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Abstract

This paper introduces MedExQA, a novel

benchmark in medical question-answering, to

evaluate large language models’ (LLMs) under-

standing of medical knowledge through expla-

nations. By constructing datasets across five

distinct medical specialties that are underrepre-

sented in current datasets and further incorpo-

rating multiple explanations for each question-

answer pair, we address a major gap in cur-

rent medical QA benchmarks which is the ab-

sence of comprehensive assessments of LLMs’

ability to generate nuanced medical explana-

tions. Our work highlights the importance of

explainability in medical LLMs, proposes an ef-

fective methodology for evaluating models be-

yond classification accuracy, and sheds light on

one specific domain, speech language pathol-

ogy, where current LLMs including GPT4 lack

good understanding. Our results show gen-

eration evaluation with multiple explanations

aligns better with human assessment, highlight-

ing an opportunity for a more robust automated

comprehension assessment for LLMs. To di-

versify open-source medical LLMs (currently

mostly based on Llama2), this work also pro-

poses a new medical model, MedPhi-2, based

on Phi-2 (2.7B). The model outperformed med-

ical LLMs based on Llama2-70B in generat-

ing explanations, showing its effectiveness in

the resource-constrained medical domain. The

benchmark datasets and the model can be found

at https://github.com/knowlab/MedExQA.

1 Introduction

Recent advancements in large language models

(LLMs) have not only enhanced their understand-

ing of medical domain text but also improved their

ability to generate coherent text with correct medi-

cal knowledge (Tu et al., 2023; Singhal et al., 2023).

Chatbots, powered by these LLMs, have emerged

as indispensable tools, offering unprecedented op-

portunities to enhance patient care, streamline clini-

cal decision-making processes, and medical knowl-

edge retrieval (Achiam et al., 2023; OpenAI, 2023;

Groves et al., 2023). Moreover, open-source med-

ical LLMs further enhance the usability of such

technologies in hospitals by resolving the privacy

concerns associated with patient data (Toma et al.,

2023; Kweon et al., 2023; Chen et al., 2023).

This research in medical LLMs has been facil-

itated by the introduction of question-answering

(QA) datasets that serve as benchmarks for evaluat-

ing the model’s understanding of medical domain

knowledge (Hendrycks et al., 2020; Jin et al., 2021;

Pal et al., 2022; Singhal et al., 2023). The bench-

mark QA datasets typically consist of multiple-

choice questions (MCQ), enabling researchers to

readily assess the capabilities of LLMs in com-

prehending and responding to diverse medical in-

quiries. Thus, the diversity within these datasets

is a key component in creating a rigorous assess-

ment benchmark for complex medical concepts.

Nonetheless, certain areas within the medical do-

main, such as speech language pathology, still re-

main uncovered by the current benchmark datasets.

As current medical QA benchmarks are often

structured as MCQ, classification accuracy is used

as an evaluation metric. However, classification

accuracy alone may not adequately assess whether

LLMs possess the nuanced medical expertise re-

quired for reasoned responses. The explanation and

rationale behind the selection of a particular choice

by an LLM would provide a deeper understand-

ing of the model’s capabilities and limitations in

generating responses to intricate medical questions.

This comprehensive evaluation, delving into the

explanation and rationale, is especially important

in clinical settings where misleading information

such as hallucinations produced by LLMs can have

serious consequences.

In order to assess the quality of the model ex-

plainability, the dataset should include a golden

explanation for the reasoning behind the answer.

Additionally, since there are often multiple ways to

https://github.com/knowlab/MedExQA
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express the same rationale in text, an ideal dataset

would provide a multiple set of explanations for

a single QA pair. However, current benchmark

datasets are not focused on providing explanations

as they often lack explanations entirely or only a

subset of the dataset comes with an explanation

(Hendrycks et al., 2020; Jin et al., 2021; Pal et al.,

2022). This limitation highlights the need for im-

proved datasets that are explicitly designed to in-

clude comprehensive explanations.

To address this issue, this paper presents a novel

QA benchmark, MedExQA, with two sets of ex-

planations, aiming to provide a more comprehen-

sive evaluation of LLMs in the medical domain.

To diversify the knowledge coverage in the cur-

rent datasets, our proposed benchmark consists of

five underrepresented specialties in current datasets:

biomedical engineering, clinical laboratory sci-

ence, clinical psychology, occupational therapy,

and speech language pathology. In this work,

the datasets were used to benchmark the perfor-

mance of an extensive list of LLMs, including those

trained with medical domain text. With this com-

prehensive benchmark evaluation, we explored the

effects of medical domain-specific training. Addi-

tionally, to diversify the pool of open-source medi-

cal LLMs which are currently almost all based on

the Llama2 model, we introduce our own trained

model, MedPhi-2, a Phi-2 model trained with med-

ical domain text. Our MedPhi-2 model outper-

formed medical LLMs based on the Llama2-70B

model in generating explanations for the rationale

behind the answer.

The contributions of this paper are as follows:

1. MedExQA novel datasets with explana-

tions. We constructed a benchmark with 5

distinct specialties within the medical domain.

The datasets include two explanations for each

question and answer pairs.

2. Comprehensive Benchmark. We evaluated

an extensive list of models: 18 baseline open-

source models with various sizes (from 2.7B

to 70B), 3 OpenAI GPT models, as well as our

model (detailed below). In terms of evaluation

approach, classification accuracy, generated

explanation performance, and human evalua-

tions are considered. To highlight, this is the

first benchmark using multiple explanations,

and the results demonstrate that our bench-

mark can better evaluate language models’ un-

derstanding of medical domain knowledge.

3. MedPhi-2 model. We trained a small lan-

guage model (SLM) based on the Phi-2

model, with medical pretraining corpus and

instruction-tuning datasets. The model outper-

formed medical LLMs based on Llama2 70B

in generating explanations.

4. Open source. We release the datasets, model

weights, and codes to facilitate the research in

medical large language modeling.

2 Related Works

2.1 MMLU

MMLU (Hendrycks et al., 2020) is a benchmark de-

signed to measure the model’s ability in knowledge-

intensive QA with four-way MCQs. Within the

extensive list of subjects, there are nine healthcare-

related subjects such as professional medicine and

medical genetics. Collectively, these nine subjects

comprise a total of 1,871 questions in the test set.

While MMLU provides a comprehensive set of

questions, it lacks explanations for the answers,

thereby limiting the dataset’s evaluation to mere

multiple-choice classification accuracy.

2.2 MedQA

MedQA (Jin et al., 2021) is an open-ended MCQ

dataset made from professional medical doctor li-

cense exams. The dataset contains questions drawn

from both real exams and mock tests for the United

States Medical License Exams (USMLE). 1,273

questions, each question accompanied by four or

five answer choices, are provided as the test dataset.

Similar to MMLU, MedQA does not include expla-

nations for assessing the ability to generate ratio-

nale behind the answer.

2.3 MedMCQA

MedMCQA (Pal et al., 2022) is a benchmark with

questions sourced from postgraduate-level Indian

medical school entrance exams (AIIMS and NEET

PG). The dataset covers a breadth of medical spe-

cialties, 2,400 healthcare topics and 21 subjects and

provides 4,183 MCQ with four answer choices for

evaluation. Although MedMCQA is known to have

explanations, nearly half of the evaluation dataset

lacks explanations and instances of duplicate expla-

nations are also observed. In fact, accuracy is only

reported as the evaluation metric and explanation is

not used in their paper entirely. Therefore, MedM-

CQA is not primarily designed for the assessment

of generating explanations.
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Specialty NUM ExSIM

Biomedical Engineering 148 75.8

Clinical Laboratory Science 377 73.7

Clinical Psychology 111 79.7

Occupational Therapy 194 79.5

Speech Language Pathology 135 80.5

Total 965 78.7

Table 1: Statistics of datasets within MedExQA. NUM

represents the number of questions. ExSIM represents

the average cosine similarity of the explanation pairs.

3 MedExQA Datasets

We introduce MedExQA, a novel QA benchmark

designed to tackle the limitations of existing bench-

marks by incorporating two sets of explanations.

This approach aims to offer a more thorough evalu-

ation of performance in five underrepresented spe-

cialties in the medical domain: Biomedical En-

gineering, Clinical Laboratory Science, Clinical

Psychology, Occupational Therapy, and Speech

Language Pathology.

3.1 Datasets Preparation

The raw data was manually collected from diverse

freely accessible online sources, including mock

tests and online exams tailored to each medical pro-

fessional specialty. Some questions of the mock

tests and online exams have explanations for the an-

swers, which we used the creation of the MedExQA

datasets. The pass mark for the collected mock tests

and online exams was 60 percent.

To ensure data integrity, rigorous preprocess-

ing was conducted, including the removal of du-

plicate questions and explanations. Additionally,

similar questions were identified and eliminated us-

ing BERT cosine similarity analysis (Devlin et al.,

2018). Questions containing keywords specific to

laws or regulations were filtered out using a manu-

ally curated list of words. Following fair use regula-

tions1, answer options were systematically shuffled

to maintain fairness and uphold the integrity of the

dataset. Furthermore, to enhance the quality and

coherence of the datasets, two sets of explanations

as well as the questions underwent thorough hu-

man validation. This validation process aimed to

ensure that the explanations exhibited distinct writ-

ing styles and provided comprehensible reasoning

for the correct answer selection.

1https://www.copyright.gov/fair-use/more-info.html

The resulting datasets have a total of 965 ques-

tions. Table 1 provides a detailed breakdown of

the number of questions for each specialty. These

datasets were split into a few-shot development set

and a test set. Specifically, the few-shot develop-

ment set has 5 questions per specialty, while the

test set consists of 940 questions in total. It is note-

worthy that each subject contains a minimum of

100 test examples, a length surpassing that of most

exams tailored for human assessment.

Also, to validate that each pair of explanations

is different sufficiently at the individual question

level, Table 1 also provides the average cosine sim-

ilarity of the pairs. The overall similarity is 78.7%

which indicates the lexical difference of the two

corresponding versions of explanations for each

question. An example of the dataset as well as the

difference in the pair of example can be found in

the Appendix Figure 4.

Figure 1: 2D t-SNE plot for MedExQA, MedQA,

MedMCQA, and MMLU (Medicine Related 9 subjects)

datasets.

3.2 Comparison of benchmark datasets

We compared MedExQA with existing benchmark

datasets by visualizing their questions in the same

vector space. Using t-distributed Stochastic Neigh-

bour Embedding (tSNE), each question is repre-

sented as a point in the vector space. We used the

‘all-mpnet-base-v2’ sentence transformer model in

sklearn package tSNE to retrieve vectors from

questions. 965 questions were randomly sampled

from each dataset. There is a cluster towards the

top region mainly composed of questions from

MedExQA, which clearly demonstrates its novelty

compared to existing medical QA datasets.
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4 Methods

For all the experiments in this paper, both training

and evaluation, we used 8 A6000 GPUs.

4.1 Baseline Models

We explored 18 baseline models with different sizes

from 2.7B to 70B. Table 2 provides a comprehen-

sive overview of the baseline models used in this

paper, while more detailed descriptions of each

model are available in the appendix. In cases where

multiple sizes of a model are used, we distinguish

each version by appending the model size to the

model name. For example, the Llama2 models with

sizes 7, 13, and 70B are denoted as Llama2-7B,

Llama2-13B, and Llama2-70B, respectively. On

the other hand, when a model has only one size, we

refer to it solely by its name. For instance, Clini-

calCamel denotes the ClinicalCamel 70B model.

Llama2 Variant Models Model Size

Llama2(Touvron et al., 2023) 7B,13B,70B

ClinicalCamel(Toma et al., 2023) 70B

Asclepius(Kweon et al., 2023) 7B,13B

Med42(M42, 2023) 70B

AlpaCare(Zhang et al., 2023) 7B,13B

Meditron(Chen et al., 2023) 7B,70B

Medinote(Bonnet et al., 2023) 7B,13B

Other foundational models Model Size

Mistral(Jiang et al., 2023) 7B

Yi(01.AI, 2024) 6B

Phi-2(Microsoft, 2023) 2.7B

SOLAR(Kim et al., 2023) 10.7B

InternLM2(Shanghai AI Lab) 7B

Table 2: Baseline Models. The models are sorted in the

order of release dates.

4.2 Training MedPhi-2

As far as we know, all the publicly available open-

source medical LLMs are based on Llama models,

we further extended our work to test the effect of

medical domain training on a different foundational

model. Phi-2 model was further trained using the

medical datasets that are publicly available. We

pretrained Phi-2 with a 110M medical-related cor-

pus. We further finetuned the continued pretrained

model with 239K instructions. We refer to the re-

sulting model as MedPhi-2 throughout our paper.

Table 3 summarizes the detailed composition of our

training dataset. We used LLaMaFactory2 and used

2https://github.com/hiyouga/LLaMA-Factory

Deep3 for efficient training. For both pretraining

and finetuning, We trained the model with a batch

size of 16 and a learning rate of 1e-5 with 3 epochs,

which took 36 hours in total.

Pretrain Tokens

Meditron Medical Guidelines3 48.3M

SNOMED CT descriptions4 28.3M

Biomedical Article Abstracts5 13.6M

Wikipedia Medical Terms6 13.3M

PMC Patients Notes7 6.7M

Finetuning Instructions

Asclepius Instruction8 158,114

AlpaCare Instruction9 52,002

NHS QA and Medical Task10 29,354

Table 3: MedPhi-2 training data. The number of tokens

for pretraining data and the number of instructions for

finetuning data are listed.

4.3 Evaluation

We evaluated all models with test datasets except

for human evaluation, which was performed on

the development datasets. For all the evaluations,

we used zero-shot, a batch size of 1, temperature

of 0. To benchmark the performance of closed

source models we further extended to include

OpenAI’s GPT models. We used GPT3.5_1106,

GPT4.0_1106, and GPT4.0_0125 APIs11.

4.3.1 Classification Accuracy - Logits

Classification accuracy of MCQ for generative

models relies on classifying the next token using

logits. In other words, the token with the highest

logit value is selected as the model’s predicted an-

swer. However, this approach cannot assess the

model’s understanding of the rationale behind the

answer. We exclude GPT models for this evalua-

tion, as we are not able to get the logit value for the

next token.

3https://huggingface.co/datasets/epfl-llm/guidelines
4https://huggingface.co/datasets/FremyCompany/AGCT-

Dataset
5https://huggingface.co/datasets/paniniDot/sci_lay
6https://huggingface.co/datasets/gamino/wiki_medical_terms
7https://huggingface.co/datasets/zhengyun21/pmc-

patients
8https://huggingface.co/datasets/starmpcc/asclepius-

synthetic-clinical-notes
9https://huggingface.co/datasets/casey-

martin/medinstruct
10https://github.com/CogStack/OpenGPT
11https://platform.openai.com/docs/models



171

4.3.2 Classification Accuracy - Chat

We utilize string-matching using regular expres-

sions and thefuzz package to assess the model’s

proficiency in generating accurate textual re-

sponses. This approach involves searching the spe-

cific phrase for the answer choice or the choice let-

ter within the generated response, enabling a more

realistic evaluation for the model’s performance.

4.4 Explanation Generation

The quality of generated explanations is further

assessed using a combination of general lexical

metrics. BLEU (Papineni et al., 2002). measures

the geometric mean of precision scores of the gen-

erated explanations compared to reference expla-

nations based on n-gram matches. ROUGE (Lin,

2004). assesses the similarity between generated

and reference explanations, with ROUGE-L, pro-

viding a score that combines precision and recall

based on the longest common subsequence. ME-

TEOR (Banerjee and Lavie, 2005). considers

the semantic similarity and lexical variations with

WordNet. BERTScore (Zhang et al., 2019). uses

contextual embeddings, scibert embedding (Belt-

agy et al., 2019) for our work, to capture nuances in

the semantics of the explanations. All the metrics

are calculated using evaluate package.

We propose an enhanced methodology for eval-

uating models’ understanding of medical domain

knowledge by incorporating classification accuracy

based on string matches into calculating these met-

rics. We assign a score of 0 to responses with

incorrect answers based on string-matching classi-

fication results.

4.5 Evaluation - Human Evaluation

For human evaluation, three human annotators with

MSc degrees in health-related subjects participated

in assessing the quality of generated explanations.

The evaluation process involved assigning a score

for each explanation-answer pair based on the fol-

lowing rules:

1. Score 0 the answer was incorrect, no explana-

tion was provided, and/or the explanation is

fully irrelevant.

2. Score 0.5 the answer was correct, but the ex-

planation or rationale was incorrect. Also, an

incomplete explanation that ended with an in-

complete sentence.

3. Score 1.0 when both the answer and explana-

tion were correct.

Although this human evaluation was performed

on a small scale (development dataset: 5 samples

for each specialty), this systematic evaluation pro-

cess ensured a comprehensive assessment of the

models’ performance in providing accurate and co-

herent explanations.

5 Results and Discussion

5.1 Classification Accuracy - Logits

Table 4 shows the detailed results of all models. As

expected, smaller language models demonstrated

lower accuracy across specialties than larger mod-

els. Med42 showed the best overall performance. It

showed outstanding performance in Biomedical En-

gineering and Clinical Laboratory Science (83.2%

and 84.9% respectively). It performed on par with

Meditron-70B in Clinical Psychology (84.9%). In

Occupational Therapy, Llama2-70B showed the

highest accuracy (80.4%). All models underper-

formed in Speech Language Pathology, with SO-

LAR performing the best (33.1%).

The effect of continued training is observed only

in some models. MedPhi-2 demonstrated better

performance than Phi-2, and this improvement was

also found in AlpaCare-13B compared to Llama2-

13B and Med42 compared to Llama2-70B. How-

ever, ClinicalCamel and Meditron-70B performed

worse than Llama2-70B. This drop in performance

could be due to task-specific challenges as some

models may not effectively handle varied levels of

specificity in MedExQA.

5.2 Classification Accuracy - Chat

Classification accuracy using chat decreased in

most of the models (Table 4). Phi-2, Llama2-13B,

Yi, InternLM2, and Meditron-70B did not pass

the pass mark indicating these models are not ro-

bust. Meditron-70B showed the biggest perfor-

mance drop by 29.3%. Llama2-70B also showed

a significant performance drop in this testing by

28.5%, although it passed in Biomedical Engineer-

ing. Of the 70B models we tested, ClinicalCamel

was the most robust model (7.7% decrease), and it

scored higher than Med42 by 0.7%.

Our model, MedPhi-2 was the most robust model

among the passed ones (0.2% decrease), and it out-

performed AlpaCare-13B, Meditron-70B, Llama2-

70B. This result highlights the importance of the

supervised finetuning with in-domain instructions

of high quality as more robust models, such as

AlpaCare, ClinicalCamel, and MedPhi-2, were



172

Model BE CP SLP OT CLS MAvg

Medinote-7B 33.6 (-4.9) 34.9 (-8.5) 23.1 (6.2) 38.1 (-8.5) 44.6 (-11.6) 34.9 (-5.5)

Meditron-7B 37.8 (-7.7) 46.2 (-16.0) 20.8 (2.3) 42.9 (-10.6) 43.3 (-6.7) 38.2 (-7.8)

Llama2-7B 42.0 (-9.1) 47.2 (-9.4) 22.3 (1.5) 40.2 (-12.7 47.6 (-17.5) 39.9 (-9.4)

Asclepius-7B 44.8 (-11.2) 47.2 (-17.0) 27.7 (-1.5) 42.9 (-15.3) 45.2 (-13.4) 41.5 (-11.7)

Medinote-13B 46.2 (-18.9) 52.8 (-30.2) 28.5 (-4.6) 49.2 (-28.1) 52.4 (-20.2) 45.8 (-20.4)

AlpaCare-7B 53.2 (6.3) 53.8 (1.9) 26.9 (6.2) 59.8 (-3.7) 54.6 (-0.5) 49.6 (2.0)

Asclepius-13B 57.3 (-21.0) 56.6 (-33.0) 25.4 (-3.8) 59.8 (-34.4) 56.5 (-22.9) 51.1 (-23.0)

Phi-2 61.5(-35.7) 68.9 (-38.7) 26.2 (2.3) 64.0 (-43.4) 50 (-25.0) 54.1 (-28.1)

Llama2-13B 63.6 (-26.6) 65.1 (-42.8) 27.7 (16.2) 60.9 (-28.8) 59.4 (-17.5) 55.3 (-19.9)

MedPhi-2 65.7 (-5.6) 70.8 (0.0) 23.1 (0.0) 65.1 (-0.5) 55.1 (5.1) 56.0 (-0.2)

AlpaCare-13B 67.1 (-4.9) 69.8 (-10.4) 26.9 (-1.5) 65.1 (-4.8) 61.6 (-4.3) 58.1 (-5.2)

Mistral 75.5 (-11.2) 73.6 (-10.4) 32.3 (-6.2) 75.7 (-6.3) 71.2 (0.0) 65.7 (-6.8)

Meditron-70B 78.3 (-36.4) 84.9 (-43.4) 30.8 (-5.4) 69.8 (-37.0) 68.6 (-24.2) 66.5 (-29.3)

Yi 75.5 (-20.3) 83.0 (-28.3) 30.8 (0.8) 74.1 (-20.6) 73.4 (-17.2) 67.4 (-17.1)

SOLAR 74.8 (0.0) 81.1 (-2.8) 33.1 (-7.7) 73.0 (-1.1) 76.1 (-3.2) 67.6 (-3.0)

InternLM2 77.6 (-25.2) 82.1 (-38.7) 29.2 (-5.4) 74.6 (-36.0) 75.0 (-33.6) 67.7 (-27.8)

ClinicalCamel 78.3 (-6.3) 84.0 (-14.1) 28.5 (-5.4) 79.9 (-6.3) 75.8 (-6.2) 69.3 (-7.7)

Llama2-70B 78.3 (-10.5) 84.0 (-47.2) 31.5 (-10.8) 80.4 (-44.4) 72.9 (-29.8) 69.4 (-28.5)

Med42 83.2 (-14.) 84.9 (-10.4) 31.5 (-4.6) 79.4 (-13.8) 80.9 (-12.6) 72.0 (-11.1)

GPT3.5_1106 72.0 82.1 29.2 70.4 71.5 65.0

GPT4_1106 86.7 86.8 31.5 88.4 91.7 77.0

GPT4_0125 90.2 91.5 30.8 90.0 91.7 78.8

Table 4: MCQ accuracy (%) using logits vs chat generation. The MCQ accuracy using logits is reported (except for

GPT models). The performance gain/loss with chat generation approach is marked in parenthesis. "BE": Biomedical

Engineering; "CP": Clinical Psychology; "SLP": Speech Language Pathology; "OT": Occupational Therapy; "CLS":

Clinical Laboratory Science; "MAvg": Macro Average.

Figure 2: Scatter plot of model performance. The Y-axis is the macro average of accuracy based on logits (Table 4).

The X-axis is the average score of generated explanations (Table 5). The dot size is proportional to the model size.
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Model Size (B) ROUGE-L METEOR BLEU BERTScore AVG

Medinote 13 1.88 2.79 0.46 12.96 4.52

Llama2 7 4.92 4.03 0.16 17.52 6.66

Asclepius 13 6.12 6.12 0.32 17.70 7.56

Asclepius 7 6.07 5.61 0.22 18.48 7.60

Phi-2 2.7 5.77 7.51 1.76 16.41 7.86

Medinote 7 4.78 7.82 2.14 16.81 7.89

Meditron 7 5.15 7.96 2.56 17.43 8.27

Llama2 13 6.65 6.89 1.37 20.80 8.93

Llama2 70 6.41 6.71 1.40 21.84 9.09

Meditron 70 7.42 8.32 1.63 21.59 9.74

InternLM2 7 10.30 12.20 3.89 26.28 13.17

AlpaCare 13 11.56 11.97 2.77 33.29 14.90

Yi 6 10.97 13.25 4.79 31.62 15.16

Med42 70 11.03 12.88 3.46 35.89 15.82

AlpaCare 7 12.43 14.19 3.64 33.47 15.94

Mistral 7 12.59 17.49 5.28 36.66 18.00

ClinicalCamel 70 13.45 17.38 5.52 38.80 18.79

MedPhi-2 2.7 15.26 17.75 6.13 37.45 19.15

SOLAR 10.7 16.45 20.17 6.72 42.46 21.45

GPT3.5_1106 - 21.71 25.99 14.07 46.59 27.09

GPT4_1106 - 23.08 35.74 14.40 54.50 31.93

GPT4_0125 - 24.83 35.21 16.71 54.40 32.79

Table 5: Explanation Generation performance (average across the 5 subjects for each evaluation metric).

instruction-tuned with medical domain data, while

Meditron-70B was just further pretrained.

GPT4_0125, GPT4_1106, and GPT3.5_1106

outperformed all the open-source models. Even

with the addition of high-performing closed-source

models, there is still a universal failure in perfor-

mance for Speech Language Pathology.

5.3 Combining Classification Accuracy with

Generated Explanation Performance

Figure 2 shows the relationship between model

size and accuracy achieved in both MCQ (using

logits) and generation performance. Generally,

larger models tend to exhibit better performance as

70B models perform better than most of the other

smaller models. However, SOLAR, Yi, and Mistral

stand out as these smaller general domain models

demonstrate competitive performance to the 70B

medical LLMs. Further training on these founda-

tion models holds great promise as we have seen

with the Phi-2 model.

All medical LLMs with 13B (AlpaCare, Ascle-

pius, and Meditron) exhibit worse performance

in both MCQ accuracy and generation perfor-

mance compared to their 7B counterparts. In

fact, Medinote-13B is the worst-performing model.

Also, 70B models do not always perform better

than smaller models as Meditron-70B and Llama2-

70B performed worse than many smaller models

including AlpaCare and our model in the genera-

tion of reasonable explanations.

The performance evaluation presented in Table 5

also provides valuable insights into the efficacy of

various models in generating explanations. Among

the models evaluated, our model, MedPhi-2 stands

out in generating reasonable explanations as it out-

performed all medical LLMs including 70B mod-

els. This result confirms the findings of Section 5.2

which highlighted the importance of supervised

finetuning with in-domain instructions.

The SOLAR model performed the best among

the open-source models, suggesting its competi-

tive capability in explanation generation although it

was not trained specifically for the medical domain.

However, even this best-performing open-source

model demonstrates a significant performance gap

(5.64) compared to the worst-performing closed-

source model, GPT3.5_1106, indicating the sub-

stantial advancements in OpenAI’s GPT models.

Interestingly, despite the recent release of GPT4,
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Figure 3: Human evaluation on the generated explanations, which scales from 0 to 5. The models in the legend are

ordered by macro average from lowest to highest. Only models passed (3 or above) in at least one of the specialties

are included.

the performance varies across different evaluation

metrics. While the most recent release outperforms

GPT4_1106 on average, GPT4_1106 still shows su-

perior performance in METEOR and BERTScore.

This highlights the importance of considering mul-

tiple metrics and nuances in model performance

assessment, as different models may excel in dis-

tinct aspects of explanation generation.

5.4 Evaluation - Human Evaluation

Human evaluation of generated responses reveals

that MedPhi-2 has the best quality among the open-

source models (Figure 3). Our model was the

only open-source model that passed (a score of

3 or above) in all specialties in MedExQA. In fact,

MedPhi-2 on par with GPT3.5_1106 in Biomedi-

cal Engineering and Clinical Laboratory Science,

and with GPT4_1106 in Occupational Therapy.

The performance of models in Speech Lan-

guage Pathology during human evaluation was

relatively decent, which contrasts with results ob-

tained through other evaluation methods. Appendix

Figure 4 provides an example of generated re-

sponses of the models, in the context of Speech-

Language Pathology questions. MedPhi-2 and

GPT3.5_1106 generated the most coherent and

accurate responses. However, other models gen-

erated irrelevant sentences or failed to provide ex-

planations. Medinote-13B generated a case study

example instead of answering the question and pro-

viding an explanation and Asclepius-13B halluci-

nated and provided an option for the answer that

was not present and generated further incorrect ex-

planations. Appendix Table 6 shows the detailed

results.

5.5 Effect of additional explanation

The effect of adding additional explanation was

confirmed by analyzing the Pearson correlation

between human evaluation and generation perfor-

mance. When we used just one set of explanations

the correlation was 0.9347, and this correlation in-

creased to 0.9385 when we used two versions of

explanations together. Although, the increase is

small, this finding still indicates generation evalua-

tion with multiple explanations aligns better with

human evaluation, which is usually treated as the

gold standard.
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6 Conclusion

Our MedExQA benchmark proposes an effective

methodology for evaluating LLMs beyond classifi-

cation accuracy which can be used to assess the ex-

plainability of medical LLMs. While, the findings

reveal that the generation of coherent and accurate

explanations remains a challenging frontier for the

current medical LLMs, the results also highlight an

opportunity for a more robust automated compre-

hension assessment for LLMs because generation

evaluation with multiple explanations aligned bet-

ter with human assessment.

We also find that the ‘Speech Language Pathol-

ogy’ dataset posed challenges for all language mod-

els, including GPT4. Speech Language Pathology

could potentially be attributed to several factors,

with one prominent explanation being the absence

of relevant text in the corpora used to train the

foundation model. As Speech Language Pathol-

ogy is a highly specialized field that encompasses

a wide range of topics related to rare diseases or

disorders of speech and language, the collection

of high-quality text for this specialty can be very

challenging. However, it is important to acknowl-

edge that confirming this hypothesis definitively

poses a challenge due to the proprietary nature of

the pretraining corpora used for training LLMs.

Through the development and evaluation of our

MedPhi-2 model, we underscore the importance of

targeted pretraining and fine-tuning strategies in im-

proving explanation quality. The model showed the

significant potential of LLMs in enhancing medical

QA with explanations. Our benchmark and model

will set the foundation for future advancements in

medical research by facilitating the development

and evaluation of medical LLMs.

Limitation

While MedExQA provides a robust benchmark for

evaluating LLMs in the context of the medical do-

main, the current version only tests the model’s

ability in QA task, limiting its applicability in real-

world clinical scenarios to a few applications. This

limitation results from the manual collection pro-

cess. Future work will extend our benchmark to

include tasks such as summarizing clinical notes

with accompanying explanations.

Though we performed the human evaluation of

generated explanations of different LLMs through

three authors, we performed this at a small scale, at

5 samples per specialty. Future work will seek to

increase both the volume of samples and the num-

ber of annotators to provide a more robust method

of assessing models’ performance.

Broader Impacts and Ethics Statement

We release MedExQa under a Creative Commons

Attribution-Non Commercial-ShareAlike 4.0 In-

ternational License. MedPhi-2 follows the MIT li-

cense as it is based on Phi-2. License and copyright

information and Terms of Use will be shared when

the dataset and model are released. The dataset

may be used for non-commercial purposes and any

models trained using the dataset should be used

only for research purposes.

Our work does not raise any major ethical con-

cerns. All LLMs tested, including Phi-2, were used

for research purposes only. While MedPhi-2 out-

performed all medical variants of Llama2 models

in generating accurate medical answers and expla-

nations, MedPhi-2 is not rigorously tested for use in

real-world clinical applications or scenarios. Thus,

MedPhi-2 is not suitable for use in the clinical de-

cision making process. This restriction of usage

in clinical care is to mitigate any potential risks or

harms such as wrong decisions from hallucinations

which can lead to unwanted situations.
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Appendix

Question Which of the following is a correct description of a language learning disability? 

A It shows difficulties in reading and writing. 

B It does not show problems with higher-level language abilities. 

C It occurs due to visual or motor disabilities. 

D It often accompanies autism spectrum disorder. 

 
Correct Answer: A. It shows difficulties in reading and writing. 

Explanation 1 Language learning disabilities, such as dyslexia, are characterized by difficulties with 

reading and writing stemming from issues with processing language. These challenges are 

not directly caused by visual or motor impairments. Although language learning 

disabilities may occur alongside other disorders like autism spectrum disorder, there is no 

one-to-one correlation between the two; individuals with language learning disabilities 

may not have autism, and vice versa. … 

Explanation 2 Language learning disabilities, such as dyslexia, typically involve challenges with reading 

and writing. These difficulties are due to problems with language processing, not 

necessarily related to visual or motor disabilities. While language learning disabilities can 

co-occur with other conditions, including autism spectrum disorder, not all individuals 

with language learning disabilities have autism, and not all individuals with autism have 

language learning disabilities. … 

Medinote-13B 

Score: 0 

A 10-year-old boy with a language-learning disability was assessed...  

Asclepius-13B 

Score: 0 

E. It is a type of specific learning disorder (SLD). … 

AlpaCare-13B 

Score: 0 

The answer is A) It shows difficulty in reading & writing. 

Med42 

Score: 0 

So, the correct answer is: A. It showing difficulties in readings and writings. 

Meditron-70B 

Score: 0 

The following is an open-ended question. You should answer it in your own words… 

ClinicalCamel 

Score: 0.5 

\end{blockquote} think the answer is A. 

… It is not a problem with higher level language abilites. Visual or motor difficulties can 

cause learning difficulties, but they are not the cause of language learning difficulties. 

Language learning difficulties often accompany autism, but this is not the correct 

description. Therefore, the correct answer is option A. 

GPT3.5_1106 

Score: 1 

A. It shows difficulties in reading and writing. 

Explanation: A language learning disability typically involves difficulties in reading and 

writing, such as dyslexia. … While other options may also be associated with learning 

disabilities, the primary characteristic of a language learning disability is the difficulty in 

reading and writing. 

Phi-2 

Score: 0 

Answer: D. It is often accompanied by autism spectrum disorders. 

Explanation: … 

MedPhi-2 

Score: 1 

The answer is A.... Additionally, language learning disorders are not typically caused by 

visual or hearing impairments, but rather by difficulties with processing and using 

linguistic information. Finally, while language learning deficits can be associated with 

autism spectrum disorders, not all individuals with autism have language learning 

problems, ... 
 

Figure 4: Example of data in Speech Language Pathology and Qualitative Analysis Example. Two sets of

explanations, Explanation 1 and Explanation 2, are provided. The score given by humans is provided beneath the

model name. The response with no explanations has a grey font color. Red shows the irrelevant or wrong sentences

or phrases. Yellow demonstrates incoherent phrases or errors. Green highlights coherent and correct sentences.
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.1 Frequency Plots

We use frequency plots to demonstrate the word count distribution for the two different types of explana-

tions in each dataset. For MedExQA, as shown in Figure 5, the average length of the words in the first set

of explanations is 82.50 and in the second set of explanations, is 83.17.

Figure 5: Word Count Distribution Plots for Explanations. Top: Explanation 1. Bottom: Explanation 2.

.2 First Three Words Frequency

In Figure 6, we present a detailed visualization of the lexical distribution within two distinct explanations

from MedExQA datasets. For each pie chart, we combined the explanations from all five specialties.

The pie chart encapsulates the hierarchical structure of the explanations, segmented into three concentric

circles that correspond to the first, second, and third words of explanation, respectively. The top pie chart

represents the word combination from explanation version 1, and the bottom pie chart represents the

explanation version 2.

Upon examination, we note a convergence in linguistic choices, evidenced by recurring phrases such

as "In the context" and "The correct answer." These phrases serve as linguistic anchors, providing a

structured starting point for explanations. Despite this lexical overlap, the majority of the word choices
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Figure 6: First three words combination of explanations. Left: Explanation 1. Right: Explanation 2.

exhibit significant variability. Some examples of this variability are "A pH meter" marked as orange and

"When a patient" marked as purple on the top pie chart. By employing two versions of explanations

that are semantically aligned yet lexically distinct, we aim to conduct a more holistic assessment of the

model’s generative outputs.

.3 Baseline Models

.3.1 Llama2 variants

Llama2 We use Llama2 Hugging Face weights released on the Hugging Face model repository12. 7B,

13B, and 70B models without chat optimization are used in this work to assess the effect of continued

training of the following Llama2 medical models with medical domain text. These models are trained on

2 trillion pretraining tokens in the general domain and have a context length of 4,096.

ClinicalCamel We use ClinicalCamel 70B weights from the Hugging Face model repository. It is a

finetuned Llama2-70B model with instruction-tuning datasets made from medical articles and MedQA. It

uses QLoRA for finetuning. The instruction tuning datasets are not released.

Asclepius We use Asclepius Llama2 weights released on the Hugging Face model repository. We use

both 7B and 13B models which are further finetuned Llama2 models using instruction tuning dataset

made from synthetic clinical notes. The synthetic clinical notes are generated from PMC-patients using

GPT3.5 and turned into instruction-tuning datasets using GPT3.5. The synthetic clinical notes are used

due to the privacy concerns of the real clinical notes. This training dataset is released.

Med42 We use Med42 70B weights from the Hugging Face model repository. The details of the

training dataset and training method are not available. The only detail available is that it was continued

trained Llama2-70B model with medical domain text.

AlpaCare We use AlpaCare Llama2 weights from the Hugging Face model repository. Llama2 7B and

13B models were further finetuned on a medical self-instruct dataset made from the clinical seed set. The

dataset is released.

Meditron We use Meditron weights released on the Hugging Face model repository. Both 7B and 70B

models are used in this work. Meditron models are continued pretrained with clinical guidelines, medical

articles abstracts, and full text of the articles. A subset of clinical guidelines are released.

Medinote We use Medinote weights released on the Hugging Face model repository. Both 7B and 13B

models are used in this work. These models are further finetuned from the Meditron models to generate

clinical notes from doctor and patient dialogues. Their training dataset is a synthetic dialog generated

with ChatGPT from PMC-patients data.

.3.2 Other baseline models

We extended our baseline models to other general domain baseline models with various sizes.

12https://huggingface.co/meta-llama



181

Mistral We use Mistral-7B-v0.1 weight released on the Hugging Face model repository. The details of

the training dataset remain unknown. However, this model is known to use Grouped Query Attention,

which Llama2-70B also uses, and Sliding Window Attention. The model size is known to be 7.24B

parameters, and this is slightly larger than Llama2-7B, 6.74B.

Yi We use Yi-6B weight released on the Hugging Face model repository. The model is trained on 3

trillion pretraining tokens in the general domain and has a context length of 4,096. The model size is

known to be 6.06B parameters, which is smaller than other 7B models.

Phi-2 We use Phi-2 model weight released on the Hugging Face model repository. It has 2.78B

parameters and is trained on the augmented textbook corpus, 1.4 trillion tokens. This is the smallest model

in our paper.

SOLAR We use SOLAR-10.7B-v1.0 model weight released on the Hugging Face model repository.

The model size is 10.7 billion parameters. It uses depth-wise scaling called Depth up-scaling and continued

pretraining of the scaled model. However, the pretraining dataset details are unknown.

InternLM2 We use InternLM2-7b model weight from the Hugging Face model repository. The details

of the training method and data are unknown.

.4 Result Tables

Model Size (B) BE CP SLP OT CLS AVG

Llama2 13 0 0 0 0 0 0

Meditron 70 0 0 0.5 0.5 0.5 0.3

Asclepius 13 0 1.5 0 0 1 0.5

Medinote 13 0.5 0.5 0.5 0 1 0.5

Meditron 7 0.5 0 1 1 0 0.5

Llama2 7 0 1 0 1.5 1 0.7

Llama2 70 0.5 0 1 0.5 2 0.8

Asclepius 7 1 1.5 0 0 2 0.9

Medinote 7 1.5 0.5 1 0 1.5 0.9

InternLM2 7 2 2 1 0 1.5 1.3

Phi-2 2.7 2 2 0 1 2 1.4

Mistral 7 1 1 2 1 3 1.6

AlpaCare 13 1 1.5 1 3 2.5 1.8

AlpaCare 7 1 2 1.5 2 4 2.1

Yi 6 1 2 4 3 3 2.6

SOLAR 10.7 2.5 4 3 2.5 1.5 2.7

Med42 70 4 2.5 1 3 3.5 2.8

ClinicalCamel 70 2.5 3.5 3 2.5 4 3.1

MedPhi-2 2.7 3 3.5 3 3 3 3.1

GPT3.5_1106 - 3 5 4 4 3 3.8

GPT4_1106 - 4 5 5 3 5 4.4

GPT4_0125 - 4 5 5 4 5 4.6

Table 6: Explanation Generation performance (human evaluation). "BE": Biomedical Engineering; "CP": Clinical

Psychology; "SLP": Speech Language Pathology; "OT": Occupational Therapy; "CLS": Clinical Laboratory

Science; "AVG": Average score.
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