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Abstract
We present a novel approach to automating the
identification of risk factors for diseases from
medical literature, leveraging pre-trained mod-
els in the bio-medical domain, while tuning
them for the specific task. Faced with the chal-
lenges of the diverse and unstructured nature of
medical articles, our study introduces a multi-
step system to first identify relevant articles,
then classify them based on the presence of risk
factor discussions and, finally, extract specific
risk factor information for a disease through a
question-answering model.

Our contributions include the development of
a comprehensive pipeline for the automated
extraction of risk factors and the compilation
of several datasets, which can serve as valu-
able resources for further research in this area.
These datasets encompass a wide range of dis-
eases, as well as their associated risk factors,
meticulously identified and validated through
a fine-grained evaluation scheme. We con-
ducted both automatic and thorough manual
evaluation, demonstrating encouraging results.
We also highlight the importance of improving
models and expanding dataset comprehensive-
ness to keep pace with the rapidly evolving
field of medical research.

1 Introduction

Automatic identification of risk factors for diseases
plays a pivotal role in preventive medicine, en-
abling healthcare professionals to formulate effec-
tive prevention strategies and improve patient out-
comes. Traditionally, this process has relied heavily
on manual review of extensive medical literature, a
time-consuming and labor-intensive task, hindering
knowledge accessibility and effective usage.

As a concrete example, recently, compelling evi-
dence has emerged linking Lipoprotein A (Lp(a))
— a particle operating similarly to the more familiar
LDL molecule — to the pathogenesis of atheroscle-
rosis and subsequent coronary artery disease, com-
monly referred to as Myocardial Infarction (MI).

Despite the established role of Lp(a) as a risk factor
(Kronenberg et al., 2022), many primary care clini-
cians remain inadequately informed, occasionally
lacking knowledge regarding its testing procedures.
Moreover, in a conversation with a board-certified
professor of interventional cardiology, he disclosed
receiving frequent inquiries from other clinicians
questioning the necessity of referrals for Lp(a) test-
ing. This highlights the pressing need for an auto-
mated tool capable of screening vast amounts of
scientific literature and identifying prominent risk
factors for various diseases.

Despite significant advances in the field of nat-
ural language processing, automatic extraction of
disease risk factors from scientific medical liter-
ature remains a challenging endeavor. Contrary
to the analysis of electronic health records (Chen
et al., 2015; Boytcheva et al., 2017; Chokwijitkul
et al., 2018), here the primary challenge lies in the
diverse and unstructured nature of medical publi-
cations, where risk factors are described in various
contexts and formats. What is more, the contin-
uous discovery of new risk factors necessitates a
dynamic approach that can adapt to the evolving
body of medical knowledge. This study introduces
a novel approach to automating the identification
of disease risk factors from medical literature.

Utilizing pre-trained large language models,
based on BioBERT (Lee et al., 2020), we developed
a multi-step system, that first identifies relevant
medical articles, classifies them based on the pres-
ence of risk factor discussions, and then extracts
specific risk factor information through a question
answering (QA) model. Our approach to extraction
of disease risk factors is illustrated in Figure 1: (1)
medical abstracts are retrieved from PubMed, (2)
a specifically fine-tuned binary classifier is used
to identify abstracts with risk factors information,
and (3) textual spans containing risk factors are ex-
tracted via a question answering model, fine-tuned
on manually annotated QA items.
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Figure 1: The pipeline for extraction of disease’s risk factors: (1) medical abstracts are retrieved from PubMed, (2)
a specifically fine-tuned binary classifier is used to identify abstracts with risk factors information, and (3) precise
textual spans containing risk factors are extracted via a QA model, fine-tuned on manually annotated QA items.

The contribution of this work, therefore, twofold:
First, we present a comprehensive pipeline for au-
tomated extraction of risk factors. Second, we com-
pile and make available several datasets that can
serve as valuable resources for future research in
this field. These datasets include a carefully anno-
tated, large and diverse set of over 1,700 risk factors
associated with 15 diseases, as well as set of over
160,000 automatically extracted risk factors,1 with
almost 1,500 manually assessed for their quality,
using a fine-grained annotation scheme.2

We survey the related work in Section 2 and de-
tail on collection and annotation of our datasets
in Section 3. We next describe our approach to
the task and report experimental results in Sec-
tion 4. Human evaluation results are presented in
Section 5. Discussion of the difficulty of the task
and the limitations of this work are presented in
Section 6. We conclude this study in Section 7.

2 Related Work

Automatic identification of disease risk factors
through the analysis of medical texts has garnered
interest across various research domains, particu-
larly in applying natural language processing and
machine learning techniques to electronic health
records (EHRs) and electronic medical records
(EMRs). Here we review key contributions in this
area, highlighting approaches that parallel and di-
verge from our focus on free-text medical articles.

Chokwijitkul et al. (2018) explore the utilization
of deep learning models to extract heart disease

1We note that the set of over 160,000 automatically ex-
tracted risk factors are of admittedly mixed quality (see Sec-
tion 5 and Table 5 for details), yet, we thought this data can
serve the community for further research in the field.

2All code and data are available at https://github.com/
maximrub/diseases-risk-factors.

risk factors from EHRs. The approach, grounded
in analyzing structured data within EHRs, contrasts
with our exploration of unstructured text in med-
ical literature, underscoring the diversity in data
sources for risk factor identification. Boytcheva
et al. (2017) attempt at mining clinical texts for
risk factor identification using association rules.
Specifically, they handle data in XML format from
the Diabetes Register, indicating a structured ap-
proach to data analysis. This work differs from
ours in terms of both data source type (clinical nar-
ratives), as well as in our broader application to
unstructured, free-text medical articles and the use
of pre-trained large language models (LLMs) for
the task of text understanding.

A comprehensive work on identifying risk fac-
tors for heart disease (from clinical data) over time
was done in a shared task organized by UTHealth3

(Stubbs et al., 2015). Sheikhalishahi et al. (2019)
offer an overview of NLP applications in analyz-
ing clinical notes for chronic disease management,
highlighting the increasingly significant contribu-
tion of language models to healthcare applications.
In the domain of precision medicine, Sabra et al.
(2017) focus on extracting semantic information
and assessing sentiments in clinical notes.

Various works have employed data mining and
machine learning (ML) techniques for identifying
risk factors from patient data (Abdelhamid et al.,
2023), or clinical outcome prediction (Kavakiotis
et al., 2017; Mehmood et al., 2021; Naik et al.,
2021). Recently, the identification of risk factors
for delirium prediction, a rare adverse reaction ob-
served in COVID-19 patients, was developed uti-
lizing ML applied to nursing records (Miyazawa
et al., 2024). Additional line of studies focuses

3The University of Texas Health Science Center.

https://github.com/maximrub/diseases-risk-factors
https://github.com/maximrub/diseases-risk-factors
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on building language models specifically-tailored
for medical literature related tasks (Roitero et al.,
2021; Yang et al., 2022; Singhal et al., 2023).

Several significant contributions have been made
in the field of biomedical relation extraction, which
includes identifying factors that predispose individ-
uals to diseases. The SemRep (Kilicoglu et al.,
2020) tool extracts semantic predications from
biomedical texts, including relationships such as
"predisposes". The outputs of SemRep have been
used to create SemMedDB (Kilicoglu et al., 2012),
a large-scale repository of semantic predications
from PubMed. Building on these resources, Bio-
PREP (Hong et al., 2021) employs deep learn-
ing techniques for predicate classification. The
BioRED (Luo et al., 2022) dataset includes a "pos-
itive correlation" relation between diseases and
other biomedical entities like genes and chemicals.

Conclusion While the majority of existing re-
search focuses on analyzing structured electronic
health records and electronic medical records to
identify disease risk factors, our study pushes be-
yond these confines by examining free-text medi-
cal literature. Processing unstructured medical text
introduces distinct challenges, especially due to
language complexity, variation, and the potential
for nuanced double meanings, and even worse, due
to the necessity to discern context accurately. Con-
sequently, it opens up expansive opportunities for
subtle understandings of disease risk factors, facili-
tating both research and practical applications.

3 Dataset

Data collection process for this work can be viewed
as a three-step process: (i) collection of the set of
disease names spanning multiple disease families,
(ii) manual annotation of scientific article abstracts
containing explicit mention of risk factors of a sub-
set of diseases – "abstracts seed", and (iii) manual
annotation of risk factors description (span) in ab-
stract texts found in (ii) – "risk factors seed". We
detail on each step in this multi-phase procedure.

3.1 Disease Dataset Collection

Aiming to assemble a comprehensive list of dis-
eases, we made use of the KEGG Disease Database
API4 to retrieve disease-related information, includ-
ing names, description and relevant medical codes

4KEGG database: https://www.kegg.jp/kegg/
disease/; specifically, we used its REST API service at
https://www.kegg.jp/kegg/rest/ for retrieval.

such as MeSH (Medical Subject Headings), ICD-
10 and ICD-11.5 This process resulted in 2,624
distinct disease names, comprising the foundation
for further retrieval of scientific abstracts and, ulti-
mately, automatic extraction of risk factors, from
scientific medical literature.

3.2 Seed Dataset with Relevant Abstracts
Retrieval of Abstracts Discussing Risks Using
the list of disease names retrieved from KEGG,
we next queried PubMed6 — a large, reliable, and
authoritative resource of biomedical literature —
for article abstracts containing the disease names.
Specifically, we used the Entrez Programming Util-
ities7 via the biogo package.8 The inherent limi-
tation of this study is related to the fact that only
abstracts are freely available through the PubMed
interface. However, paper abstracts typically con-
tain a concise summary and main findings of the
work, hence constitute a sufficient input for the task
at hand. Similarly, prior studies analyzed abstracts
retrieved from PubMed for building a biological
network (Chen and Sharp, 2004), topical cluster-
ing (David and Samuel, 2012), and identification
of negative and positive domain-specific medical
terms (Vinkers et al., 2015).

Aiming at retrieval of abstracts discussing find-
ings related to risk factors, we queried PubMed for
containment of the phrase "risk factor" in a paper’s
information: title, abstract or MeSH terms. The
following pseudo-code was used for this purpose:

where disease_name refers to the disease we are
seeking risk factors for, and the exact search term
"risk factor" (surfacting also the plural "risk fac-
tors") can appear in abstract, title or MeSH terms.

Annotation of Abstracts for Risk Factors De-
spite the evident potential, not every abstract with
explicit mention of "risk factor" or marked with a
"risk factor" MeSH term contains risk factors for a
pre-defined disease. As a concrete example, a med-
ical study can mention a list of potential risk factors
tested, without any of them showing as significant.

5As of April 2024, ICD-11 (International Classification of
Diseases, v11) is the most up-to-date code collection.

6https://pubmed.ncbi.nlm.nih.gov
7https://www.ncbi.nlm.nih.gov/books/NBK25501
8https://github.com/biogo/ncbi

https://www.kegg.jp/kegg/disease/
https://www.kegg.jp/kegg/disease/
https://www.kegg.jp/kegg/rest/
https://pubmed.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov/books/NBK25501
https://github.com/biogo/ncbi
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We, therefore, define our first (pre-processing) task
as automatic classification of a retrieved abstract
for spelling out an artifact, found to be a risk factor
for the disease in the study.

A qualified annotator with medical background
(one of the authors of this paper) annotated a ran-
dom set of 182 abstracts. The procedure resulted
in 87 positive abstracts (explicitly mentioning a
risk factor) and 95 negative, thereby comprising a
sufficient training set for the binary classifier – step
(2) in the pipeline in Figure 1. Table 1 shows two
examples of relevant abstract parts containing risk-
related phrases which do or do not qualify as risk
factors, as identified by the annotator. Evidently,
the nuanced language used to discuss risks in vari-
ous contexts renders the task as non-trivial for both
humans and automatic tools.

3.3 QA Seed Dataset with Risk Factors

Given an article abstract specifying a risk factor(s)
for a certain disease, we cast the risk factor identi-
fication problem as extractive question answering
scenario, where given the abstract and the question
"What are the risk factors for {disease
name}?", a textual span, containing the answer, will
be identified. In Section 4.1.2 we make use of the
established and popular BERT-based QA model –
BioBERT9 (Lee et al., 2020), and fine-tune it for
the task at hand using a manually annotated set
of QA items: context (article abstract), a targeted
question of the form mentioned above, and a set of
manually marked answers in the form span_start
and answer_text (implying span_end).

In the absence of suitable annotated datasets for
this nuanced task, we developed a web interface
for medical students to manually annotate article
abstracts. This interface is used for (manual) identi-
fication of text segments within abstracts, given the
disease discussed in the article. We present a few
screenshots of the annotating tool in Appendix A.1,
and release the tool for the community.

The annotator with medical background marked
text spans containing risk factors in a random set of
668 abstracts identified to contain explicit mention
of a risk factor,10. resulting in the total of 1,712 QA
items, spanning 15 diverse diseases,11 where each
QA item reflects a single risk factor in an abstract
that (possibly) encompasses multiple valid risks.

9https://huggingface.co/dmis-lab/biobert-v1.1
10The abstracts were sampled from the set automatically

classified as "positive" (see Section 4.1.1)
11Appendix B reports the full list of diseases.

Sentences suggesting risk factors significant only
within specific population subgroups were denoted
as such. Table 4 presents two examples of QA
items: disease name, abstract, and the highlighted
risk factor span, as marked by the annotator.

Collectively the carefully-curated and annotated
set of abstracts for binary classification of medical
articles, and the set of QA items, comprise a high-
quality collection for tuning pre-trained language
models for the purpose of this study.

4 Methodology and Experiments

We further describe in detail our methodological
approach, experimental setup and results.

4.1 Methodology

As illustrated in Figure 1, we apply a multi-step
approach to automate the identification of disease
risk factors from medical literature. Central to our
methodology is the use of BioBERT, a variant of
BERT pre-trained on biomedical texts, enabling nu-
anced understanding of complex medical language
(Lee et al., 2020). We next provide details on each
step in the process. This model was chosen due to
its proven benefits in the biological domain, and its
encoder-based architecture – (arguably) the most
appropriate choice for both the classification and
extractive question answering tasks at hand.12

4.1.1 Detection of Abstracts with Risk Factors
The pre-trained BioBERT-based classifier13 was
tuned for abstracts classification using the training
part (80%) out of over 182 manually annotated ab-
stracts (see Section 3.2), and tested on the held-out
part (20%), achieving the accuracy of 92%. Table 3
reports the per-class classification results. This en-
couraging result facilitated our efforts of analyzing
content that is most likely to yield valuable insights
into disease-risk factor associations.

We collected a substantial dataset of abstracts,
by querying PubMed for each one of over 2400 dis-
eases, as detailed in Section 3.2; this step resulted
in 137,740 abstracts. We next apply the fine-tuned
classifier to identify abstract potentially containing
risk factors for a disease. Out of the total num-
ber of 137,740 abstracts, 89,834 were classified
as positive – containing explicit mentions of risk

12Our future work includes investigation of decoder-based
models (e.g., GPT), casting the QA part as an abstractive task.

13https://huggingface.co/dmis-lab/biobert-v1.1.
We used the default settings with max_input_length of 512
tokens, training the classifier for three epochs.

https://huggingface.co/dmis-lab/biobert-v1.1
https://huggingface.co/dmis-lab/biobert-v1.1
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article title: Risk Factors for Pediatric Human Immunodeficiency Virus-related Malignancy (2003)
Context: Although cancers occur with increased frequency in children with human immunodeficiency virus
(HIV) infection, the specific clinical, immunological, and viral risk factors for malignancy have not been
identified. Objective: To identify risk factors for malignancy among HIV-infected children. [...] Epstein-Barr
virus viral load of more than 50 viral genome copies per 105 peripheral blood mononuclear cells was strongly
associated with cancer risk but only for children with CD4 cell counts of at least 200/ microL (odds ratio [OR],
11.33; 95% confidence interval [CI], 2.09-65.66, P<.001). [...]
High viral burden with EBV was associated with the development of malignancy in HIV-infected children
although the effect was modified by CD4 cell count. The pathogenesis of HIV-related pediatric malignancies
remains unclear and other contributing risk factors can be elucidated only through further study.

article title: Profound Hypoglycemia and High Anion Gap Metabolic Acidosis in a Pediatric Leukemic
Patient Receiving 6-Mercaptopurine (2024)
A 13-year-old male undergoing maintenance chemotherapy with methotrexate and 6-mercaptopurine (6MP), for
very high-risk B-cell acute lymphoblastic leukemia (ALL), presented with vomiting due to severe hypoglycemia
with metabolic acidosis. While his laboratory values were concerning for a critically ill child, the patient was
relatively well appearing. Hypoglycemia is a rare but serious side effect of 6MP with an unexpectedly variable
presentation; therefore, a high index of suspicion is needed for its prompt detection and treatment. [...]
6MP-induced hypoglycemia can be ameliorated with the addition of allopurinol to shunt metabolism in favor of
the production of therapeutic metabolites over hepatotoxic metabolites. Additionally, a morning administration
of 6MP and frequent snacks may also help to prevent hypoglycemia. Overall, this case adds to the literature of
unusual reactions to 6MP including hypoglycemia in an older child without traditional risk factors.

Table 1: Article abstracts discussing risk factors (retrieved per the query in Section 3.2). Top – abstract identified as
relevant for risk factors extraction by the annotator, where the highlighted part refers to the discussed factor. Bottom
– abstract mentioning "risk factors", yet annotated as irrelevant.

factors for diseases. Naturally, some diseases (and
disease families) resulted in more prolific retrieval,
due to their higher coverage in the medical litera-
ture: while various cancer types (e.g., Carcinoma,
Leukemia) have large body of related articles, ge-
netic disorders are surveyed less frequently in the
context of risk factor discussion.

4.1.2 Identification of Disease Risk Factors
The collection of abstracts classified positively to
contain a risk factor, was then subject to the task
of risk factor extraction – step (3) in Figure 1. We
cast the task as extractive QA, where the medical
abstract represents the context, and the question
template is formulated as "What are the risk
factors for {disease name}?". We anticipate
the BioBERT QA model (Lee et al., 2020) to iden-
tify span(s) in the abstract containing the answer
(or answers, in case multiple risk factors are men-
tioned in the same abstract), similarly to examples
presented in Table 2. We fine-tune the model for
the specific task, as described below.

Fine-tuning the QA Model We tuned the
BioBERT model for our usecase using the train-
ing part (80%) of the 1,712 QA items annotated
manually by the author with medical background

(see Section 3.3); the remaining 20% were used for
testing. Notably, the set of 15 diseases in the 668
abstracts was carefully split into training and test
sets, so that the same disease does not appear in
both sets, facilitating the assessment of the model’s
generalizability and performance across a variety
of disease contexts. The model tuning was done
using the maximum context length of 384 tokens,
learning rate of 2e-5, and 25 epochs.

We use two common metrics for automatic
evaluation of extractive question answering:
exact-match and F1-score. Applied on the test
set (342 QA items), the metrics obtained 61.76%
for exact-match, and 88.23% for F1-score, high-
lighting the potential of the approach.

Determining the Maximum Answer Length
We determined the maximum length for answers
in our QA model by analyzing the lengths of all
answers within our training dataset. We calculated
the length of each answer (in characters) and stud-
ied their distribution. The maximum answer length
was set at the 95th percentile of these lengths to en-
compass the majority of real-world answers while
excluding outliers. This threshold is crucial for
maintaining focus on concise and relevant answer
segments, thereby enhancing the model’s training
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disease: Diabetes in Men
OBJECTIVE: To examine the association between smoking, alcohol consumption, and the incidence of non-
insulin dependent diabetes mellitus in men of middle years and older. [...] RESULTS: During 230,769 person
years of follow up 509 men were newly diagnosed with diabetes. After controlling for known risk factors men
who smoked 25 or more cigarettes daily had a relative risk of diabetes of 1.94 (95% confidence interval 1.25 to
3.03) compared with non-smokers. Men who consumed higher amounts of alcohol had a reduced risk of diabetes
(P for trend < 0.001). Compared with abstainers men who drank 30.0-49.9 g of alcohol daily had a relative risk
of diabetes of 0.61 (95% confidence interval 0.44 to 0.91). CONCLUSIONS: Cigarette smoking may be an
independent, modifiable risk factor for non-insulin dependent diabetes mellitus. Moderate alcohol consumption
among healthy people may be associated with increased insulin sensitivity and a reduced risk of diabetes.
disease: Breast and Colorectal Cancer
BACKGROUND: Increasing evidence suggests that diabetes mellitus (DM) is associated with increased cancer
incidence and mortality. Several mechanisms involved in diabetes, such as promotion of cell proliferation and
decreased apoptosis, may foster carcinogenesis. This study investigated the association between DM and cancer
incidence and cancer-specific mortality in patients with breast and colorectal carcinoma. [...] The overall HR for
breast cancer incidence was 1.23 (95 per cent confidence interval 1.12 to 1.34) and that for colorectal cancer was
1·26 (1·14 to 1·40) in patients with DM compared with those without diabetes. The overall HR was 1.38 (1.20
to 1.58) for breast cancer- and 1.30 (1.15 to 1.47) for colorectal cancer-specific mortality in patients with DM
compared with those without diabetes. CONCLUSION: This meta-analysis indicated that DM is a risk factor for
breast and colorectal cancer, and for cancer-specific mortality.

Table 2: Example of two paper abstracts manually annotated for risk factors. The highlighted text spans (comprising
the factors) where marked by the co-author with medical background. Note that in some cases the precise name of
the risk factor (e.g., "cigarette smoking") for a disease (e.g., "diabetes in men") is annotated in its broader context,
to ensure the model is trained to extract risk factors tied to the disease, and not other, unrelated, artifacts.

class P R F1
POS (with risk factor) 0.89 0.94 0.92
NEG (w/o risk factor) 0.94 0.89 0.92

Table 3: Classification results reported on the test set
(20%) of the manually annotated 182 abstracts.

and operational effectiveness. In practice, when
the model evaluates potential answers, it only con-
siders text segments whose length does not exceed
this predefined limit. Specifically, the text extracted
between the predicted start and end indices is com-
pared against the maximum length, and any text
exceeding this threshold is disregarded.

Identification of Risk Factors at Scale Utiliz-
ing the fine-tuned QA model, we then processed
the collected abstracts to identify and validate
risk factors for a wide range of diseases, culmi-
nating in a dataset that catalogs these findings
in much detail. As a concrete example, the en-
try for the "B-cell acute lymphoblastic leukemia"
includes 16 (not necessarily unique) automati-
cally extracted risk factors. Along with the ex-
tracted span, the BioBERT QA model provides
its probability (confidence, in the 0-1 range) for
the identified answer. For a given disease, we
only considered answers exceeding the confi-

dence of 0.6*max_answer_probability, where
the max_answer_probability is the maximum
probability assigned to an answer for the disease.
The final dataset encompasses the total of 162,409
identified risk factors spanning 744 diseases, ex-
tracted from 54,820 PubMed abstracts.

Due to the inherently strict nature of the
exact-match metric, we could observe multiple
cases where the extracted answer was largely cor-
rect, but didn’t represent a precise overlap with the
"gold" answer due to a single missing or redundant
word. In particular, while some cases surface useful
information about a disease risk factors, they are
marked as inaccurate by the automatic metric. We
complement the evaluation pipeline by sampling
a large amount of (automatically identified) risk
factors for diseases, and performing fine-grained
human assessment of the results’ quality.

5 Human Evaluation

We next manually evaluated a random sample of
1,485 extracted risk factors spanning 29 various
diseases (constituting roughly 1% of the full set
of extracted factors), based on their validity and
relevance to the disease in question.
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5.1 Evaluation Scheme

We designed a specifically-tailored, four-tiered an-
notation scheme for the sake of reliable and accu-
rate evaluation, as detailed below. Each risk factor
was scored with one of three annotation marks,
following the below annotation scheme:

(1) Valid risk factor for the specified disease:
Correctly identified risk factor extracted for the
disease of interest, i.e., the disease in the question
introduced to the QA system.

(2) Valid risk factor for a different disease:
Correctly identified risk factor for a different dis-
ease, i.e., not the disease in the question introduced
to the QA system, indicating capabilities yet high-
lighting challenges in specificity.

(3) Invalid risk factor: Phrases and terms that
are not considered medical risk factors.

Additional distinction was done within the first
group (valid risk factor), annotating risk factors
with strong statistical correlation, as evident from
the abstract by inspecting statistical measurements
as odd ratio (OR), and confidence intervals (CIs) –
metrics often used in medical literature for testing
the significance of findings, such as the presence of
a factor in one population but not the other. 41 out
of the total of 1,485 were marked as highly signif-
icant risk factors; we release these annotations as
well to facilitate further research in the community.

5.2 Evaluation Results

Table 4 presents error analysis of correctly- and
incorrectly-identified risk factor examples (the first
two rows), as well as an example for artifact that
does not constitute a risk factor (the last row).

We attribute most factors erroneously annotated
with type 3 annotation — not a risk factor — to
cases where the QA model was required to extract
a risk factor from an abstracts that does not contain
one. Since the model was trained (and fine-tuned)
to always identify an answer span for a given con-
text and question, it is expected to yield (admit-
tedly) weak performance on a context lacking the
factors at the first place. Notably, a relatively small
amount of all manually evaluated examples (around
8.5%) fall into this category.

Table 5 further summarizes the evaluation re-
sults by disease family. The prevalence of type 1
and 2 annotations illustrates the model’s effective-
ness in identifying risk factors, yet also underscores

the challenges in achieving precise disease-specific
accuracy. The presence of type 3 annotations, al-
though significantly lower, highlights the ongoing
need for the classification model refinement to en-
hance both specificity and accuracy.

Error Analysis Additional observation can be
made about error distribution between type 1 and
2 annotations within and across disease families.
Evidently, while some disease families show a
balanced ratio between type 1 and 2 annotations
(e.g., Infection, Leukemias), others resulted in
more mis-identified factors – type 2 annotation
(e.g., Metabolic disorders). We hypothesize that
abstracts concerning diseases with a significant,
sometimes absolute, genetic component are less
likely to address other contributing factors. Conse-
quently, research in this area predominantly focuses
on stratifying potential risks for other diseases in
individuals already affected by the genetic disorder.

6 Discussion and Limitations

Our study, while contributing valuable insights into
the automation of risk factor identification from
medical publications, is subject to several limita-
tions that merit a thorough discussion.

One of the primary limitations is the challenge
of accurately distinguishing risk factors specifi-
cally associated with the disease in question (type
1) from valid risk factors that are not directly re-
lated to the disease under investigation (type 2).
While our models demonstrated a high capacity for
identifying potential risk factors, the precision in
contextualizing these factors to specific diseases
varied. This aspect highlights a critical area for fu-
ture research, emphasizing the need for enhanced
specificity in the models to improve their utility in
targeted medical research and practice.

Moreover, the study’s reliance on free-text medi-
cal articles introduces variability in the data qual-
ity and representation. The unstructured nature of
these texts and the diversity in how risk factors are
described pose significant challenges for both the
binary classification and question-answering mod-
els. Efforts to standardize data representation and
improve model robustness against such variability
are essential steps forward.

The datasets used in this study, while extensive,
are not exhaustive. The landscape of medical re-
search is continuously evolving, with new findings
emerging regularly. The datasets, therefore, rep-
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disease abstract excerpt (identified risk factor highlighted) marker
Chronic
Myeloid
Leukemia

[...] RESULTS: Previous diagnoses of dyspepsia, gastritis or peptic ulcers, as well as previous
proton pump inhibitor (PPI) medication, were all associated with a significantly increased risk
of CML (RRs, 1.5-2.0; P = 0.0005-0.05). Meanwhile, neither inflammatory bowel disease nor
intake of NSAIDs were associated with CML, indicating that it is not gastrointestinal ulcer or
inflammation per se that influences risk. [...]

1

Cystic
Fibrosis

BACKGROUND: Cystic fibrosis, like other chronic diseases, is a risk factor for the development
of elevated symptoms of depression and anxiety. [...] Patient anxiety (OR 2.33) and depression
(OR 4.09) were significantly associated with forced expiratory volume in one second (FEV1) <40%
and forced vital capacity (FVC) <80% (OR 1.60 and 1.61, respectively). CONCLUSIONS: Cystic
fibrosis increases the risk of developing anxiety and depression in female patients and in mothers.

2

Renal Cell
Carcinoma

RESULTS: A total of 888 incident RCCs and 356 RCC deaths were identified. In models including
adjustment for body mass index and energy intake, there was no higher risk of incident RCC
associated with consumption of juices (HR per 100 g/day increment = 1.03; 95% CI, 0.97-1.09),
total soft drinks (HR = 1.01; 95% CI, 0.98-1.05), [...] CONCLUSIONS: Consumption of juices or
soft drinks was not associated with RCC incidence or mortality after adjusting for obesity.

3

Table 4: Examples for automatic identification of risk factors in medical abstracts, marked by the annotator:
1 (valid risk factor for the specified disease) – stomach diseases are risk factors for CML; 2 (valid risk factor for a
different disease) – CF, the disease of interest, was found to be a risk factor for depression and anxiety; and 3 (not a
risk factor) – juices were not identified as a risk factor for RCC.

family (sub-family)
(1) valid risk factor

for the specified disease
(2) valid risk factor

for a different disease
(3) not a risk factor total in family

Carcinomas 317 285 60 662
Infection 45 51 6 102
Leukemias 208 192 46 446
Lymphomas 27 12 4 43
Metabolic disorders (GD) 4 60 8 72
Mucus malefunction (GD) 11 34 2 47
Cardiomyopathy 5 23 0 28
Sarcomas 15 5 1 21
other hematological disorders 30 32 2 64
total 662 694 129 1485

Table 5: Distribution of manual evaluation annotations by disease family. "GD" denotes "genetic disorder". Note
the much high number of risk factors identified for common (and potentially fatal) diseases, due to the vast body of
empirical literature. The numbers refer to the total number of (not necessarily unique) risk factors identified for a
disease family. We hypothesize that abstracts concerning diseases with a significant, sometimes absolute, genetic
component are less likely to address other contributing factors; between the dashed lines in the table.

resent a snapshot in time, and ongoing efforts to
update and expand these resources are necessary to
maintain their relevance and utility.

Finally, the study’s scope was constrained by the
computational resources available. Future work
could explore more complex models or ensemble
approaches that might offer improved accuracy but
require more substantial computational power.

Despite these limitations, this study represents
a significant step toward automating the identifica-
tion of disease risk factors from medical literature.
Acknowledging and addressing these limitations
in future research will be crucial for advancing the
field and enhancing the practical applicability of
these technologies in healthcare.

7 Conclusions and Future Work

This study presented an approach to identifying
and extracting disease risk factors from free-text
medical articles using advanced natural language
processing techniques, specifically leveraging the
capabilities of the pre-trained BioBERT-based ar-
chitecture. Our methodology involved a multi-step
process, including the retrieval of relevant articles,
binary classification to filter articles discussing risk
factors, and a question-answering model to extract
specific risk factor information.

We have demonstrated the potential of language
technologies to significantly enhance the efficiency
and effectiveness of risk factor identification in
medical literature. Our contributions to this field
are twofold: the presentation of an automated
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pipeline for risk factor extraction and the creation
of valuable datasets for future research. While
our study marks an advancement in the automated
extraction of risk factors from medical literature,
there remain several avenues for future research
and development. Our future directions include
introducing improvements to QA model’s accu-
racy and specificity, integration of additional data
sources, and evaluation of more advanced LLMs
for the task of risk factors identification.

Furthermore, inspired by recent findings that
automatic annotations generated by models like
GPT-4 can achieve results comparable to human
annotations, we plan to investigate the use of GPT-4
for the task of risk factors annotation, and compare
its performance with human experts.

8 Ethical Considerations

We make use of publicly available data in the do-
main of healthcare, that have been broadly used in
numerous studies. Manual annotations were con-
ducted by one of the authors of the paper, with
medical background. Due to the required expertise
and the inherent difficulty of the task, the mean
hourly rate for the annotator was much higher than
the established minimum wage.
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A Appendices

A.1 Overview of the Risk Factor Annotation
System Architecture

The risk factor annotation system comprises three
main components designed to streamline the pro-
cess of annotating risk factors in medical arti-
cles. This system was instrumental in creating the
datasets used in our research.

GraphQL Server The backbone of the system
is a GraphQL server, which serves as the central
communication hub. Hosted on Kubernetes (k8s)
for scalability and reliability, the server facilitates
data exchange between the user interface and the
database. It handles requests for data retrieval and
submission, ensuring that the web application and
the code can access and store data efficiently.

Web UI The front end of the system is a React-
based web application, also deployed on Kuber-
netes for high availability. This intuitive user in-
terface allows medical students and researchers to
interact with the system, including retrieving med-
ical articles, annotating risk factors within texts,
and submitting these annotations back to the server.
The design prioritizes ease of use to facilitate accu-
rate and efficient annotation work.

Python Algorithm Complementing the user in-
terface is a Python-based algorithm that interacts
with the GraphQL server. This component is re-
sponsible for processing medical articles, including
sending requests to the server to fetch articles for
annotation and submitting the results of automated
risk factor identification processes. It plays a criti-
cal role in pre-processing and post-processing steps
in the dataset creation pipeline.

Database At the core of the system lies a Mon-
goDB database hosted on Azure Cosmos DB. This
NoSQL database was chosen for its scalability, flex-
ibility, and robust support for storing unstructured
data, such as medical article texts and annotations.
It stores all data related to diseases, articles, and
user annotations, providing a persistent and reliable
data storage solution for the system.

Figures 2-3 illustrate two screenshots of the ap-
plication developed for manual annotation of risk
factors. The system code will also be made avail-
able per acceptance.

B Diseases with Annotated Risk Factors
in the QA dataset (the training set)

Section 3.3 details the procedure of manual anno-
tation of risk factors following the step of abstract
retrieval. The annotated data comprises 1,712 QA
items from 668 abstracts covering 15 diseases from
multiple disease families, as detailed in Table 6.

C Diseases with Evaluated Risk Factors

Table 7 reports the distribution of manually evalu-
ated risk factors by disease family.

https://ieeexplore.ieee.org/abstract/document/8029906
https://ieeexplore.ieee.org/abstract/document/8029906
https://ieeexplore.ieee.org/abstract/document/8029906
https://ieeexplore.ieee.org/abstract/document/8029906
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528438/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528438/
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Figure 2: Disease Risk Factor Annotation System: disease details as retrieved from KEGG and parsed.

Figure 3: Disease Risk Factor Annotation System: manual annotation of spans containing risk factors; multiple risk
factors for the same disease can be identified in the same abstract.
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family disease
Autoimmune disease Celiac disease
Autoimmune disease Rheumatoid arthritis
Autoimmune disease Type 1 diabetes mellitus
Carcinomas Bladder cancer
Carcinomas (to the most part) Breast cancer
Carcinomas (to the most part) Colorectal cancer
Chronic lung disease Chronic obstructive pulmonary disease
Chronic lung disease Asthma
Circulatory disorder High blood pressure
Heart disease Myocardial infarction
Melanoma/Skin cancer Melanoma
Metabolic disease Metabolic syndrome
Metabolic disease Type 2 diabetes mellitus
Neurodegenerative disorder Alzheimer disease
Neurologic disorder Migraine

Table 6: Disease distribution by disease family in the
manually annotated set of 1,712 risk factors used for
BioBERT QA fine-tuning.

family disease
other hematological disorders Multiple myeloma
Carcinomas Choriocarcinoma
Carcinomas Esophageal cancer
Carcinomas Gastric cancer
Carcinomas Malignant pleural mesothelioma
Carcinomas Non-small cell lung cancer
Carcinomas Penile cancer
Carcinomas Renal cell carcinoma
Carcinomas Small cell lung cancer
Carcinomas Vulvar cancer
Infection Cholera
infection Gonococcal infection
infection Pertussis
Leukemias Acute myeloid leukemia
Leukemias Adult T-cell leukemia
Leukemias B-cell acute lymphoblastic leukemia
Leukemias Chronic lymphocytic leukemia
Leukemias Chronic myeloid leukemia
Leukemias Hairy cell leukemia
Leukemias Polycythemia vera
Leukemias T-cell acute lymphoblastic leukemia
Lymphomas Burkitt lymphoma
Lymphomas Lymphoplasmacytic lymphoma
Metabolic disorders (GD) Congenital adrenal hyperplasia
Metabolic disorders (GD) Gaucher disease
Metabolic disorders (GD) Hemochromatosis
Mucus malefunction (GD) Cystic fibrosis
Cardiomyopathy Dilated cardiomyopathy
Sarcomas Osteosarcoma

Table 7: Disease distribution by disease family in the
manually evaluated set of 1,485 identified risk factors.
"GD" denotes "genetic disorder".


