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Abstract

Domain adaptation of Large Language Mod-
els (LLMs) leads to models better suited for a
particular domain by capturing patterns from
domain text which leads to improvements in
downstream tasks. To the naked eye, these
improvements are visible; however, the pat-
terns are not so. How can we know which pat-
terns and how much they contribute to changes
in downstream scores? Through a Multilevel
Analysis we discover and quantify the effect of
text patterns on downstream scores of domain-
adapted Llama 2 for the task of sentence sim-
ilarity (BIOSSES dataset). We show that text
patterns from PubMed abstracts such as clear
writing and simplicity, as well as the amount
of biomedical information, are the key for im-
proving downstream scores. Also, we show
how another factor not usually quantified con-
tributes equally to downstream scores: choice
of hyperparameters for both domain adaptation
and fine-tuning.

1 Introduction

Domain Adaptive Pretraining (DAPT) is an effec-
tive method to adapt a model to a particular do-
main via continual pretraining (Gururangan et al.,
2020; Rietzler et al., 2020), with BioBERT (Lee
et al., 2019) being a successful case in the biomed-
ical domain. From our side, we have widely used
DAPT not only to adapt LLMs to biomedicine, but
as a part of a bigger pipeline to create customer-
oriented, intelligent agents which can faithfully
recover domain knowledge from both their param-
eters and external databases. However, domain
adapting Llama 2 (Touvron et al., 2023) brought us
a puzzle: huge variability on downstream scores.
Given both the size of Llama 2 and GPU mem-
ory restrictions, the domain adaptation of Llama
2 was restricted to a sample (subset) of PubMed
abstracts. After domain-adapting and fine-tuning
Llama 2 on PubMed abstracts and on the BIOSSES
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Figure 1: Variations in downstream score depending
on the choice of both sample used for DAPT and hy-
perparameters. Each row represents a sample; each dot
a Pearson score from a fine-tuned model (BIOSSES
downstream dataset).

dataset (Sogancioglu et al., 2017), respectively, we
obtained highly different downstream scores de-
pending on the choice of the sample used for DAPT,
as displayed in Fig. 1. This figure shows a huge
variability in Pearson (downstream) scores: from
67 points up to an almost perfect score of 98 points.
Surely, hyperparameter choice for both DAPT and
fine-tuning has an impact on the scores, but, by
comparing the patterns of score variation across
samples used for DAPT we observe that this vari-
ation does not seem to be explained only by the
choice of hyperparameter values. Clearly, data used
for DAPT has also an impact on the scores.

Thus, we asked: What features from the samples
used for DAPT impact on the downstream scores
and to what extent? And to what extent is the im-
pact of the choice of hyperparameter values? We
hypothesized that text patterns, such as sentence
length, syntactic dependencies, or text complexity,
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among others, impact on the downstream scores. In
order to analyze the importance of each text feature,
and the effect of hyperparameters, we used Mul-
tilevel Modeling, a regression model widely used
in the Social Sciences to explain social phenom-
ena such as the effect of both school and student
features on the students’ performance scores.

Our results are simple: clarity and simplicity
of writing, and amount of biomedical information,
are key text features from PubMed abstracts for
improving downstream scores. Moreover, vari-
ation in scores is also largely due to the choice
of hyperparameters, contributing approximately as
equal as the text features. These results not only
explain important features from domain adaptation
but can also serve for designing better document
sampling strategies and hyperparameter search
methods. Moreover, the use of Multilevel Mod-
els (MLMs) is key for a deeper understanding of
NLP models which we hope the NLP community
will adopt.

2 Related Work

2.1 Analyses of Large Language Models

Different works have analyzed different aspects of
LLMs. For example, some works studied the inter-
play between data and model abilities during the
SFT (Supervised Fine-Tuning) phase showing the
key impact of data on these abilities (Dong et al.,
2024). Other works analyzed which training in-
stances contributed to specific model predictions,
or abilities learned, using methods such as gradient-
based tracing-back (Koh and Liang, 2017; Garima
et al., 2020; Akyurek et al., 2022) and machine un-
learning (Jang et al., 2023; Eldan and Russinovich,
2023; Zhao et al., 2024). Furthermore, strategies
have been proposed to improve both the quality
and selection of pretraining data to optimize LLMs’
training time, perplexity, or capabilities on down-
stream tasks (Lee et al., 2022; Rae et al., 2022;
Tirumala et al., 2023; Nguyen et al., 2023). How-
ever, to our knowledge, ours is the first work ana-
lyzing the effect of text features from samples used
for domain adaptation on downstream scores via
Multilevel Analysis.

2.2 Multilevel Modeling

Multilevel Models (MLMs) are extensively used
across fields in the Social Sciences to measure the
effect of multi-level variables on an outcome. For
example, in Education, MLMs can predict student

performance while finding out the most important
features from students (level-1) and schools (level-
2) (Rasbash et al., 2010; Goldstein et al., 2007);
also, MLMs are used to compare school effective-
ness (Yang et al., 2002; Goldstein et al., 1993). In
Epidemiology, MLMs have been used to 1) model
the impact of personal-level risk factors on disease
across populations (Weinmayr et al., 2016); 2) mea-
sure the effect of air pollution on cardiovascular
disease (Forbes et al., 2009); and 3) estimate the
risks of food constituents from different items for
breast cancer (Witte et al., 1994).

3 Data and Multilevel Model

3.1 Multilevel Regression Analysis

In MLMs, the dependent variable (downstream
scores) depends on a set of independent variables
which can be at different levels in a hierarchy. We
model our problem as a 2-level hierarchy where fea-
tures from DAPT and fine-tuning, such as choice of
hyperparameters, correspond to level-1 variables;
and text features from the samples used for do-
main adaptation of Llama 2 correspond to level-2
variables. This choice of level-1 and level-2 vari-
ables is due to our design of the domain adaptation
and fine-tuning of Llama 2: from each sample, by
varying DAPT hyperparameter values, we obtain
2 domain-adapted models, and from each of these
two models, by varying fine-tuning hyperparam-
eters, we obtain 8 fine-tuned models; i.e., from
each sample we obtain 16 fine-tuned models; from
the perspective of Multilevel Analysis, we say that
each sample is a group and the 16 fine-tuned mod-
els are grouped under this sample.'

Thus, variables at level 1 are indicator variables
signaling the use of a specific combination of hyper-
parameters for DAPT and fine-tuning where values
of random seed, batch size, among other hyperpa-
rameters, vary; and level-2 variables correspond
to numeric and indicator variables capturing text
features (Section 3.2). Then, a 2-level MLM (Hox
et al., 2017) can be expressed as:

Yy = /BO + uop; + Brx1 + ... + Bnan
+ 7171 + o+ TR+ (1)

where [y is the intercept and uo; is a term called
random intercepts which can be interpreted as a
'We chose MLM over simple linear regression since it is

designed to deal with grouped (non-independent) instances
while allowing for multi-level variables.
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deviation in downstream score from the intercept
according to each sample j; level-1 and level-2 vari-
ables are denoted by z; and the terms [3; are called
fixed-effects coefficients which represent the aver-
age effect of each variable (across all samples) on
downstream scores (y); terms 7;;, called random
coefficients or slopes, are key terms in Multilevel
Analysis and can be interpreted as an adjusted ef-
fect on the level-1 fixed-effects coefficients (5;)
according to each sample j;” e is the residual.

The advantage of modeling random coefficients
lies in capturing differential contributions of each
sample on downstream scores; that is, we expect
different combinations of hyperparameters to have
different effects, due to chance, on the scores de-
pending on the choice of sample; thus, for each
sample we can estimate the number of points (;;)
that a combination of hyperparameters deviates
from the mean effect across all samples (5;).

3.2 Data for Multilevel Regression

To fit an MLM that predicts downstream scores
based on both text features from samples used for
domain adaptation and choice of hyperparameters
for DAPT and fine-tuning, we extract text features
from 70 samples’ used for domain-adapting Llama
2 and use indicator variables to signal the use of a
specific hyperparameter combination.

We obtained 1120 fine-tuned models but 16 were
discarded since the outputs generated were outside
the set of permissible outputs (a ranking score be-
tween O and 4 showing the degree of similarity
between two input sentences), so we used 1104
models. Each fine-tuned model corresponds to an
instance in our dataset for fitting MLMs. The de-
pendent variable corresponds to the Pearson corre-
lation score (scaled to [0-100] points) of a model’s
outputs with gold outputs from the BIOSSES vali-
dation set (as measured in the BLURB benchmark
(Gu et al., 2021)). Independent variables corre-
spond to features at levels 1 and 2 which we group
in 8 groups according to their type. These text
features are motivated by research on Education
for predicting student writing performance since
they have been shown to be strong predictors. We
describe these features:

Hyperparameter choice: Level-1 indicator vari-
ables signaling the choice of hyperparameter com-

*This only applies to level-1 variables, thus k& < n (Eq. 1).
3The suggested minimum number of groups is 50 (Maas
and Hox, 2005).

bination used for both domain adaptation and fine-
tuning. In Section 4.2 we call these variables
DAPT_1 , DAPT_2 (2 combinations for DAPT)
and HCF_1, ..., HCF_8 (8 combinations for fine-
tuning).

Syntactic dependencies: We extracted 39 syn-
tactic relations from the sentences in each sample
via the Stanford dependency parser (Chen and Man-
ning, 2014) and we used the frequency of each re-
lation across the whole sample as a level-2 feature.

Terms overlaps: We hypothesized that overlap
of information contained in the sample used for
DAPT with information in the BIOSSES dataset
may help to improve downstream scores; thus, we
computed the frequency of overlapping terms. To
do so, we computed frequencies of biomedical and
non-biomedical terms at the unigram and bigram
levels separately for the train and validation sets
of the BIOSSES dataset (leading to eight level-2
numeric features) using the frequency metric of
Kerz et al. (2021).

Biomedical information: We computed the ra-
tio of biomedical unigrams to the total number of
terms occurring in each sample used for DAPT
as we hypothesized that the more the amount of
biomedical terms in a sample the better the down-
stream scores; this led to a numeric level-2 feature.

Text complexity: We measured the linguistic
complexity of the samples at 3 different levels:
morphological, syntactical, and global, according
to Kolmogorov metrics of complexity used in lin-
guistics (Ehret and Szmrecsanyi, 2019), leading to
three level-2 features. We hypothesized that com-
plex texts may provide more information and thus
better scores.

Average lengths: From each sample, we com-
puted average lengths of both PubMed abstracts (in
terms of words) and words (in terms of characters)
resulting in two level-2 features.

Sample size: We hypothesized that the number
of PubMed abstracts matter, so we tried two differ-
ent sample sizes for DAPT: 25K and 50K, opera-
tionalized as a level-2 indicator variable.

Sampling method: We hypothesized that sam-
pling contiguous abstracts, in terms of publication
time, could improve scores since biomedical in-
formation tend to be more uniform; thus, we tried
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two sampling methods: randomly and contiguously,
which we operationalized as a level-2 variable.

4 Multilevel Analysis and Results

4.1 Fitting Multilevel Models

Goals: We have 2 goals (Harrell, 2015). First,
finding which variables have a statistically-
significant effect on downstream scores. And sec-
ond, evaluating the predictive behavior of our Mul-
tilevel Model to unseen data via cross-validation.

Modeling Strategies:  Our strategy is three-fold.
First, we deal with the issue of multicollinearity,
where it is difficult to assess the effect of variables
when they are correlated, via a variant of the vari-
able selection strategy from Yu et al. (2015). Sec-
ond, we aim for a parsimonious model (Robson
and Pevalin, 2016) that is simple enough, in the
number of parameters, to be understood, yet com-
plex enough to have low prediction error. Third,
we perform suggested evaluations in the literature
such as likelihood ratio tests (Brown, 2021), R-
squared effects (Rights and Sterba, 2019), and
cross-validation (Lindner et al., 2022).4 Lastly, we
note that we standardize (mean=0, std dev=1) all
independent variables to allow for a head-to-head
comparison of their impact on downstream scores.

The curse of multicollinearity: We found ex-
treme cases of multicollinearity across most vari-
ables (Fig. 2). To alleviate this problem, we ad-
just the strategy of Yu et al. (2015): we first use
lasso to eliminate non-essential variables; then, we
discard redundant variables via variance decompo-
sition proportions; and finally, we apply a back-
wards search to remove non-significant variables.
To avoid introducing bias, we confirm our choice
of deletion by measuring cross-validation error.

4.2 Regression Results

We show the results of our best MLM: we show the
features that have a significant impact on scores.
For Tables 1 and 2, the statistical significance code
is: p=0"*** p<0.001 ***°, p<0.01 **’.

Biomedical information matters: In Table 1 we
observe the standardized coefficient of Biomedi-
cal_info having a positive and statistically signifi-
cant effect of 1.78 meaning that for every standard
deviation increase in the frequency of biomedical

*We compute 5-fold cross-validated RMSE (Root Mean
Squared Error), averaged over 5 different random seeds.

Collinearity
High colinearity {VIF ) may inflate parameter uncertainty

Inflation Factor (VIF, log-scaled)
[
L ]
*
L
*
L]

Figure 2: Multicollinearity of all independent variables
according to Variance Inflation Factor scores. Scores
bigger than 10 show severe cases of multicollinearity.

terms in a sample used for DAPT, the downstream
scores increase, in average, by 1.78 points.

Text structure and clarity of writing matters:
As we observe in Table 1, the syntactic dependency
of parataxis has a negative effect on downstream
scores: for every standard deviation increase in fre-
quency, scores reduce by 1.92 points. Parataxis oc-
curs when complex sentences are split into clauses
separated by commas or semicolons without using
any subordinating or coordinating conjunction to
make their relationship clear (de Marneffe et al.,
2021). Academic writing, as that in PubMed ab-
stracts, often uses parataxis, for example, for re-
porting previous findings. If overused, parataxis
can convey a sense of text unclarity. In contrast, ad-
nominal clauses (acl) occur when the main nominal
in a sentence is modified by a subordinate clause
usually via clear connectors and in a specific order
which conveys text clarity. As we observe in Table
1, acl is the only syntactic relation having a positive
effect on downstream scores.

Simplicity matters: As shown in Table 1, two
other dependencies have a negative effect on scores:
mwe (multiword expressions) and cc.preconj. Sim-
ply stated, complex terms such as compounds (e.g.
USB cellphone charger), proper names, fixed ex-
pressions (e.g. as well as), or preconjuncts (e.g.
both DNA and RNA) (de Marneffe et al., 2021),
which are common in academic writing, decrease
scores. Moreover, longer words tend to substan-
tially decrease scores, as captured by the feature
Avg_word being, surprisingly, the feature with the
biggest negative impact. Thus, a concise writing
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Variable Coeff. (3) SE t
Intercept 92.66%**  0.28 325.58
DAPT_1 -1.00%* 043 -2.30
HCF_1 -2.53%*%% 038 -6.63
HCF_2 -2.49%*%% (034 -7.20
HCF_3 -1.12%%* 0.35 -3.20
HCF_4 -112%*%% - 0.29  -3.75
HCF_5 -2.76%FF 037 -7.42
HCF_6 -2.68**F* 037 -7.25
acl 1.86%* 0.59 3.15
mwe -0.82%* 0.28 -2.87
parataxis -1.92%* 0.56 -3.39
cc.preconj -3.04%*% 072 -4.20
Biomedical_info 1.78* 0.71 2.49
Avg_word -3.91%%%  0.80 -4.84

Table 1: Results of MLM: fixed-effects of variables at
levels 1 and 2. Coeff: coefficient. SE: Standard Error. t:
t-value (values truncated at the hundredths). DAPT_1
and HCF_i are indicator variables signaling the use of a
specific combination of hyperparameters for DAPT and
fine-tuning, respectively. We use DAPT_2 and HCF_8
as references to avoid perfect collinearity.

Variable Variance Std. Dev.
Intercepts  3.06%** 1.75
HCF_1 3.90%:** 1.97
HCF_2 2.09* 1.44
HCF_3 2.34%: 1.53
HCF_5 3.38%* 1.84
HCF_6 3. 28k 1.81
DAPT_1  11.03%%:* 3.32

Table 2: Results of MLM: random-effects (random in-
tercepts and random coefficients). We use DAPT_2 and
HCF_8 as references to avoid perfect collinearity.

with less idiomatic and complex expressions is key
for a better domain adaptation. However, it is un-
clear whether biomedical terms, which are often
complex, may jeopardize the domain adaptation;
thus, this phenomenon deserves a deeper analysis
for future work.

How much hyperparameters impact on scores?
As we see in Table 1, different hyperparameter
combinations lead to different results being com-
bination HCF_5 the one with the biggest impact:
whenever used, it leads to an average decrease of
2.76 points in scores across all samples. Moreover,
in Table 2 we observe that the choice of sample
adds a random effect to the fixed effect of most of
the hyperparameter combinations; i.e., we can ex-

Decomposition

1.0
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0.6
L

proportion of variance

04

0.2

0.0
L

Figure 3: R-squared: Decomposition of variance across
fixed and random effects.

pect average variations of (£)[1.44-1.97] and (%)
3.32 points in the effects of fine-tuning and DAPT
hyperparameters observed in Table 1, respectively.

Cross-validation error: Our MLM obtains an
RMSE of only 4.02 points, which means that our
model will deviate, in average, only by 4 points
from expected Pearson scores on unseen data.

R-squared effects: Figure 3 shows that around
55% of the variation in downstream scores is ac-
counted by fixed- and random-effects, where 15%
is due to fixed-effects, 23% due to random-effects
(slopes), and the rest (intercept variation) is due to
other features from the samples that we were not
able to identify. From Fig. 3 and Table 1, we esti-
mate that the overall effect of hyperparameters on
downstream scores is approx. equal to that of text
features for domain adaptation described above.

5 Conclusions

How important is to analyze the data used for
DAPT? Working in the trenches has allowed us to
see the paramount importance that data plays on the
right adjustment of LLMs to a target domain. From
a customer-oriented perspective, DAPT plays a vi-
tal role for the correct adjustment of LLMs not only
to parametric knowledge but also to human align-
ment via SFT and to databases via RAG (Retrieval
Augmented Generation). Thus, as in a snowball
effect, studying the factors that matter for biomedi-
cal DAPT —clarity and simplicity of writing as well
as biomedical information— assures us to provide
better adapted LLMs for customer applications.
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Limitations

We note that our work has some limitations. For
example, despite the low RMSE from our MLM
(4% error) and even though we tried our best to pro-
pose a comprehensive set of variables that could
fully explain the variation in downstream scores,
we acknowledge (as observed in Fig. 3) that 45%
of the variation in scores remains unexplained; that
is, there are more variables at level 1 and level 2
that may have an impact on downstream scores.
Furthermore, while we chose the most widely used
type of MLLM in the literature (2-level MLM)), it is
possible that other choice of MLM may be a better
fit to our problem such as a 3-level model where
at level-1 we define only hyperparameter combina-
tions of DAPT, at level-2 we define hyperparameter
combinations of fine-tuning, and at level-3 we de-
fine features from the samples; however, a model of
this type requires a substantial increase in the num-
ber of both domain-adapted and fine-tuned models
and thus of computing time.
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A Appendix

A.1 Statistical Software

To fit MLMs we use the R-package ImerTest
(Kuznetsova et al., 2017). To compute cross-
validated RMSE we use the cvms package (Olsen
and Zachariae, 2023), where for folds used as test
data, we leave out all fine-tuned models from the
samples selected for testing to avoid training and
testing on models derived from the same sam-
ple. Furthermore, to estimate the proportion of
explained variability in downstream scores we com-
pute R-squared effects using the framework of
Rights and Sterba (2019) via the R-package r2mim
(Shaw et al., 2022). We plot Figures 1 and 2 via the
lattice (Sarkar, 2008) and performance (Liidecke
etal., 2021) packages in R, respectively. To fit lasso
regression we use the glmmLasso (Groll, 2023)
package in R; to compute variance decomposition
proportions we use the mctest (Imdadullah et al.,
2016) package in R. Likelihood ratio tests and back-
ward search are implemented via the /merTest pack-
age.

A.2 Training Features

We used a Titan RTX GPU (24GB of memory) for
both domain adaptive pretraining and fine-tuning.
We domain-adapted Llama 2 for 1 epoch with
each sample. We fine-tuned each domain-adapted
model with each hyperparameter combination for
30 epochs and kept models with the highest valida-
tion score. We used QLoRA (Dettmers et al., 2024)
to be able to fit Llama 2 in GPU memory.
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