in the Unified
Medical Language System (UMLS) (Bodenreider,
2004). Finally, we use these concepts as terms
to assign ranking scores to ICD-9 codes for the
input note. We use the openly available MIMIC-
IIT dataset to evaluate the performance of our sys-
tem and to compare to existing state-of-the-art ap-
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proaches to the task. Our contributions are to:

* Design and implement an automated end-to-
end scalable system using readily available
medical knowledge sources to assign ICD-9
codes to discharge summaries,

» Compare our approach to state-of-the-art deep
learning approaches, and

* Demonstrate the utility of knowledge-based
algorithms for low-resource ICD coding

2 Background

2.1 International Classification of Diseases

The ICD is a standardized nomenclature and clas-
sification system for diseases and medical proce-
dures, which was originally intended to facilitate
the statistical analysis of health data (Moriyama
et al., 2011). Each successive revision to the ICD,
typically spanning 10-20 years, has sought to ad-
dress new use cases while adapting to advances
in medicine and healthcare, and has continued to
grow in number of total codes. The tenth version,
ICD-10, has nearly 72,000 procedure codes. We
utilize the ICD-9-CM, a clinical modification of the
ICD-9 adapted for use in the US, which contains
well over 10,000 codes. Each entity within the ICD-
9-CM is encoded by a unique identification string
consisting of three to five digits and an optional sin-
gle letter prefix corresponding to a supplementary
category (see Figure 1). Practical applications of
the ICD in healthcare have expanded and now have
come to include the indexing of health record data
in hospitals, the coding of medical billing claims
(Moriyama et al., 2011), and the assessment of
quality of patient care (O’Malley et al., 2005).

2.2 MIMIC

To evaluate our approach to ICD coding we use
the Medical Information Mart for Intensive Care
(MIMIC) dataset (Johnson et al., 2016b). MIMIC
is an openly accessible database of de-identified
electronic health record data for patients admitted
to the intensive care unit of the Beth Israel Dea-
coness Medical Center. There are four releases
of the MIMIC dataset. Our work focuses on the
third release as full access to the fourth release was
not available until late in the project. The third
release, MIMIC-III, was published in 2016 and
contains data for 53,423 distinct hospital admis-
sions. Each hospital admission record is compre-
hensive and includes data in one of the following

categories: billing, descriptive, dictionary, interven-
tions, laboratory, medications, notes, physiologic,
and reports. MIMIC-III includes free text notes
and reports such as radiology reports and hospital
discharge summaries as well as ICD-9 codes for a
hospital admission, making it a useful resource for
the development and evaluation of automated code
extraction.
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Figure 1: Example path in the ICD-9 hierarchy.

2.3 Unified Medical Language System

The UMLS is a repository of biomedical vo-
cabularies and associated tools that is developed
and maintained by the US National Library of
Medicine. The UMLS consists of the Metathe-
saurus, a biomedical thesaurus that links concepts
from different constituent vocabularies; the Seman-
tic Network, which defines semantic types and pro-
vides relationships between UMLS concepts; and
the SPECIALIST Lexicon, an English dictionary
that includes biomedical terms (US National Li-
brary of Medicine, 2009). The Metathesaurus is a
collection of source vocabularies including biomed-
ical thesauri, classification systems, coding sys-
tems, and controlled term lists such as SNOMED-
CT (Stearns et al., 2001). Terms in these vocabular-
ies are linked to standard identifiers using semantic
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or lexical information. The Semantic Network de-
fines 127 different semantic types for concepts as
well as 54 different relationships between them,
comprising a network in which types are the nodes
and relationships are the vertices. We leverage this
concept structure along with the relationships de-
fined in the Semantic Network to map key terms
found in the text to concepts in the UMLS.

The Specialist Lexicon is a dictionary contain-
ing both common English terms as well as domain-
specific medical terms that was developed with the
express purpose of aiding in natural language pro-
cessing of medical text (US National Library of
Medicine, 2009). The lexicon includes key linguis-
tic information for each term, including spelling
variations, conjugations or conjugation patterns,
plural forms, and more (Browne et al., 2000). The
NLM releases a set of utilities for working with
the specialist lexicon. Of these utilities, we use the
Lexical Variant Generator to generate variants and
synonyms of terms within the ICD-9 code titles.

24 NLP++

We select the natural language processing program-
ming language NLP++ to implement our system
(Deane et al., 2001). NLP++ utilizes a multi-
pass, multi-strategy architecture in which each user-
defined pass over the input text performs a specific
step in processing or parsing the text. Passes are
broken down into specific regions: rule regions,
code regions and declarative regions. Rule regions
perform operations on the parse tree using prede-
fined operators, code regions include code which
is executed at runtime, and declarative regions in-
clude user-defined functions that can be called from
both rule and code regions. The multi-pass strat-
egy constructs a single, best-first parse tree which
is refined by each successive pass. Sequences of
passes are grouped together as an analyzer tailored
to a particular application.

NLP++ also incorporates a hierarchical knowl-
edge base management system that allows the pro-
grammer to dynamically store and use information
extracted from input texts. The conceptual gram-
mar includes both knowledge bases and dictionar-
ies. Knowledge bases allow the user to store and
retrieve hierarchically structured information while
dictionaries consist of entries and corresponding
key/value pairs. After tokenization, a lookup is
performed on the parse tree. Nodes that match
dictionary entries are tagged with their respective

key/value pairs. This facility constitutes a key as-
pect of building effective analyzers for parsing text.

3 Related Work

Though research on automated medical coding
dates as least as far back as the 1970’s (Pows-
ner, 1978; Stanfill et al., 2010), access to data and
hardware limitations prevented the development
of large-scale solutions. The first work on ICD
coding was published in the 1990s (Larkey and
Croft, 1995). It treated the task as one of informa-
tion retrieval, employing k-nearest-neighbors, rele-
vance feedback, and Bayesian classifiers to select
and rank relevant codes. Other early approaches
leveraged biomedical entity recognition systems to
extract clinically-significant entities which could
then be linked to codes from the target coding sys-
tem (Barrows Jr et al., 2000; Friedman et al., 2004).
While these approaches saw some success on test
datasets, they were limited by their ability to gen-
eralize to new datasets and their ability to scale to
larger label spaces.

Medori and Fairon examined the automated as-
signment of ICD-9-CM codes to French language
clinical notes (Medori and Fairon, 2010). Their
system was bipartite, including an extraction step
using both dictionary-based and heuristic meth-
ods to identify relevant coding information and a
classification step using Naive Bayes classifiers to
assign codes. Classifiers were built for codes that
appeared more than five times in the corpus, result-
ing in only 1,497 classifiers. The approach sepa-
rates the task into an extraction and classification
step and inspires our approach to isolating relevant
context which is then used for code classification.

Mullenbach et al. (Mullenbach et al., 2018) im-
plement an attentional convolutional network to
assign ICD-9 codes to discharge summaries in the
MIMIC-III dataset. They introduce train, devel-
opment and test splits for the Full set of MIMIC-
III discharge summaries as well as a Top 50 split
that includes only the 50 most frequently assigned
codes. Both the Full and Top-50 splits defined by
Mullenbach et al. have become the standard for
comparison in the literature (Yang et al., 2022). We
evaluate our system on the test set of these splits.

Yang et al. (Yang et al., 2022) address the long-
tail challenge of ICD coding by both defining a rare
code subset of the MIMIC-III dataset and introduc-
ing a training algorithm to improve performance
on rare codes. The rare disease subset, MIMIC-III-
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Full Top 50 Rare 50
Number of Notes 52,723 11,368 391
Number of Patients 41,126 10,356 386
Number of Unique Codes 8,922 50 50
Mean Codes per Note 159 5.7 1.0
Train/Dev/Test % 91/3/6  71/14/15 61/5/34

Table 1: Splits of the MIMIC-III dataset, including Full (Mullenbach et al., 2018), Top 50 (Mullenbach et al., 2018),

and Rare 50 (Yang et al., 2022).

rare50, includes less-common codes in MIMIC-III
and corresponding discharge summaries. The moti-
vation for this subset comes from the observation
that 4,115 of the 8,692 unique codes in the MIMIC-
III dataset occur fewer than 6 times (Yang et al.,
2022). To create this set, the authors first select
codes with fewer than 10 occurrences, then select
the top 50 from this set after splitting between train
and test. Common diseases are also manually re-
moved, resulting in 50 codes in total. Given the
reliance of pretrained language models on labeled
data, few- and zero-shot settings like those intro-
duced in the Rare-50 subset pose a challenging
problem. We use the Rare-50 split to evaluate our
system in a low-resource setting.

4 Methods

We extract all notes from the NOTEEVENTS table
in the MIMIC-III dataset (version 1.4) with CATE-
GORY field matching “Discharge Summary”, in-
cluding both reports and addenda. Notes where the
ISERROR flag is set are dropped and all addendum-
type discharge summaries are concatenated to their
corresponding original reports, following previous
work (Mullenbach et al., 2018). ICD9 codes are
then generated from the PROCEDURES_ICD and
DIAGNOSES_ICD tables using the subject and
hospital admission IDs.

4.1 Domain Knowledge Integration

The UMLS serves two key roles in our system.
The first is to identify clinically significant terms
within ICD-9 titles. The second is to resolve am-
biguous domain-specific language. To the first end,
we utilize the UMLS term mapping utility to nor-
malize terms within ICD-9 titles by mapping them
to alphanumeric lexical identifiers in the Special-
ist Lexicon, known as Entry Unique Identifiers
(EUIs). These terms can be single words or n-
grams within the title. For example, ICD-9 code

285.1 with title Acute posthemorrhagic anemia,
generates EUIs E0007202, acute posthemmorhagic
anemia; E0049207, posthemmorhagic; EO007127,
acute; and E0008920, anemia (Figure 2, Step 1).

In the second step, we leverage the normalized
terms identified in the first step to generate sets
of alternative forms of these terms (see Step 2 of
Figure 2). These alternative forms, or variants, in-
clude at minimum abbreviations, acronyms, plural
forms, conjugations, and spelling variations. To
accomplish this, we use the Lexical Variant Gen-
eration (LVG) command line utility included with
the Specialist Lexicon tools (Sherertz et al., 1989).
The LVG takes a term or list or terms as input and
outputs a list of variants according to the specified
flow control options. These options include normal-
ization methods like stripping punctuation and dia-
critics, and splitting ligatures as well as derivational
options like generating fruitful variants, inflections,
synonyms, and spelling variants. We utilize the
fruitful variants flag, which includes spelling vari-
ants, inflections, synonyms, acronyms and abbrevi-
ations, expansions of abbreviations and acronyms,
and derivations (Divita et al., 2014). This informa-
tion is aggregated and organized into knowledge
bases and dictionaries for downstream use in our
analyzer.

4.2 Note Processing

In the note processing stage, we take a set of notes,
in this case each of the test sets of MIMIC-III, and
output a set ICD-9 codes for each note. Our ap-
proach involves three steps: extraction, linking and
ranking. In the first step we decompose the input
text into structured sections. In the second step
we extract key terms and link these to central con-
cepts. In the third step we rank the set of extracted
codes using an inverse-document frequency-based
method. In this section we give an overview of the
analyzer structure and experimental setup to inves-
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ICD-9 Codes

518.81: Acute respiratory failure
285.9: Anemia, unspecified

| 285.1: Acute posthemorrhagic anemia

Step 1: Identify normalized terms within ICD-9 code.

96.04: Insertion of endotr: E0007202:

244.9: Unspecifi cquired hypothyroidism
H Onary arteriography using two

anemia

acute posthemmorrhagic

E0049207:
posthemmorhagic

E0049206: E0007127 :
posthemmorhagic acute

E0008920 :
anemia

anemia

1: Depressive disorder, not elsewhere classified
L 285.1: Acute posthemorrhagic anemia

[FVI5.8Z Personatmsory orwopaccouse |
305.1: Tobacco use disorder

]

Step 2: Generate list of variants from EUls

V58.61: Long-term (current) use of anticoagulants
486: Pneumonia, organism unspecified

585.9: Chronic kidney disease, unspecified
995.92: Severe sepsis

272.0: Pure hypercholesterolemia

acutely
anemias

anemic

acute post-hemorrhagic anemia
posthemmorhagic anaemia
post-hemorrhagic
posthaemorrhagic acute

Variants for 285.1

acute posthemorrhagic anaemia
post-hemmorghagic anemia
post-haemorrhagic

anemically
anaemic

anaemia

Figure 2: Outline of the pipeline for term normalization and variant generation for ICD-9 titles.

tigate the effects of knowledge sources and ranking
formulations on overall ICD coding performance.

We first describe the general structure of the
NLP++ analyzer. Our analyzer consists of 27 dis-
tinct passes (for a comprehensive list with pass
types, see Appendix A) each of which performs a
distinct step in note processing. The first step for
NLP++ analyzers is the tokenization step in which
we perform tokenization of the input note using the
built-in Dictionary Tokenizer in NLP++. The Dic-
tionary Tokenizer uses a word-based tokenization
strategy which splits the text on whitespace and
punctuation. Additionally, strings containing both
digits and letters are split into tokens containing
either all letters or all numbers. The tokenization
pass also performs lookups in the dictionaries for
each token in the parse tree. If a token matches
an entry in one of the dictionaries, its attributes
are added to the corresponding parse tree node.
In the case that a multi-token phrase is matched,
the entire token sequence match is reduced to a
_phrase node in the parse tree. The output of the
tokenization step is a shallow parse tree consisting
of tokens from the input text which are tagged with
negation type and an integer EUI identifier, where
applicable.

The next three passes of the analyzer (i.e., KB-
Funcs, array_funcs, and pn_funcs) are declara-
tive passes that define functions which are called
throughout the analyzer. KBFuncs is a library pass
that provides useful functions for working with
knowledge bases. We utilize NLP++ built-in func-
tions to add unique strings, concepts, and values to
knowledge bases along with functions which facili-

tate exporting knowledge bases. In the array_funcs
pass we define functions to perform common array
operations, including array concatenation, element
swapping, QuickSort, binary search, duplicate fil-
tering, and conversion functions for interoperability
with knowledge base data structures. The pn_funcs
pass includes a single function that appends a value
to a parse tree node’s variable.

Passes 6 through 19 perform cleaning of the note
text and organization of the parse tree. Starting
with pass 6 we excise non-relevant information in-
cluding de-identified placeholder strings, headers
and footers, which empirical investigation suggests
predominantly contain metadata. After filtering,
we organize the parse tree into structural compo-
nents in order of increasing granularity: sections,
subsections, enumerated lists, and sentences. For
sections and subsections, header names (e.g., “His-
tory of Patient Illness” or “Chief Complaint”) are
added as attributes on the parent node when present.
Finally, we clean all whitespace from the parse tree,
including space characters, tabs, and newlines.

Pass 20, gather_negations, implements the
NegEx algorithm with a maximum distance of 5
nodes between a negation term and a clinical en-
tity. Our negation window size follows the original
NegEx implementation (Chapman et al., 2001) for
its relative effectiveness and ease of implementa-
tion, though some work has shown improvement
using a dynamic window size (Meystre and Haug,
2005). The first rule in the pass matches a leaf node
tagged as pre-negation, along with the next 5 sib-
ling nodes or up to the next _section /_subsection
/_sentence boundary, whichever comes first. Since

552



compound medical terms are reduced to a single
_phrase node, they are treated as a single entity,
or node match. The next rule performs the same
operation for post-negation terms, instead excising
the preceding 5 nodes.

Passes 21-27 perform the term extraction and
ranking steps. The aim of these steps is to take the
structured parse tree with terms tagged for normal-
ization and rank the importance of the terms using a
term-frequency inverse-document-frequency based
method (Sparck Jones, 1972). The set of all ICD-9
titles is the reference corpus, C. We start by copy-
ing all tagged terms in the parse tree onto parent
nodes, so that each section, subsection, and sen-
tence node contains a list of all normalized terms,
represented by unique identifiers, contained within.

For any given ICD-9 code ¢ € C, we represent it
as a set of terms that occur within its title such that
T. = {ti1,t2,...,t,} (for an example, see Figure
2). We then calculate the frequency of each unique
term within all ICD-9 titles, given by f;, to encode
the relative specificity of each term (lower corpus
frequency => higher specificity) (Sparck Jones,
1972). We then define the total weight of a code,
W,, as the sum of the inverse document frequencies
(IDFs) of each of its constituent terms, ¢ € T, over
the ICD-9 corpus, C, or W, = ELTCl % We then
use the same IDF term weights to calculate the
ranking score of a code with respect to a particular
note. Let G = tq, to, ..., t,, be the set of all terms
in the document of interest and H = GG N1, be the
set of codes in both the input text and the code c,
then the rank of code ¢ with respect to the note, R,
is given by the following:

|H|
2o
j=
Re= WL )
By dividing by the total possible code weight, we
ensure that the ranking score for a code is not de-
pendent on the number of terms within its title.
Note that unlike TF-IDF, we are not taking into
account the frequency of a term within the note.
Since we are ranking a code based on the occur-
rence of its constituent terms within the target text,
we hypothesize that constraining term matches to
smaller sections of the text will lead to better per-
formance. To test this we re-formulate our ranking
function by assigning a weight to each code for
each section s and aggregate the ranking score for
each code by applying an aggregation function:

max, mean, or sum. We experiment with ranking
codes at the section and sentence level.

4.3 Evaluation

We evaluate all approaches on the test sets of the
Top 50 and Rare 50 splits of MIMIC-III (for a
comparison of these splits, see Table 1). Following
previous work (Mullenbach et al., 2018; Yang et al.,
2022), we use the receiver operating characteristic
area under the curve (ROC AUC), Fl1-score and
precision at k, for k = 5. Since ICD-coding is
a multi-class classification problem, we provide
ROC AUC and F1-score results using both macro-
and micro-averaging.

4.4 Execution Characteristics

The note processing stage is conducted in parallel
on the Clemson Palmetto HPC cluster using only
CPUs. Notes are first written to individual text files,
which are then mapped to available processes with
GNU Parallel (Tange, 2022). Each process runs
an instance of the note processing analyzer in the
NLP++ engine. The final pass in the analyzer, Pass
27, writes the analyzer results to a single-line CSV
file containing the hospital admission ID (HADM
ID) for the discharge summary followed by ranking
scores for all ICD-9 codes, in predetermined order.
Each of these output files is read and appended to a
single CSV file which is indexed by HADM ID and
has columns corresponding to ranking scores for
each ICD code. This final step is also performed
in parallel using GNU Parallel to coordinate the
process.

5 Results

We denote each of our methods as follows: LexSyn
refers to the use of lexical variants and synonyms
for normalization. The subscript refers to the aggre-
gation method-max, sum, or mean-and the scope
of term matches-sent for sentence-level, sect for
section level, and full for the full note.

5.1 Rare50

Results for the Rare 50 split are shown in Ta-
ble 3. We find that our LexSyn-Sectionax
analyzer achieves a level of performance com-
parable to recent state-of-the-art approaches in
terms of ROC AUC, falling within 4 points
of KEPTLongformerfeuned, the best-performing
deep-learning model.

Despite the slight performance difference, we
identify a few key advantages which support the
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ROC AUC F1-Score Prec. @ k

Approach Micro Macro Micro Macro 5

CAML (Mullenbach et al., 2018) 91.1 87.5 524 60.6 61.1
PLM-ICD (Huang et al., 2022) 91.9 89.3 67.6 64.3 61.7
MSMN (Yuan et al., 2022) 94.7 92.8 72.2 68.1 67.6
KEPTLongformer (Yang et al., 2022)  94.2 92.0 72.7 68.5 67.4
LexSyn-Sectiony,x 69.8 70.9 33.3 37.1 29.4
LexSyn-Sectionean 67.8 68.9 30.1 33.7 26.3
LexSyn-Sectiongn, 68.6 71.3 31.7 39.6 27.6
LexSyn-Sent;,,x 69.6 69.1 31.3 344 29.0
LexSyn-Sentyean 71.7 72.2 34.5 37.1 31.8
LexSyn-Sentgyn, 70.0 72.2 32.9 40.8 27.7
LexSyn-Full 68.0 68.0 31.9 38.5 29.6

Table 2: Results on the MIMIC-III Top 50 test set (Mullenbach et al., 2018). Results for all approaches are run to
completion. The best performing result for each metric from our approaches is bolded.

ROC AUC F1-Score
Approach Micro Macro Micro Macro
MSMNpreirained 76.2 75.3 17.1 17.2
MSMNero-shot 48.9 523 35 4.0
MSMNiinetuned 44.0 58.2 33 42

KEPTLongformer, 82.3 81.4 30.9 25.8
KEPTLongformer, 76.5 74.9 16.7 15.2
KEPTLongformery 83.3 82.7 32.6 30.4

LexSyn-Sectionmax 77.8 80.0 12.6 24.7
LexSyn-Sectionmean 76.7 77.2 12.4 23.4
LexSyn-Sectiongum 71.0 80.4 12.5 20.8

LexSyn-Sentmax 76.2 81.0 10.2 28.2
LexSyn-Sentmean 74.0 77.6 8.8 28.2
LexSyn-Sentsum 75.9 80.8 10.3 29.2

LexSyn-Full 77.8 80.0 12.2 23.6

Table 3: MIMIC-III Rare 50 test set results. Re-
sults for previous approaches from (Yang et al., 2022).
The best performing result for each metric from our
approaches is bolded.

utility of our analyzer in a clinical setting. The
first of these is the potential for explainability, as
described in the next section. Our system is fully
traceable and provides evidence from the text to
support a particular code assignment. Furthermore,
our approach does not require any training data
(labeled or unlabeled) which is advantageous in a
low-resource setting.

52 Top 50

Results for the Top 50 split are shown in Table
2. Results on the Top 50 split are comparable to
the results for the Rare 50 split but not as close
to recent state-of-the-art deep learning methods on
the Top 50 split. We note that the Top 50 split has

a smaller label space (50 labels vs 8,922 for the
full set) and a large number of samples per label,
making this dataset significantly less challenging
for deep learning methods than the Rare 50 and
Full sets. We nonetheless find that our approaches
achieve a reasonable performance baseline.

We perform additional analysis on individual
codes to explain the resulting code predictions. Ob-
servation of the per-code F1-scores is shown in
Figure 3. Performance for individual codes on the
Top 50 dataset is highly variable, with F1 scores
that range from nearly 0.9 to 0.0. We conduct anal-
ysis for the three ICD-9 codes with individual F1
scores equal to 0.0 (412, 285.1, and 39.61). We
plot the confusion matrices, seen in Figure 4, for
these codes and observe for these codes a positive
label is never or almost never predicted.

For code 412, “Old myocardial infarction”, man-
ual inspection reveals that this code is almost ex-
clusively assigned when “myocardial infarction”,
or its initialism MI, occurs in the Past Medical
History section of the discharge summary. In fact,
applying a simple matching rule for these terms
in the Past Medical History section significantly
outperforms our approach, with an F1 score on the
Top 50 test set of 58.2. Although our system does
not leverage code title information to restrict code
matches to sections in the text, our system does
provide support for incorporating this type of rule.

For code 285.1, “Acute posthemorrhagic ane-
mia”, we find that the terms themselves do not ap-
pear in the text. We suspect that the indicator of this
code comes from blood sample results, for which
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Figure 4: Confusion matrices for the three codes in the
Top 50 set with F1-Score equal to 0.0.

abnormal red blood cell counts and hemoglobin
levels are marked by an asterisk. This type of infer-
ence from non-textual signifiers or numerical data
is outside the current scope of our analyzer, though
one could add a heuristic rule to help identify these
cases.

For code 39.61, “Extracorporeal circulation aux-
iliary to open heart surgery”, we find that the title
and key subphrases of the title do not occur as
such in the text. In the set of discharge summaries
selected for review, we observe the presence of
procedures which may classify as extracorporeal
circulation methods, for example “CPB”, an initial-
ism for cardiopulmonary bypass. Further investiga-
tion reveals that cardiopulmonary bypass (UMLS
CUI: C0007202) is defined as a narrower, or child,
concept of extracorporeal circulation (UMLS CUI:
C0015354). This suggests that leveraging onto-
logical information beyond just synonyms may be
helpful for improving performance.

5.3 Codes with Multiple Occurrences

For the Top 50 and Rare 50 datasets, our analyzer
generates code ranks for each sentence or section.

d by decreasing F1-score. Bar colors represent frequency of

When the same code occurs in multiple sentences
or sections the result is a large number of ranking
scores for a code in the note. To handle the situation
in which a code occurs multiple times in the same
note, we use one of three aggregation methods: the
mean, the sum or the median of the ranks. However,
we suspect that noisy ranking scores for frequent
terms adversely affect performance.

6 Future Work

Our approach to extracting clinical entities does
not differentiate between semantic interpretations
of a particular medical entity. This is particularly
salient for abbreviations and acronyms, which often
require contextual clues to disambiguate (Savova
et al., 2008). Consider, for example, the term ‘ms’,
which maps to 12 unique concepts in the 2007AC
UMLS (Savova et al., 2008). Our system would, in
practice, give equal weight to each of these senses
of the term ‘ms’ without attempting to identify the
true sense of the term in the text. An lucrative path
for future work may be to incorporate heuristic
algorithms for word-sense disambiguation (WSD)
(Schuemie et al., 2005; Chasin et al., 2014) into the
entity extraction passes of the analyzer.

In our system we utilize the Lexical Variant Gen-
erator of the UMLS to identify variants of key
medical terms. This allows us to normalize these
variants in the text by mapping them to a central
concept. We experiment with different variant gen-
eration setups as outlined in Section 4.1. We find
the literature on lexical normalization for medical
entities to be sparse (Divita et al., 2014; Hedberg,
2013). An in-depth analysis of the downstream
impact of different variant generation setups would
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be a useful tool for guiding the construction of
systems that utilize the lexical tools. Additionally,
we hypothesize that our system could better lever-
age existing ontological information, including free
text descriptions and hierarchical relationships.

The dataset on which we evaluate our system,
MIMIC-III (Johnson et al., 2016b), is a large and
meticulously compiled dataset which has realized
significant progress toward the systematic study
of medical coding. Due to the increasing ubiquity
of MIMIC in the literature on medical coding, the
validation of ground truth labels in the dataset has
become supremely important (Searle et al., 2020).
As our system is developed and built entirely from
available medical sources using knowledge-based
algorithms, the system output is consistent and re-
producible. It is potentially usable as a companion
to deep learning based methods to aid in the de-
velopment of gold-standard labels for the MIMIC
dataset.

Perhaps the most critical area for future re-
search that we identify is the potential of our
approach to be utilized as an assistive software
for human coders. In this role our system does
not replace human coders but can be used as
a “first pass” to coding or to flag inconsisten-
cies for human verification. Code for our sys-
tem is made available at https://github.com/
ashtonomy/low_resource_icd_coding.

Limitations

Despite showing competitive performance in few-
or zero-shot settings, our analyzer is limited by its
performance in high-resource settings, such as the
Top 50 test set discussed in Section 5. More work
is needed to improve performance in this domain
before deployment in a clinical setting is consid-
ered. We also note that our system is evaluated on
medical notes sourced from a single hospital sys-
tem. In general, we find that more robust evaluation
on data from different source domains is needed to
more effectively gauge performance. As discussed
in 6, this is a challenge at present due to limited
access to openly available annotated medical notes.
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A Analyzer Pass Structure

# Pass Type
1 dicttokz Tokenizer
2 KBFuncs @DECL
3 array_funcs @DECL
4 pn_funcs @DECL
5 init_kb @CODE
6 clean_notes @RULES
7 get_negation @RULES
8 get_breaks @RULES
9 get_sections @RULES
10 get_loose_passages @RULES
11  group_loose_passages @RULES
12 remove_breaks @RULES
13 get_subsection_headers @RULES
14 get_subsections @RULES
15 get_list_items®R @RULES
16 get_lists @RULES
17 get_sentences @RULES
18 sentences @RULES
19 remove_whitespace @RULES
20 gather_negations @RULES
21  shift_keywords @RULES
22 keyword_funcs @DECL
23 set_line_count @CODE
24 extract_codes @RULES
25 rank_codes @CODE
26 aggregate_and_predict @CODE
27 kb_out @CODE

Table 4: Pass structure in the NLP++ ICD-coding ana-
lyzer for MIMIC-III notes. Passes marked ® are recur-
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sive.



