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Abstract

Biomedical information extraction is crucial for
advancing research, enhancing healthcare, and
discovering treatments by efficiently analyzing
extensive data. Given the extensive amount of
biomedical data available, automated informa-
tion extraction methods are necessary due to
manual extraction’s labor-intensive, expertise-
dependent, and costly nature. In this paper, we
propose a novel two-stage system for informa-
tion extraction where we annotate biomedical
articles based on a specific ontology (HOIP).
The major challenge is annotating relation be-
tween biomedical processes often not explic-
itly mentioned in text articles. Here, we first
predict the candidate processes and then deter-
mine the relationships between these processes
without relying on mentions. The experimental
results show promising outcomes in mention-
agnostic process identification using Large Lan-
guage Models (LLMs). In relation classifica-
tion, our proposed BERT-based models out-
perform LLMs significantly. The end-to-end
evaluation results suggest the difficulty of this
task and room for improvement in both process
identification and relation classification.

1 Introduction

In the biomedical domain, unraveling the mecha-
nisms underlying various diseases contributes sig-
nificantly to their treatment and prevention. How-
ever, information about these mechanisms is of-
ten scattered across articles, presenting challenges.
The challenges include the lack of clarity, the im-
plicit nature of background knowledge, and the ad
hoc use of vocabularies with variations in notation.
Moreover, inherent biological complexity spans
molecules, cells, and organs, with external factors
such as viruses influencing infection mechanisms.

To address these challenges, organizing knowl-
edge through ontologies is crucial as they provide

*Equal contribution.

a clear framework for consistently structuring en-
tities and their relationships. In the Homeostasis
Imbalance Process Ontology (HOIP), manual anno-
tation has been employed to extract and structure
knowledge about processes such as cellular senes-
cence and COVID-19 infection mechanisms (Yam-
agata et al., 2021, 2024). Despite these systematic
approaches, manual annotation faces significant
challenges due to its high cost and time-consuming
nature. These challenges highlight the need for
more efficient and consistent (semi-)automated an-
notation approaches to improve the overall quality
and usefulness of ontologies.

In this paper, we propose an application of Nat-
ural Language Processing (NLP) as a promising
solution. Specifically, assuming automatic annota-
tion of the HOIP ontology as our ultimate goal, we
propose a two-stage information extraction (IE) sys-
tem. Figure 1 shows an overview of our two-stage
system. Given an input passage1, the first stage,
Process Identification, identifies process entities
that are described in the passage or can be inferred
using the domain knowledge.2 The entities are rep-
resented as unique IDs in the ontology. The entities
are then passed to the second stage, Document-level
Relation Extraction (DocRE) (Christopoulou et al.,
2019; Zhou et al., 2021; Xiao et al., 2022; Zhang
et al., 2021; Li et al., 2023), to classify entity pairs
into a pre-defined set of interrelations. The system
output is represented as a set of triples: {(head en-
tity ID, relation, tail entity ID)}. We develop and
evaluate different approaches including supervised
models based on BERT (Devlin et al., 2019) and

1In this paper, we use the word “passage” instead of “docu-
ment” or “paragraph” to describe the input in our task, because
the text describing biomedical processes is not necessarily a
complete text like an entire paragraph or document.

2Process Identification is similar to Entity Disambigua-
tion (ED), but differs as discussed in the following paragraph.
Given an input passage, ED aims to identify entities (IDs) for
each given mention, whereas Process Identification aims to
identify entities (IDs) without the availability of mentions.
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Progressive respiratory failure develops 
in many patients with severe Covid-19 
soon after the onset of dyspnea and 
hypoxemia.
These patients commonly meet the 
criteria for the acute respiratory distress 
syndrome (ARDS), which is defined as 
the acute onset of bilateral infiltrates, 
severe hypoxemia, and lung edema that 
is not fully explained by cardiac failure 
or fluid overload.

5. HOIP_0036007
    (respiratory disfunction)

2. HOIP_0036023
    (pulmonary interstitium edema)

6. HOIP_0036026
    (increasing lung weight)

1. HOIP_0041839
    (pulmonary edema)

4. HP_0002113
    (pulmonary infiltrates)

S0:

S1: 3. HOIP_0041236
    (pulmonary alveolar edema)

1. (HOIP_0041839, has_result, HOIP_0036007)

3. (HOIP_0041839, has_part, HOIP_0036023) 

5. (HP_0002113, has_result, HOIP_0036007)

2. (HOIP_0041839, has_result, HOIP_0036026)

4. (HOIP_0041839, has_part, HOIP_0041236)

...
...

Input Passage (from PMID:32412710) Predicted Entities Predicted Triples: {(Head, Relation, Tail)}

1st: Process Identification 2nd: Document-Level Relation Extraction
        (DocRE)

BERT

...
...

LLM-ICL

OR

...
...

BERT

...
...

LLM-ICL

OR

HOIP Ontology (entity pool)

Mentions can be implicit and are unavailable

{(ID, canonical name, description)}

Figure 1: An overview of our mention-agnostic two-stage information extraction system with a real example in our
HOIP dataset. Given an input passage, the first stage identifies process entities described in the passage or inferable
based on the domain knowledge. The predicted entities are then passed to the second stage to identify relations
between them. Please note that our system does not rely on mentions, enabling extraction of structured knowledge
about entities and relations described implicitly in the passage.

generative methods based on Large Language Mod-
els (LLMs) and In-Context Learning (ICL) (Brown
et al., 2020; Chowdhery et al., 2022; Wadhwa et al.,
2023; Ozyurt et al., 2024) for both process iden-
tification and DocRE. The HOIP dataset, a novel
manually annotated dataset built based on the HOIP
ontology for biomedical IE system development,
will be available to the public.

Traditional IE studies (Yu et al., 2020; Wu et al.,
2020; Zhou et al., 2021) assume that an entity can
appear multiple times in a passage explicitly (such
textual instances are called mentions), and derive
entity features from these mentions. Mentions are
strong indicators in IE, since they directly indicate
how entities are described in a text. However, in
real-world scenarios including our HOIP dataset,
an entity sometimes appears only implicitly. With
no availability of mentions, it is not obvious how to
induce useful entity features from a passage. This
paper proposes multiple approaches that do not
require explicit mentions.

Our contributions and findings are summarized
as follows:

• We release the HOIP dataset, to facilitate the de-
velopment and bench-marking of IE models for
the real-world ontology.

• We develop a mention-agnostic two-stage IE sys-
tem, which enables to extract structured knowl-
edge described implicitly in text. BERT-based su-
pervised models and LLM-based models are pre-
sented for both process identification and DocRE.

• Experimental results in process identification sug-
gest that generative models are valuable for low-
resource in-domain corpora like the HOIP dataset.

• DocRE results suggest that, although mentions are
strong indicators, the proposed BERT-based mod-

els outperform LLMs and achieve F1 scores of
around 56-59 points even without mention hints.

• Evaluation results on the end-to-end system reveal
that improvements in both process identification
and DocRE are crucial in the current stage.

• The HOIP dataset and the source codes are avail-
able: https://github.com/norikinishida/
hoip-dataset (dataset), https://github.
com/sl-633/bio-process-identifier (pro-
cess identification), https://github.com/
norikinishida/kapipe (DocRE).

2 HOIP Dataset

Our ultimate goal is to update and improve ontolo-
gies by (semi-)automatically extracting entities and
their interrelations from articles. As a testbed ontol-
ogy, we choose the Homeostasis Imbalance Process
Ontology (HOIP) (Yamagata et al., 2021, 2024),
which focuses on understanding the COVID-19 in-
fectious mechanism (courses).3 To facilitate the
development of NLP systems and benchmark the
task, we construct and release a new dataset named
the HOIP dataset based on the HOIP ontology. The
dataset includes passages extracted from PubMed
articles describing biomedical processes in the con-
text of COVID-19 infectious courses. Each passage
is a brief portion of a PubMed article that describes
at least two specific processes. The processes are
manually annotated as a set of triples, i.e., {(head
entity, relation, tail entity)}. Figure 1 shows a real
example in the dataset.

3For the details of the ontology see Appendix A.

https://github.com/norikinishida/hoip-dataset
https://github.com/norikinishida/hoip-dataset
https://github.com/sl-633/bio-process-identifier
https://github.com/sl-633/bio-process-identifier
https://github.com/norikinishida/kapipe
https://github.com/norikinishida/kapipe
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Train Dev Test

# passages 255 35 37
# entities 1988 143 211
# triples 1848 137 177
Avg. words per passage 75.5 70.4 61.8
Avg. entities per passage 7.8 4.1 5.7
Avg. triples per passage 7.2 3.9 4.8

Table 1: Dataset statistics for the HOIP dataset.

2.1 Data Collection and Enhancement

We first stored the HOIP ontology files in an RDF
store using Apache Jena Fuseki4, and constructed
a SPARQL endpoint. We used SPARQL queries
to retrieve the information required for the dataset.
The results were then converted to CSV. To opti-
mize the dataset for machine annotation and en-
hance its clarity, we made several adjustments
based on the hierarchical structure of the HOIP on-
tology. Originally, some process entities included
course information, such as “blood vessel dam-
age in severe COVID-19” (the course is in italics),
indicating a specific context. We removed these
course information from the entities to optimize
for machine annotation. Additionally, processes
with too fine granularity were deemed unsuitable
for machine annotation predictions. Therefore, we
prioritized processes that are generalized using su-
perclasses of each process, assigning Gene Ontol-
ogy (GO) terms (Ashburner et al., 2000). This
approach ensures that the annotations are practical
for applications for reusability.

2.2 Dataset Organization

In the CSV file generated by the above procedure,
each record corresponds to one triple. We com-
bined the triples associated with the same passage
(string) and PubMed ID into the same group, and
this group was considered to be a single exam-
ple in the final dataset. We found that there were
textual overlaps across the passages. Thus, if a
passage dsrc was textually contained in another
passage ddst and both passages are associated with
the same PubMed ID, the triples Tsrc for dsrc were
merged into the triples Tdst for ddst. Finally, we
split the entire dataset into training, development,
and test sets, ensuring that passages extracted from
the same article were not scattered across different
splits. The dataset statistics are shown in Table 1.

4https://jena.apache.org/documentation/fuseki2/

3 Methods for Process Identification

In the HOIP dataset, a biological process entity is
annotated depending on whether it is mentioned
(explicitly or implicitly) in the passage, without
specifying the corresponding phrase of the entity in
the passage. This makes the dataset more closely
match the real-world scenario, but also brings chal-
lenges to the automatic process identification – di-
rectly employing Named Entity Recognition meth-
ods that require the correspondence between a ex-
plicit mention (entity text and offsets) and an input
text for model training is no longer an option. To
address this task, we propose approaches to iden-
tify biological processes without prior recognition
of mentions that can be matched to terminological
expressions of entities in the HOIP ontology. Two
distinct approaches are developed: BERT-based
supervised methods and LLM-based In-Context
Learning (ICL) methods.

3.1 BERT-based Supervised Approach
Considering that 360 unique process names are en-
compassed in the HOIP dataset, the task of process
identification can be approached as a multi-class
and multi-label classification problem. For simpli-
fication purposes, we convert the task into a binary
format, framing it in the following manner: Let D
be the set of passages and A be the set of annotated
process names. The input sequence is constructed
for each passage from D as follows:

[CLS] passage [SEP] name [SEP]

where name denotes a process name ai ∈ A. Then,
the task is a binary classification task whether the
passage involves the process or not.

3.2 LLM-based ICL Approach
Taking into account the unique characteristics of
the dataset and the rapid advancements in the capa-
bilities of LLMs to produce coherent texts in low
resource settings (Wang et al., 2023), LLMs are
utilized in this study to generate HOIP processes
for each passage. We aim to evaluate the model’s
performance in low-resource settings characterized
by imbalanced data in a specialized domain, and as-
sess the model’s generative capability in producing
HOIP ontology terms.
• Zero-shot setting: The model is prompted to

list the biological processes present in the text.
Following a prompt format being demonstrated
effective in many studies (Mishra et al., 2022;
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Sclar et al., 2023), the prompt includes task in-
struction, constraints on the output, the input text.
An example of the prompt is shown in Table 8.

• Few-shot setting: Following the previously men-
tioned prompt format, two few-shot strategies are
employed through adding demonstrations: the
first involves selecting randomly three examples
from the development set, while the second is
selecting examples based on semantic closeness
of process names.

4 Methods for Document-level RE

Given an input passage d, a set of entities for
the passage {e1, · · · , eK}, and a pre-defined set
of relations R, document-level relation extraction
(DocRE) (Christopoulou et al., 2019; Zhou et al.,
2021; Xiao et al., 2022; Zhang et al., 2021) aims to
predict relations from R ∪ {NA} for entity pairs
(ei, ej) (i, j ∈ [1,K]; i ̸= j), where ei and ej de-
note head and tail entities respectively, and the NA
class indicates that the entity pair has no relation.

4.1 QA-Style DocRE Model
Our first approach is to perform DocRE as a Ques-
tion Answering (QA) task. We first generate ques-
tions for each possible triple. The question and
the input passage are concatenated and passed to a
pre-trained language model for answering.

Question Generation. We first enumerate all
possible entity pairs {(ei, ej)}i,j∈[1,K];i ̸=j , and
then apply pre-defined template functions {Tr}r∈R
to the entity pairs to obtain questions for each possi-
ble triple (ei, r, ej): q(ei,r,ej) = Tr(ei, ej). Table 7
shows examples for the pre-defined templates. The
input x to our QA model is as follows:

[CLS] question [SEP] passage [SEP]

where question and passage are the word-pieces
tokens of q(ei,r,ej) and d, respectively. An exam-
ple for the input is “[CLS] does immunoglobulin
production result in immunoglobulin mediated im-
mune response ? [SEP] within 19 days after symp-
ton onset , 100 % ... [SEP]”.

Answer Classification. Then, we feed the input
sequence x into a BERT-based encoder (Devlin
et al., 2019; Beltagy et al., 2019) to obtain the
contextual embeddings: {hw}

Nx
tok

w=1 = Encoder(x),
where Nx

tok is the number of tokens in x. We con-
catenate the output of the last layer for the [CLS]
token and the average-pooling embedding to obtain

the passage embedding: h̃ = h1⊕ 1
Nx

tok

∑Nx
tok

w=1 hw,
where ⊕ represents the concatenation of vectors.
Then, we apply a two-layer feed-forward network
and sigmoid activation to the passage embedding
to calculate the probability of answer “Yes”.

Loss Function. The network is trained using a bi-
nary cross entropy loss to maximize the probability
for the correct triples.

4.2 Mention-Agnostic ATLOP (MA-ATLOP)

Our first approach requires solving QAs for all
the possible triples. Since the number of possi-
ble triples is increased by O(K2) for the number
of entities K, this is not efficient. Our second
approach is to make predictions over all possible
triples in a single forward pass. We extend a tradi-
tional and popular DocRE method, ATLOP (Zhou
et al., 2021), so as not to rely on explicit mentions.
We call this method Mention-Agnostic ATLOP, or
MA-ATLOP shortly.

Entity Encoding. We use a BERT-based encoder
to encode each entity ei and passage d jointly into a
dense vector that takes into account how the entity
ei is described in the passage d. Specifically, we
first retrieve the canonical names {ni}Ki=1 and the
descriptions {si}Ki=1 for the given entities from the
ontology using the entity IDs as query. Then, for
each entity ei, we construct input xi as follows:

[CLS] name : description [SEP] passage [SEP]

where name, description, and passage are the word-
pieces tokens of ni, si, and d, respectively. We
apply the encoder to each input xi independently

to obtain contextual embeddings: {hi,w}
N

xi
tok

w=1 =
Encoder(xi). We take the embedding of the [CLS]
token as the entity embedding, i.e., ei = hi,1.

Relation Classification. After obtaining the en-
tity embeddings {ei}Ki=1, we apply two separate
FFNNs and tanh activation to map them to different
representations for the head/tail entities of triples.
Then, we apply a group bilinear classifier (Zheng
et al., 2019; Tang et al., 2020) to the head/tail repre-
sentations of an entity pair (ei, ej). Specifically,
we divide both head/tail representations into G
contiguous groups and then apply bilinear to each
group. They are then summed up to calculate the
score for relation r ∈ R ∪ {TH}. Refer to Zhou
et al. (2021) for the detail of group bilinear. We fol-
low ATLOP and employ the adaptive-thresholding
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class TH. The relations scored higher than the TH
class are regarded as positive. If no such relation
exists, the NA class is assigned to the entity pair.

Loss Function. We use the adaptive-thresholding
loss proposed in ATLOP to push the scores of cor-
rect/incorrect relations to be higher/lower than the
TH class.

Negative Entity Sampling (NES). In an exper-
imental setting, we assume experts correctly an-
notate entities. However, in real-world situations,
entities are automatically annotated by the systems.
Thus, it often happens that entities not described
in the passage are included in the given entity list
{ei}Ki=1. Our DocRE system must be robust to
such noisy (false-positive) entities. Therefore, we
propose Negative Entity Sampling (NES), where
we sample additional negative entities randomly
and add them to the given entities {ei}

Kpos

i=1 dur-
ing training. We sample negative entities from all
entities in the ontology. Given the number of pos-
itive entities Kpos and a hyperparameter ρ > 0,
we define the number of sampled negative entities
as Kneg = round(ρ×Kpos), where round is the
rounding function. For instance, for Kpos = 10
and ρ = 0.5, Kneg is 5. We add a linear layer to
the network to classify whether the entity is de-
scribed in the passage: yenti = σ(FFNNent(ei)).
We use a binary cross entropy as an auxiliary loss
to maximize yenti for positive entities.

4.3 LLM and In-Context Learning for DocRE
To investigate the effectiveness of LLMs with
In-Context Learning (ICL) (Brown et al., 2020;
Chowdhery et al., 2022; Wadhwa et al., 2023;
Ozyurt et al., 2024) in our task, we compare the
LLM-ICL results with the above BERT-based mod-
els. Table 9 in Appendix C shows a prompt ex-
ample we used in our experiments. Specifically,
we instruct an LLM to generate a bulleted list of
triples for the given passage and the entity list.5

Each entity is represented in the form "* <ID> :
<NAME>" and the entity list is presented as a bul-
leted list. In the prompt, we also use 3 examples
randomly sampled from the training set as the few-
shot demonstrations. The same demonstrations are
used for all test passages. From each bulleted line
generated, we extract the head entity ID ei, the re-
lation label r, and the tail entity ID ej using regular

5In our preliminary experiments, we also tried to generate
JSON directly by Llama2 13B; however, generating JSON
yielded lower DocRE scores consistently than generating text.

expressions. If the extracted entity IDs (ei, ej) and
the relation label (r) cannot be found in the given
entity list {e1, · · · , eK} and the possible relation
classes R, the bulleted line is ignored. We also
remove duplicated triples. The resulting triples are
then compared with the gold triples for evaluation.

5 Experiments on Process Identification

Binary classification. In the supervised task for-
mulation, each passage is associated with all 360
process names, with binary labels assigned based
on the presence of them in the annotations. Nu-
merous negative samples are constructed for each
passage. Consequently, we incorporate negative
sampling using various ratios of negative to posi-
tive samples. The classification task involves fine-
tuning BERT-based models – BioBERT (Lee et al.,
2019), SciBERT (Beltagy et al., 2019), and Pub-
MedBERT (Gu et al., 2021) on the training set. For
hyper-parameter details see Table 11.

Generative experiments. Two instruction types
are utilized: One prompts the model to list all bi-
ological processes in the text, while the other in-
structs it to generate pairs of processes having a
relation. This distinction stems from annotation
being conducted at the relation level, where only
processes involved in relations are annotated. Con-
sequently, other processes may exist in the text but
aren’t annotated. We employ Llama2 13B (Tou-
vron et al., 2023) and Llama3 8B (AI@Meta, 2024)
on the test set to ensure comparability with the su-
pervised method’s results.

5.1 Clustering-based Demonstration Selection

In the zero-shot setting, process names differ sig-
nificantly from the provided annotations. In the
few-shot scenario, performance is highly sensitive
to the chosen demonstrations (Li et al., 2022; Lu
et al., 2022; Zhang et al., 2023). To enhance few-
shot performance, we introduce a retrieval module
based on semantic similarity to cluster the most
relevant examples from the annotated processes in
the development set.

To achieve this, we use the development set to
create 10 clusters with K-means clustering (Lloyd,
1982; MacQueen et al., 1967), based on the an-
notated process list for each passage. Each list is
encoded into a vector using BERT by averaging the
last hidden state of the [CLS] token for all labels.
Each passage in the test set is assigned a cluster
given the last hidden state of the [CLS] token of the
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Positive-Negative Ratio BioBERT PubMedBERT SciBERT
P R F1 P R F1 P R F1

1:8 21.7 27.9 24.4 22.2 42.6 29.2 21.3 18.9 20.1
1:4 15.8 45.0 23.4 18.4 60.6 28.2 17.6 44.5 25.3
1:1 10.6 64.9 18.3 12.0 47.3 19.2 9.99 71.5 17.5

Table 2: Results of the BERT-based supervised approach on process identification. Precision (P), Recall (R), and F1
scores on the test set of the HOIP dataset are reported. Values in bold represent the best F1 score for each model.

Method Top-K In-Ontology Matching In-Dataset Matching
P R F1 P R F1

Llama2 13B

1 10.7 22.3 14.5 11.2 28.9 16.2
3 10.0 30.8 15.1 6.7 45.5 11.7
5 8.3 32.7 13.3 5.4 57.3 9.9
10 7.0 38.9 11.9 4.1 74.9 7.8

Llama3 8B

1 43.1 11.8 18.6 34.3 28.4 31.1
3 39.5 16.1 22.9 19.5 43.6 26.9
5 33.9 19.0 24.3 15.6 55.9 24.4
10 29.4 27.5 28.4 9.5 62.1 16.5

Table 3: Results of the LLM-based in-context learning approach on process identification. For In-Ontology
Matching, we used all entities found in the HOIP ontology as the candidate entities for matching. Matched entities
that are not present in the HOIP dataset are ignored. For In-Dataset Matching, we used entities only found in the
HOIP dataset as the candidate entities for matching.

passage to the clustering model. During generation,
examples from the assigned cluster are included in
the prompt. See Table 10 for details.

5.2 Evaluation Methods
We evaluate three primary aspects of generative
process identification. The initial aspect involves
the Direct Output assessment, where we directly
evaluate the output by comparing it to the anno-
tation. This process aims to weight the model’s
ability to generate processes formulated within the
knowledge base framework. As for the second
aspect – assessing the system’s capability to auto-
matically populate the target knowledge base, we
include an ontology alignment-based evaluation
which is presented in three steps:

1. Computing embeddings: Let Egenerated be the set
of embeddings of the generated processes and
Eontology be the set of embeddings of ontology
terms calculated by SapBERT (Liu et al., 2021).

2. Selecting top k generated processes: For each xi
from Egenerated, calculate sim(xi, yj) for all yj
from Eontology. Then, select the k elements with
the highest cosine similarity.

3. Computing precision, recall and F1 scores be-
tween the list of annotated processes and the
flattened list of top k generated processes at a
passage level.

The last aspect of evaluation mirrors the sec-
ond one, with the distinction being that instead of
matching with the entire ontology, only the process
names used in the dataset are taken into account.
This approach is grounded on the assumption that
the terms utilized in the dataset annotation are the
most prevalent.

5.3 Results and Discussion

Direct output assessment. We compared anno-
tation labels with generated process names using
zero-shot, regular few-shot, and ICL few-shot set-
tings. The ICL few-shot method achieved the most
exact matches, with 30 compared to 2 for regular
few-shot and none for zero-shot, underlining the
importance of better selected demonstrations, as in
Min et al. (2022). Thus, evaluation using the HOIP
ontology and dataset matching will be based on the
ICL few-shot setting outputs.

In-Dataset Matching. We report in Table 2 the
results of the fine-tuned BERT-based models. The
negative ratio significantly influences the overall
performances of the models. Results indicate that
with fewer negative samples, models are more
likely to identify true positives but at the cost of
also misclassifying more false positives. This is
likely due to semantic similarity among the inputs.



463

PubMedBERT achieves the highest F1 score, under
the optimal negative ratio of 8.

Furthermore, we compare the results of the su-
pervised approach with the top-1 results of Llama2
and Llama3 present in Table 3. Across all neg-
ative ratios, the F1 score of BERT-based models
exceeds the results of Llama2, even under the low-
resource setting. However, this trend changes with
Llama3, which outperforms the PubMedBERT re-
sult by nearly 2 points. Comparing Llama2 and
Llama3 reveals that Llama3 is more effective at
generating well-tailored process names, resulting
in higher precision. Llama3 generates fewer, but
better-quality candidates, enhancing task perfor-
mance. Llama2 improves with more candidates,
increasing chances of correct matches, but accu-
racy still depends significantly on the quality of
these generated candidates.

In-Ontology Matching. Following the same ten-
dency in the In-Dataset setting, matching with
better-generated process names proves to be more
effective overall. Since the goal of this matching is
to automatically populate an ontology and DocRE
is the next step in the pipeline, concentrating on
finding the correct process names is crucial. This
focus will aid the DocRE step in serving as a filter-
ing mechanism, ensuring more accurate and rele-
vant candidate triplets to be added to the ontology.

6 Experiments on Document-level RE

We evaluate our systems on the HOIP dataset
and CDR dataset (Li et al., 2016). CDR con-
sists of 1,500 abstracts from PubMed, manually
annotated with Chemical or Disease entities and
Chemical-Induce-Disease relations between them.
Since entity IDs in CDR are MeSH unique IDs
(e.g., D006493), and the HOIP ontology, while
highly specialized for annotating processes related
to COVID-19, does not provide the coverage for
general chemical compounds and disease terms as
the MeSH controlled vocabulary, we used MeSH
instead of the HOIP ontology for CDR. We use
precision, recall, and F1 metrics, and report the
scores averaged independently over 3 trials with
different random seeds. A triple (ei, r, ej) is con-
sidered correct when the head entity ID (ei), the
tail entity ID (ej), and the relation label (r) are all
predicted correctly. We used greedy decoding in
the LLM-ICL methods, the results of which do not
depend on the seed differences. Table 12 shows the
hyperparameters for our DocRE models.

Method P R F1

ATLOP (all mentions) 64.61 75.92 69.74
Llama3 8B (all mentions) 42.26 48.69 45.25
QA-Model (first mention) 56.40 67.39 61.36
MA-ATLOP (first mention) 57.54 68.11 62.34
MA-ATLOP (first mention) + NES 57.55 67.95 62.31
Llama3 8B (first mention) 43.62 49.34 46.30
QA-Model 53.37 64.01 58.12
MA-ATLOP 53.72 65.92 59.18
MA-ATLOP +NES 54.03 66.20 59.50
Llama3 8B 44.75 51.97 48.09

Table 4: DocRE results on the CDR test set. All metrics
are averaged over 3 trials. “all mentions” (or “first men-
tion”) indicates that the models use all mentions (or the
first-appearing mention) as the entity names instead of
the canonical name retrieved from the MeSH ontology.
The best scores are in bold for each block.

6.1 Experiments on the CDR Dataset

To investigate the importance of mentions in
DocRE and how well our models can identify rela-
tions without relying on mentions, we first evaluate
the models on CDR. We also evaluate a variant of
each of our models, which uses the first-appearing
annotated mention as the entity name rather than
the canonical name retrieved from the MeSH on-
tology. Although this variant still does not use
mention spans, we expect this variant to recognize
more easily how the entity is described in the pas-
sage than the original model, because the entity
names appear at least once in the passage.

Table 4 shows the results. ATLOP exploits men-
tion spans as the direct hints for entity encoding
and achieves an F1 score of 69.7. In contrast, our
best mention-agnostic model, i.e., MA-ATLOP (+
first mention), achieved an F1 score of 62.3, lower
than the ATLOP score by 7.4 points. When there
were no mention hints at all, MA-ATLOP and QA-
Model yielded F1 scores of 59.2 and 58.1, respec-
tively. These results suggest that our models can
identify triples more accurately than expected even
without mention hints; however, mentions are still
crucial in this task. Also, the BERT-based super-
vised models outperformed the LLM counterparts.
MA-ATLOP outperformed QA-Model consistently.
Considering that MA-ATLOP also has higher com-
putation efficiency than QA-Model, MA-ATLOP is
more suitable for real-world applications. By em-
ploying Negative Entity Sampling (NES), when
no mention is available, MA-ATLOP improved
all metrics slightly, suggesting the effectiveness
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Method Entity P R F1

QA-Model gold 51.5 63.1 56.7
MA-ATLOP gold 67.2 52.6 58.9
MA-ATLOP + NES gold 71.2 48.6 57.7
Llama3 8B gold 18.5 16.7 17.6
Upper-bound pred. 100.0 26.8 42.3
MA-ATLOP pred. 7.7 14.9 10.2

Table 5: DocRE results on the HOIP test set. The up-
per and lower blocks show the results when using the
ground-truth entities or predicted entities, respectively.
The predicted entities are provided by Llama3 8B.

of NES. For the "first-mention" setting, NES did
not improve the performance, probably due to the
discrepancy between the entity-name style between
positive entities (mention) and negative entities
(ontology-based name).

6.2 Experiments on the HOIP Dataset

The upper block in Table 5 shows the results on the
HOIP dataset when using the ground-truth entities.
We evaluate the models that do not require men-
tion hints on this dataset. The BERT-based models
achieved much higher F1 scores (56.5-59.0) than
LLM (17.6). MA-ATLOP also outperformed QA-
Model by 2.2 points in F1. These results were
consistent with the results on CDR, demonstrat-
ing the effectiveness of MA-ATLOP in terms of
both accuracy and computational efficiency in this
task. Negative Entity Sampling improved the pre-
cision by 4 points, but decreased the recall. These
results suggest that, while NES enhances the fil-
tering capability of MA-ATLOP, NES also has the
effect of making the model reluctant about positive
predictions, and it would be necessary to develop
techniques to avoid such biases.

The above experiments assume that the entities
are fully and correctly annotated. This setup is ap-
propriate for a clean measurement of the DocRE
system’s performance itself. However, in reality,
entities can be predicted automatically. To evaluate
the whole system’s performance in the real-world
situations, we evaluate our best DocRE model (MA-
ATLOP) on the HOIP dataset with entities pre-
dicted by Llama3 (8B).

The lower block in Table 5 shows the results.
We first calculated the upper-bound scores for the
predicted entities. Specifically, we created a subset
of gold triples that can be created based on the pre-
dicted entities. Precision, recall, and F1 scores are

100.0, 26.8, and 42.3, respectively. The precision
does not depend on the quality of predicted entities.
The lower recall suggests that there is much room
for improvement in DocRE as the process identi-
fication recall improves. MA-ATLOP yielded 7.7,
14.9, and 10.2 scores for precision, recall, and F1,
respectively. Compared to the much higher preci-
sion (67.2) in the gold-entity setup (Table 5), the
results suggests that the current model struggles to
filter out noisy triples with irrelevant entities. In
summary, both improvements in recall (coverage)
and precision (low-noisiness) in process identifica-
tion and DocRE are needed in the current situation,
suggesting the difficulty of this task.

7 Case Study

We performed case study to analyze the system
outputs qualitatively. We used the best Llama3 (8B)
and MA-ATLOP models for process identification
and DocRE, respectively.

Table 6 shows an example with true-positive and
false-negative entities and triples. Additional ex-
ample can be found in Appendix F. For ease of
understanding, entities are shown by names, not
by IDs. We can observe that entities that are al-
most explicit in the passages, such as “pyroptosis”
(Pyroptosis in the passage), and “pore formation in
membrane of other organism” (Formation of pores),
were accurately extracted. Triples that are almost
explicit based on the context, such as (“pyroptosis”
has part, “pore formation in membrane of other or-
ganism”) and (“pyroptosis”, has result, “release of
DAMP molecules by cell rupture”), were correctly
identified by the DocRE system. In contrast, im-
plicit (or knowledge-requiring) entities and triples,
such as “binding of pattern recognition receptor
to DAMPs”, were not identified by the systems.
The entity is derived from the interpretation that
these molecules recruit more immune cells, which
requires background knowledge of immunology:
DAMP molecules must bind to receptors recog-
nized by immune cells to recruit immune cells.

The quality evaluation reveals several insights:
(1) Detailing causal relationships in elucidating dis-
ease mechanisms often necessitates background
knowledge not explicitly mentioned in articles.
This background knowledge is sometimes added
to intermediate causal entities by manual anno-
tation. The BERT-based supervised models and
LLMs have difficulty in obtaining such background
knowledge and understanding the task from limited
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ID72. Passage:
Pyroptosis is a highly inflammatory form of
lytic programmed cell death that occurs most
frequently upon infection with intracellular
pathogens and is likely to form part of the an-
timicrobial response. Pyroptosis can take place
in immune cells and is also reported to occur in
keratinocytes and some epithelial cells. Forma-
tion of pores causes cell membrane rupture and
release of cytokines, as well as various damage-
associated molecular pattern (DAMP) molecules
such as HMGB-1, ATP and DNA, out of the cell.
These molecules recruit more immune cells and
further perpetuate the inflammatory cascade in
the tissue.
True-Positive Entities:

* pore formation in membrane of other organ-
ism
* pyroptosis
* release of DAMP molecules by cell rupture

False-Negative Entities:
* binding of pattern recognition receptor to
DAMPs

True-Positive Triples:
* (pyroptosis, has part, pore formation in mem-
brane of other organism)
* (pyroptosis, has result, release of DAMP
molecules by cell rupture)

False-Negative Triples:
* (release of DAMP molecules by cell rupture,
has result, binding of pattern recognition re-
ceptor to DAMPs)

Table 6: A case study on our process identification
and DocRE models. Phrases referred in Section 7 are
underlined.

supervision (labeled data or demonstrations). (2)
NLP systems could be complementary to manual
annotations. Manual annotation often focuses on
the causality of a particular process in one litera-
ture and gives priority to further causes and conse-
quences in other literature. Therefore, other pro-
cesses and causal relationships in the same passage
may not be extracted. It is also possible that pro-
cesses that missed identification due to simple er-
rors due to annotation fatigue are also in the false
positive. In such manual annotation issues, NLP
analysis could make a significant contribution to
the identification of processes.

8 Related Work

Gene Ontology Causal Activity Modeling (GO-
CAM) defines molecular-level causal relation-

ships (Thomas et al., 2019); however, it lacks gran-
ularity and context for COVID-19 infection. Our
HOIP dataset is based on the HOIP ontology (Ya-
magata et al., 2021, 2024), which organizes knowl-
edge about biomedical processes in the context of
COVID-19 infectious courses and thus essential for
analyzing SARS-CoV-2 infection and progression.

In knowledge acquisition, entities are typically
identified by Named Entity Recognition (NER) and
Entity Disambiguation (ED). The task of NER is
to identify mentions in the given text that represent
one of the pre-defined types (e.g., Chemical, Dis-
ease) (Yu et al., 2020; Zhu and Li, 2022; Ye et al.,
2022). The entity mentions are then passed to ED
to link them to the knowledge-base concept IDs
that the mentions refer to best (Kolitsas et al., 2018;
Wu et al., 2020; Cao et al., 2021; Yamada et al.,
2022). These tasks commonly assume that entities
are explicitly described in text. In reality, however,
entities are not necessarily explicitly described. In
this work, we explore mention-agnostic methods
for process identification.

The most widely used approach to DocRE
is to model entities by a pre-trained Trans-
former and perform pairwise relation classification.
Christopoulou et al. (2019) proposed to model en-
tity dependencies via graphs with nodes of various
granularities. Zhou et al. (2021) proposed ATLOP,
which models entity-pair contexts for pairwise re-
lation classification. Xiao et al. (2022) introduced
evidence modeling for improving ATLOP. Zhang
et al. (2021) used U-Net architecture for modeling
entity dependencies. These methods commonly
rely on mentions and often insert special mention-
boundary markers into text to indicate the mention
locations to the Transformer. However, Li et al.
(2023) showed that these methods are too sensitive
to the accuracy of mentions and it is unrealistic to
expect perfect mentions in the real-world scenario.
In contrast, we propose mention-agnostic DocRE
methods and investigate how well the mention-
agnostic models can identify relations.

9 Conclusion

To assist ontology-based biological knowledge an-
notation, this work proposes a new dataset and
practicable entity- and relation-level biomedical in-
formation extraction methods. We will continue to
promote relevant research of semi-automatic anno-
tation and advance practical applications.
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Limitations

Despite demonstrating promising outcomes
in mention-agnostic process identification and
DocRE, our methodology does face limitations.
First, our two-stage IE system consists of a cascade
of process identification and DocRE, which
inevitably suffers from error propagation. The
experimental results in the pipeline setting suggest
that the DocRE performance is significantly
vulnerable to the accuracy of predicted entities.
Moreover, the process identification model and
the DocRE model are disconnected and cannot
interact with each other. Second, our methods have
only been evaluated in the domain of the HOIP
ontology, and the accuracy in other biomedical
domains and ontologies remains unknown. Third,
our methodology has not been fully evaluated
by domain experts. Although an expert analysis
is performed, the analysis is based primarily on
just two examples. A more thorough and detailed
analysis by specialists is needed. Tackling these
limitations remains an intriguing avenue for future
research.

Acknowledgments

We would like to thank the anonymous review-
ers for their thoughtful and insightful comments,
which we found very helpful in improving the
paper. This work was supported by JSPS KAK-
ENHI Grant Numbers JP22K17959, 21K17815,
and JP22H05015, and ANR AIBy4 project (ANR-
20-THIA-0011), Nantes University.

References
AI@Meta. 2024. Llama 3 model card.

M. Ashburner et al. 2000. Gene ontology: tool for the
unification of biology. the gene ontology consortium.
Nat Genet, 25:25–29.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
Preprint, arXiv:2010.00904.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. Preprint, arXiv:2204.02311.

Fenia Christopoulou, Makoto Miwa, and Sophia Ana-
niadou. 2019. Connecting the dots: Document-level
neural relation extraction with edge-oriented graphs.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4925–4936.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Trans. Comput. Healthcare,
3(1).

Nikolaos Kolitsas, Octavian-Eugen Ganea, and Thomas
Hofmann. 2018. End-to-end neural entity linking.
In Proceedings of the 22nd Conference on Computa-
tional Natural Language Learning, pages 519–529,
Brussels, Belgium. Association for Computational
Linguistics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1038/75556
https://doi.org/10.1038/75556
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://arxiv.org/abs/2010.00904
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://doi.org/10.18653/v1/K18-1050
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682


467

Jiao Li, Yueping Sun, Robin J. Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J. Mattingly, Thomas C. Wiegers,
and Zhiyong Lu. 2016. Biocreative v cdr task corpus:
a resource for chemical disease relation extraction.
Database : the journal of biological databases and
curation.

Jing Li, Yequan Wang, Shuai Zhang, and Min Zhang.
2023. Rethinking document-level relation extraction:
A reality check. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 5715–
5730, Toronto, Canada. Association for Computa-
tional Linguistics.

Tianyi Li, Wenyu Huang, Nikos Papasarantopoulos, Pav-
los Vougiouklis, and Jeff Z. Pan. 2022. Task-specific
pre-training and prompt decomposition for knowl-
edge graph population with language models. ArXiv,
abs/2208.12539.

Fangyu Liu, Ehsan Shareghi, Zaiqiao Meng, Marco
Basaldella, and Nigel Collier. 2021. Self-alignment
pretraining for biomedical entity representations. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4228–4238.

Stuart Lloyd. 1982. Least squares quantization in pcm.
IEEE transactions on information theory, 28(2):129–
137.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

James MacQueen et al. 1967. Some methods for clas-
sification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? Preprint,
arXiv:2202.12837.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin
Choi, and Hannaneh Hajishirzi. 2022. Reframing
instructional prompts to GPTk’s language. In Find-
ings of the Association for Computational Linguistics:
ACL 2022, pages 589–612, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Yilmazcan Ozyurt, Stefan Feuerriegel, and Ce Zhang.
2024. Document-level in-context few-shot relation
extraction via pre-trained language models. Preprint,
arXiv:2310.11085.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. 2023. Quantifying language models’ sensitiv-
ity to spurious features in prompt design or: How i
learned to start worrying about prompt formatting.
Preprint, arXiv:2310.11324.

Yun Tang, Jing Huang, Guangtao Wang, Xiaodong He,
and Bowen Zhou. 2020. Orthogonal relation trans-
forms with graph context modeling for knowledge
graph embedding. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2713–2722, Online. Association for
Computational Linguistics.

P.D. Thomas, D.P. Hill, H. Mi, et al. 2019. Gene ontol-
ogy causal activity modeling (go-cam) moves beyond
go annotations to structured descriptions of biological
functions and systems. Nat Genet, 51:1429–1433.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Somin Wadhwa, Silvio Amir, and Byron Wallace. 2023.
Revisiting relation extraction in the era of large lan-
guage models. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 15566–
15589, Toronto, Canada. Association for Computa-
tional Linguistics.

Qinyong Wang, Zhenxiang Gao, and Rong Xu. 2023.
Exploring the in-context learning ability of large
language model for biomedical concept linking.
Preprint, arXiv:2307.01137.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6397–6407, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.1093/database/baw068
https://doi.org/10.1093/database/baw068
https://doi.org/10.18653/v1/2023.findings-acl.353
https://doi.org/10.18653/v1/2023.findings-acl.353
https://api.semanticscholar.org/CorpusID:251881464
https://api.semanticscholar.org/CorpusID:251881464
https://api.semanticscholar.org/CorpusID:251881464
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2202.12837
https://doi.org/10.18653/v1/2022.findings-acl.50
https://doi.org/10.18653/v1/2022.findings-acl.50
https://arxiv.org/abs/2310.11085
https://arxiv.org/abs/2310.11085
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://doi.org/10.18653/v1/2020.acl-main.241
https://doi.org/10.18653/v1/2020.acl-main.241
https://doi.org/10.18653/v1/2020.acl-main.241
https://doi.org/10.1038/s41588-019-0500-1
https://doi.org/10.1038/s41588-019-0500-1
https://doi.org/10.1038/s41588-019-0500-1
https://doi.org/10.1038/s41588-019-0500-1
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2023.acl-long.868
https://doi.org/10.18653/v1/2023.acl-long.868
https://arxiv.org/abs/2307.01137
https://arxiv.org/abs/2307.01137
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519


468

Yuxin Xiao, Zecheng Zhang, Yuning Mao, Carl Yang,
and Jiawei Han. 2022. SAIS: Supervising and aug-
menting intermediate steps for document-level re-
lation extraction. In Proceedings of the 2022 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 2395–2409, Seattle,
United States. Association for Computational Lin-
guistics.

Ikuya Yamada, Koki Washio, Hiroyuki Shindo, and
Yuji Matsumoto. 2022. Global entity disambiguation
with BERT. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 3264–3271, Seattle, United States.
Association for Computational Linguistics.

Yuki Yamagata, Tsubasa Fukuyama, Shuichi Onami,
and Hiroshi Masuya. 2024. Prototyping an onto-
logical framework for cellular senescence mecha-
nisms: A homeostasis imbalance perspective. Sci
Data, 11:485.

Yuki Yamagata, T. Kushida, Shuichi Onami, and Hiroshi
Masuya. 2021. Ontology development for building
a knowledge base in the life science and structuring
knowledge for elucidating the covid-19 mechanism.
In Proceedings of the Annual Conference of JSAI,
pages 3H1GS3d01–03H1GS03d01.

Deming Ye, Yankai Lin, Peng Li, and Maosong Sun.
2022. Packed levitated marker for entity and relation
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4904–4917, Dublin,
Ireland. Association for Computational Linguistics.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named entity recognition as dependency parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6470–
6476, Online. Association for Computational Lin-
guistics.

Biao Zhang, Barry Haddow, and Alexandra Birch. 2023.
Prompting large language model for machine transla-
tion: A case study. Preprint, arXiv:2301.07069.

Ningyu Zhang, Xiang Chen, Xin Xie, Shumin Deng,
Chuanqi Tan, Mosha Chen, Fei Huang, Luo Si, and
Huajun Chen. 2021. Document-level relation extrac-
tion as semantic segmentation. In Proceedings of the
Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, pages 3999–4006. Interna-
tional Joint Conferences on Artificial Intelligence
Organization. Main Track.

Heliang Zheng, Jianlong Fu, Zheng-Jun Zha, and Jiebo
Luo. 2019. Learning deep bilinear transformation for
fine-grained image representation. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Wenxuan Zhou, Kevin Huang, Tengyu Ma, and Jing
Huang. 2021. Document-level relation extraction

with adaptive thresholding and localized context pool-
ing. In Proceedings of the AAAI conference on artifi-
cial intelligence, volume 35, pages 14612–14620.

Enwei Zhu and Jinpeng Li. 2022. Boundary smooth-
ing for named entity recognition. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7096–7108, Dublin, Ireland. Association for
Computational Linguistics.

A HoIP Ontology

Understanding the HOIP ontology may be helpful
for understanding our HOIP dataset and the task. In
this section, we describe the features of the HOIP
ontology.

The HOIP ontology is annotated based on
COVID-19 related articles in PubMed using Pro-
tégé 5.5.06 and the Web Ontology Language
(OWL). The COVID-19 infectious processes are
manually annotated. Passages corresponding to
the annotated terms are also provided. Article
identifiers (e.g., PubMed ID (PMID: 25301932),
DOI) are also provided using the database cross-
reference annotation property.

The processes in HOIP consist of a hierarchy.
The infectious processes described in the articles
and the superclass of each process using Gene On-
tology are annotated.

The relationships between processes are anno-
tated using object properties, Causal relationships
between processes are primarily annotated using
the ‘has result’ relationship. Furthermore, sub-
processes of a process are identified using the ‘has
part’ relation.

HOIP defines a "COVID-19 infectious course"
as a sequence of the abovementioned processes to
describe infectious mechanisms. These courses
are organized into an is-a (subclass of) hierarchy
by severity, ranging from mild to severe. Notably,
the "COVID-19 severe course" includes a subclass
associated with acute respiratory distress syndrome
(ARDS). These COVID-19-specific processes are
used as our primary dataset for this study.

B Question Templates

Table 7 shows the question templates Tr (r ∈ R)
used for QA-Model. In the table, <HEAD> and
<TAIL> are replaced by the head and tail entity
names, respectively. The entity names are retrieved
from the ontology using the entity IDs as query. We
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Dataset Relation Question Template

CDR CID Does <HEAD> induce <TAIL> ?

HOIP

has result Does <HEAD> result in <TAIL> ?
has part Does <HEAD> involve <TAIL> ?
has molecular reaction Does <HEAD> have molecular reaction of <TAIL> ?
part of Is <HEAD> part of <TAIL> ?

Table 7: Question templates used in QA-Model (Section 4.1).

manually created the question templates for each
dataset: CDR and HOIP.

C Prompts

Table 8 shows an example of the prompt used in the
few-shot setting in process identification. Only ex-
amples section is discarded in the zero-shot setting.
Table 9 also shows a prompt used in DocRE exper-
iments on the HOIP dataset and the corresponding
output by Llama3 (8B). We replaced the ontology
name (“HOIP”) and possible relation classes (“has-
result, has-part, ...”) in the prompt template with
“MeSH” and “Chemical-Induce-Disease” respec-
tively in CDR experiments. The demonstrations
are also different between the datasets.

D ICL Few-Shot Setting in Process
Identification

Table 10 exhibits the number of examples per clus-
ter created for ICL in the few-shot setting in process
identification.

E Hyperparameters

Table 11 shows the hyper-parameters used in the
supervised models for process identification. Ta-
ble 12 also list hyper-parameters used in our
DocRE models.

F Another Example of Case Study

Table 13 shows another example used in our case
study (in Section 7).
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Instruction: Generate the list of processes present in the Text.

Constraints: Don’t repeat the question. Justification and explanation are
prohibited.

Examples: Text: Within 19 days after symptom onset, 100% of pa-
tients tested positive for antiviral immunoglobulin-G (IgG).
Seroconversion for IgG and IgM occurred simultaneously
or sequentially. Answer: [immunoglobulin production, im-
munoglobulin mediated immune response]

Text: ACE2 expression has been demonstrated in arterial and
venous endothelium of several organs, and histopathological
studies have found microscopic evidence of SARS-CoV-2
viral particles in endothelial cells of the kidneys and lungs.

Answer: -

Table 8: Example of the few-shot setting prompt in process identification, following the described prompt template.
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Prompt:
Based on the given text and entities associated with the text, please identify relations between the
entities.
1. Named entities are listed next to the text.
2. Each entity is represented using HOIP Concept ID.
3. Possible relations: has-result, has-part, has-molecular-reaction, part-of
4. Output a bulleted list of triples. Each bullet line corresponds to each triple: “<BULLET>
(<SUBJECT ENTITY>, <RELATION>, <OBJECT ENTITY>)“,
where <SUBJECT ENTITY>, <RELATION>, and <OBJECT ENTITY>, correspond to the subject
entity, the relation label, and the object entity, respectively.

Below are some examples.

# Example 1
Text: We also provide biophysical and structural evidence that ...
Entities:

* http://purl.bioontology.org/ontology/HOIP/HOIP_0040511: Negative regulation of ACE2
activation
* http://purl.bioontology.org/ontology/HOIP/HOIP_0041139: host cell surface receptor binding
in nasal epithelial cells

...
Answer:

1. (http://purl.obolibrary.org/obo/GO_0046789, has-result, http://purl.bioontology.org/ontology
/HOIP/HOIP_0040511)
2. (http://purl.obolibrary.org/obo/GO_0046789, has-part, http://purl.bioontology.org/ontology/
HOIP/HOIP_0041139)

...

# Example 2
...
# Example 3
...

Let’s try the following test example.

# Test Example
Text: Within 19 days after symptom onset, 100% of patients tested positive for antiviral
immunoglobulin-G (IgG). Seroconversion for IgG and IgM occurred simultaneously or sequentially.
Entities:

* http://purl.obolibrary.org/obo/GO_0002377: immunoglobulin production
* http://purl.obolibrary.org/obo/GO_0016064: immunoglobulin mediated immune response

Please output the answer to the test example in bullet points, following the format specified above.

Generated response:
Here is the answer to the test example:

• (http://purl.obolibrary.org/obo/GO_0002377, has-result, http://purl.obolibrary.org/obo/GO_0016064)

Note that there is only one possible relation between the entities in this example, which is "has-
result".

Table 9: Example of the whole prompt in DocRE and the corresponding Llama3 (8B) output.
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Cluster 0 1 2 3 4 5 6 7 8 9

# Elements 3 9 4 4 1 5 3 1 4 1

Table 10: Number of elements for each cluster created
for ICL few-shot setting. In cluster assignement, only
clusters 0, 2, 3, 5, 6 appear in the HOIP test set

Hyper-parameter

Max Sequence Length 512
Optimizer AdamW
Learning Rate 1× 10−5

Weight Decay 1× 10−6

Epochs 8
Batch Size 8

Table 11: Hyper-parameters for the supervised models
on Process Identification.
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Hyper-parameter QA-Model MA-ATLOP LLM-ICL

Pre-trained model SciBERT (cased) SciBERT (cased) Llama3 (8B; instruction-fine-tuned)
Max Sequence Length 512 512 4096
Bilinear Group G - 64 -
Negative Sampling Ratio ρ - 0.5 -
Optimizer AdamW AdamW -
Learning Rate (BERT encoders) 2× 10−5 2× 10−5 -
Learning Rate (FFNNs) 1× 10−4 1× 10−4 -
Epochs 30 30 -
Batch Size 4 2 -
Warmup Ratio 0.06 0.06 -
# Few-Shot Examples - - 3
Quantization Bits - - 4
dtype - - BFloat16
Max. New Tokens - - 512

Table 12: Major hyper-parameters for the DocRE models.

ID242. Passage:
Moreover, isolated right ventricular dysfunction may occur as a result of elevated pulmonary vascular
pressures secondary to ARDS, pulmonary thromboembolism, or potentially virus-mediated injury to
vascular endothelial and smoothmuscle tissue.
True-Positive Entities:

* increasing blood pressure
* respiratory blood vessel smooth muscle damage
* thrombus formation

False-Negative Entities:
* artery narrowing
* endothelium damage
* endothelium malfunction
* vasoconstriction

True-Positive Triples:
* (endothelium damage, has result, endothelium malfunction)
* (thrombus formation, has result, artery narrowing)
* (vasoconstriction, has result, increasing blood pressure)

False-Negative Triples:
* (respiratory blood vessel smooth muscle damage, has result, vasoconstriction)

Table 13: A case study on our process identification and DocRE models.
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