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Abstract

This paper describes our submission to the item
difficulty prediction track of the BEA 2024
shared task. Our submission included the out-
put of three systems: 1) a feature-based linear
regression model, 2) a RoBERTa-based model
and 3) a linear regression ensemble built on the
predictions of the two previous models. Our
systems ranked 7th, 8th and 5th respectively,
demonstrating that simple models can achieve
optimal results. A closer look at the results
shows that predictions are more accurate for
items in the middle of the difficulty range, with
no other obvious relationships between diffi-
culty and the accuracy of predictions.

1 Introduction

The development of new items for high-stake ex-
ams is a complex process involving the need to
meet many quality criteria. Among these, item dif-
ficulty is essential, as it fundamentally impacts the
validity of test scores and the fairness of the test
outcomes.

Item difficulty pertains to the ability of test items
to differentiate among varying levels of test taker
proficiency consistently across diverse populations
(AlKhuzaey et al., 2021). Traditionally, the esti-
mation of difficulty requires pre-testing the newly
developed items on a representative sample of test
takers (usually a few hundreds), as if they were in
a regular exam, and empirically estimating various
statistical characteristics based on their responses.

Test items that are answered correctly by ei-
ther too many or too few test-takers fall outside
pre-determined difficulty boundaries and hence are
typically removed from consideration or undergo
changes before being pre-tested again. This pro-
cess, although effective, is labour-intensive, costly,
and time-consuming, necessitating the collection
and analysis of extensive data before any new item
can be used in live exams. Additionally, as also

noted by others (e.g., Ha et al., 2019; Settles et al.,
2020), it is sometimes impractical, or not even pos-
sible, due to constraints on exam duration, the lim-
ited availability of testing opportunities and the
logistic challenges associated with live testing.

To address these challenges, alternative ap-
proaches using Natural Language Processing
(NLP) have been proposed to estimate this diffi-
culty from the items’ text. Predicting item difficulty
has significant implications for the testing industry,
not only leading to savings but also allowing the
dynamic adaptation of tests to new populations.

In this paper, we describe our participation in the
BEA 2024 shared task, aimed at predicting item dif-
ficulty for multiple-choice questions (MCQ) from
a medical exam (Yaneva et al., 2024). We present
experiments using three different approaches: 1)
using a set of linguistic features from the items in
traditional machine learning regression models, 2)
using pre-trained language models with and with-
out the addition of the aforementioned features, and
3) building an ensemble model from the output of
the previous two.

2 Related work

Previous studies have adopted different methodolo-
gies to estimate the difficulty of items for assess-
ment. A vast majority of these have focused on
examining textual properties of items. While early
studies have used readability indices as predictors
(DuBay, 2004; Flesch, 1948), over time, studies
have evolved to utilize a wider range of complexity-
related features. These include surface lexical and
syntactic features (such as word/sentence length,
counts of clause types, etc. (Kintsch and Vipond,
2014; McNamara et al., 2014; Yaneva et al., 2017)),
NLP-enabled features (Francois and Miltsakaki,
2012), and features aimed at capturing the cogni-
tive aspects of language (Ha et al., 2019; Yaneva
et al., 2021) and cohesion (McNamara et al., 2014).
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Other studies have attempted to model diffi-
culty in terms of comprehensibility for humans.
Mostly centred around the domain of language
learning, such studies have primarily focused on
applying readability metrics to language compre-
hension tests (Beinborn et al., 2014; Gao et al.,
2018; Huang et al., 2017; Loukina et al., 2016;
Pandarova et al., 2019). In such tests, reading pas-
sages are strongly associated with the subsequent
comprehension questions, thereby establishing a
correlation between the text’s complexity and ques-
tion difficulty (Huang et al., 2017; Loukina et al.,
2016).

There have also been attempts to estimate diffi-
culty from the perspective of cognitive processes
and knowledge dimensions required to correctly re-
spond to a question (Padd, 2017). Such approaches
are mostly qualitative in nature and rely on heuris-
tic methods which define difficulty according to the
perceptions of learners, item writers and/or educa-
tors (AlKhuzaey et al., 2021) Item difficulty has
also been estimated as part of automated item gen-
eration processes, for example by measuring the se-
mantic similarity between an item’s distractors and
its prompt (Alsubait et al., 2013; Ha and Yaneva,
2018; Kurdi et al., 2020) or estimating the difficulty
and discrimination parameters of items employed
in e-learning tests (Benedetto et al., 2020).

In the context of MCQs, Ha et al. (2019) describe
models using an extensive set of linguistic features
and embeddings. The same set of linguistic fea-
tures were used in a subsequent study by Yaneva
et al. (2020), who obtained a strong baseline for
item survival by filtering out items that were too
difficult or too easy for the target test taker popula-
tion. In our paper, we build upon previous research
by replicating the linguistic features employed by
Ha et al. (2019) and Yaneva et al. (2020) as well as
fine-tuning a few transformer-based models.

3 Models

We investigated a range of different models for
the task, namely traditional feature-based models,
transformers and ensembles. The following sec-
tions describe these in detail.

3.1 Feature-based models

We extracted over a hundred linguistic features
from the MCQs in our dataset, most of which come
from previous work (i.e., Ha et al., 2019; Yaneva
et al., 2020, 2021) but were re-implemented in

Python, inspired by the codebase made available
by the researchers. These features aim to capture
several levels of linguistic information, ranging
from basic lexical and syntactic attributes to others
related to semantic, cognitive or readability char-
acteristics of language. They also include features
that look at the structural coherence of the text
and the frequency of words. In addition to these,
we incorporated several other predictors, such as
the average similarity between the key and distrac-
tors as well as amongst the distractors themselves,
and the number of distractors for a given item and
exam type (i.e. Step 1, Step 2 and Step 3). All the
features employed in our models are provided in
Appendix A.

To obtain an initial benchmark for our experi-
ments, we built our own internal baseline model
using the ZeroR algorithm, which assigns the mean
difficulty score of the training dataset to each in-
stance (RMSE = 0.3150). Further to that, we con-
ducted a correlational analysis between each fea-
ture and the item difficulty scores and added the top
five best correlated features. These include counts
of words not in top 4000, 5000, 3000, 2000 and ad-
jectives (with r ranging between 0.20 to 0.18), and
indicate a trend that the presence of less common
words and adjectives in an item may contribute to
increased difficulty.

3.2 Transformer models

Given their proven performance in NLP tasks, we
fine-tuned different pre-trained language models
built on the transformer architecture (Vaswani et al.,
2017). Since we framed the difficulty prediction
task as a regression problem, we added a dense
linear layer on top of the transformer to predict the
difficulty value.

Our transformer models take the full text of the
MCAQ as the input, where the answer options are
reformatted using two additional special tokens:
[KEY] to introduce the key and [DIS] to introduce
each distractor (see Figure 1). The embeddings for
these new tokens were randomly initialised.

We experimented with four different pre-trained
models: BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), bioBERT (Lee et al., 2019) and
XLNet (Yang et al., 2019). Given the evaluation
metric for the BEA 2024 shared task was RMSE,
we adopted the same metric as our loss function.

We also built versions of these models that in-
corporate the additional features described in Sec-
tion 3.1. This was done by concatenating the values
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A 13-month-old child is brought to the emergency de-
partment because of urticaria, swelling of the lips, and
difficulty breathing immediately after eating an egg. A
potential risk for hypersensitivity reaction is posed by
vaccination against which of the following illnesses?
[DIS] Hepatitis

[KEY] Influenza

[DIS] Pertussis

[DIS] Poliomyelitis

[DIS] Typhoid fever

Figure 1: Example representation of an MCQ for our
transformer models.

of the extracted features to the language model’s
pooler output, before being passed on to the linear
regression layer.

3.3 Ensemble models

In an attempt to exploit the strength of our models,
we also experimented with a number of ensemble
methods. These included models that returned the
minimum, maximum and average prediction from
our best feature-based and transformer models as
well as a linear regression stacking model.

4 Experiments

4.1 Setup

We experimented with a range of regression mod-
els and feature sets, which include: 1) the entire
feature set, 2) top 5 features identified through cor-
relational analysis and 3) several automated feature
selection techniques, including select-k-best (k =
10), select-from-model (Random Forest Regressor)
and recursive feature elimination (RFE) with 10
features to select. This allowed us to effectively
assess the impact of feature selection on model
performance and find the best settings.

All our regressors were implemented using the
scikit-learn library (Pedregosa et al., 2011). The
Random Forest Regressor, Decision Process Re-
gressor and Extra Trees Regressors were trained
with their default parameters. We used Linear Re-
gression with no regularization and Lasso Regres-
sion with an alpha level of ‘0.1’. The SGD Regres-
sor was set to focus on error minimization without
penalty while the Gaussian Process Regressor uti-
lized an RBF kernel by default. For Support Vector
Regression (SVR), different linear and non-linear
kernels were explored. SVR1 operated with a linear
kernel, with an increased penalty parameter (C =
100) and a kernel coefficient (gamma = 0.1) while
we set SVR2 to a linear kernel with a controlled

number of iterations (max iter = 200). SVR3 was
used with an RBF kernel and SVR4 with a polyno-
mial kernel, both with default parameters.

Our transformer models were implemented in
Pytorch using the transformers library by Hug-
ging Face (Wolf et al., 2020). Training was done
on an NVIDIA Tesla P100 GPU using the hyper-
parameters specified in Appendix B.

Our linear regression ensemble was trained on
the predictions of our best feature-based and trans-
former models, using the predictions on our train-
ing and development set.

4.2 Data

The shared task dataset is comprised of 667 re-
tired MCQs from past administrations of the United
States Medical Licensing Examination (USMLE).
USMLE consists of a series of exams (called
‘Steps’) administered by the National Board of
Medical Examiners (NMBE) and the Federation
of State Medical Boards, and is used for medical
licensing in the United States. The items for the
shared task came from Steps 1, 2 and 3 of the exam.
Each item had a stem (i.e. the text describing the
scenario), a key (correct answer) and a number
of distractors (incorrect responses) which varied
between 4 and 10. Each question was also accom-
panied by a couple of additional features, such as
the Steps level and whether the original question
included an image. The difficulty values ranged
between 0.02 and 1.38, where higher values indi-
cated greater difficulty. For further details about
the dataset, we refer the reader to the shared task
overview paper (Yaneva et al., 2024).

The training and test sets provided for the shared
task comprised 466 and 201 items respectively. For
our experiments, we further split the training data
into a training and development set using an 80%-
20% split, resulting in 372 and 94 instances respec-
tively. No additional data was used to train our
systems.

4.3 Results

Experiments reported in this section are based
on our training-development split. Model perfor-
mance was evaluated using Root Mean Squared
Error (RMSE), in line with the shared task evalua-
tion setup.

The performance of our feature-based models
using different algorithms and feature selection
methods is shown in Table 1. Two notable ob-
servations are the extreme RMSE values for the
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Model All features Top5  SelectKBest SelectFromModel RFE
RandomForest 0.3398  0.3409 0.3246 0.3175  0.3323
Linear Regressor oo 0.3076 0.3041 0.3553  0.3276
SVR1 0.4242  0.3015 0.3048 0.3551 0.3164
SVR2 0.457 0.3083 0.3124 0.3656 0.322
SVR3 0.3506  0.3269 0.3184 0.3398 0.7024
SVR4 1.11  405.11 0.3222 0.5162  0.3238
LinearSVR 0.4031 0.3101 0.3094 0.3442  0.3073
SGDRegressor 0.3128 0.2928 0.3047 0.3076  0.3416
GaussianProcess 0.3654 0.5814 0.5845 0.4195 0.5845
DecisionTree 0.4822 0.404 0.4386 0.4381 0.4854
ExtraTrees 0.3524  0.3347 0.3241 0.316 0.3334
MLPRegressor 0.3862  0.2955 0.302 0.3241 0.3028
Lasso 0.315 0.315 0.315 0.315 0.315
ZeroR Baseline 0.3150

Table 1: RMSE on the development set for our feature-based models, using different feature selection methods.

Linear Regressor when using all features (denoted
by oo), which was significantly higher than any
other model, as well as for SVR4 when using ei-
ther all features or just the top 5. Amongst all
our models, Linear Regressor, SGD Regressor and
MLP Regressor showed some of the lowest RMSEs,
ranging from 0.2928 to 0.3076. While these out-
performed the ZeroR baseline (RMSE = 0.3150),
their results were comparable. For this reason, we
selected the Linear Regressor using SelectKBest
(RMSE = 0.3041) as our final model, given its
simplicity and relatively lower error compared to
other methods. This model uses the following 10
features derived from feature selection: 2 readabil-
ity measures (FleshReadingEase, ColemanLiau), 6
cognitively-motivated features (average scores and
ratios of content words that do not have a rating
for imagability, familiarity and concreteness) and 2
frequency features (counts of content words not in
top 3000 and 4000 words).

Building an optimal transformer-based model re-
quired finding the best performing pre-trained lan-
guage model as well as additional hyper-parameter
optimisation. A comparison of model performance
using the training parameters in Appendix B is
shown in Table 2. As the results suggest, BERT-
based models perform better than XLNet, which
shows the least convergence. Out of the best per-
forming models, we chose ROBERTa for further
hyper-parameter tuning, as it showed better aver-
age performance across our training and dev sets,
something that we prioritised given the small size
of our datasets.

Hyper-parameter optimisation involved fine-
tuning our RoBERTa model using different val-
ues for dropout (0.1,0.3,0.5), weight decay (0
vs 1 x 1079), learning rate (1 x 1073, 1 x 1074,

RMSE
Model Train Dev Average
BERT 03411 0.3142  0.3276
bioBERT | 0.3567 0.3057 0.3312
XLNet 04861 0.3366 0.4114
RoBERTa | 0.3101 0.3121 0.3111

Table 2: Comparison of pre-trained models using the
optimal hyper-parameters.

RMSE
Model Train Dev Average
Minimum 0.3061 0.3072  0.3066
Maximum 0.3024  0.3091 0.3057
Average 0.2979 0.3056  0.3018
Linear regression | 0.2944 0.3037  0.2991

Table 3: Performance of our ensemble models on the
development set.

1x107°,2 % 1075, 3 x 107°), additional features
(all/none) and special tokens (enabled/disabled).
However, none of those combinations were able to
beat our initial model.

Finally, our best feature-based and transformer-
based models were used to build different simple
ensemble models that combined their predictions,
as described in Section 3.3. The performance of
these models is included in Table 3. Despite the
small differences, results show that the linear re-
gressor outperforms simpler combinations based
on the minimum, maximum or average of predic-
tions, so we use it as our final ensemble model.

5 Official evaluation results

Our submission to the shared task included the
output of the best three models found in our experi-
ments: 1) a feature-based linear regressor (FEAT),
2) a RoBERTa-based model (ROBERTA) and 3) a
linear regression ensemble (ENSEMBLE) operat-
ing on the output of the previous two models. In all
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Rank | Team name Run RMSE
1 EduTec electra 0.299
2 UPN-ICC runl 0.303
3 EduTec roberta 0.304
4 ITEC RandomForest 0.305
5 BC ENSEMBLE 0.305
6 Scalar Predictions 0.305
7 BC FEAT 0.305
8 BC ROBERTA 0.306
16 Baseline DummyRegressor  0.311

43 ITEC BERT-ClinicalQA  0.393

N
)
7

\

Frequency

Table 4: Official performance evaluation of our models.

three cases, the final models used for our submis-
sion were re-trained using all the available training
data, unlike for our optimisation experiments where
we used only 80%.

An abbreviated version of the official results is
included in Table 4. As we can see, results from
different teams are very close, with an average
RMSE of 0.3246 (SD = 0.0207). Our submitted
systems ranked 5th (ENSEMBLE), 7th (FEAT) and
8th (ROBERTA), also showing little variation be-
tween them. However, it is interesting to see how
the ensemble model ended up in the top 5, con-
sidering it operates on the output of the other two
lower-ranked systems, which highlights the impor-
tance of model optimisation.

All of our systems were also able to beat the
baseline (RMSE = 0.311), which only 35% of the
systems did.

As all our systems directly or indirectly made use
of linguistically-motivated features, we can also
conclude that the explicit definition of features was
crucial to achieve competitive results. This is in
line with previous research, which has consistently
found that traditional feature-based models tend
to outperform deep learning models for regression
tasks, especially when the amount of training data
is very limited (Grinsztajn et al., 2022).

6 Analysis and discussion

This section looks at the performance of our best
model (ENSEMBLE) in more detail. Prediction
error for this model ranges from 0 to 0.8526, with a
mean of 0.2494, with the majority of items having
an absolute error under 0.4 (see Figure 2).
Correlation between gold standard difficulty vs
predicted difficulty is 0.2024 (p < .05), which is
considered weak (see Figure 3). In particular, we
observe that prediction error decreases when the
gold standard difficulty goes from 0 to roughly 0.4,

0.0
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Absolute Error

Figure 2: Distribution of prediction errors.
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Figure 3: Correlation between gold standard difficulty
and predictions by our ENSEMBLE model.

then remains low between 0.4 and 0.6 and finally
steadily increases from that point onwards, as seen
in Figure 4. This reveals that the model is more
accurate for values in the middle of the range and
particularly inaccurate for very difficult items.

We also looked at the relationship between pre-
diction error and item similarity, where similarity
is given by the two principal components (PC1 and
PC2) from Principal Component Analysis on the
items’ BERT embeddings (Figure 5). However,
the plot shows no obvious correlations or clusters,
suggesting that similar items are not predicted with
the same degree of accuracy by our ENSEMBLE
model.

Performance by item type shows that text-only
items have a mean absolute error of 0.2506 while
items with pictures yield 0.2399. Although this
difference is probably negligible, it is somewhat
surprising that difficulty for items containing pic-
tures are slightly more accurately predicted when
none of our models take those pictures into account
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Figure 5: Prediction error and the relationship between
items.

(all our models are text-based and no pictures were
included in the dataset).

In terms of the exam level of each item, we found
that the average prediction error increases as the
Steps level is higher, which matches our intuition
that that difficulty increases by level (Steps 1/2/3
mean difficulties are 0.2264, 0.2557 and 0.2782
respectively).

The effect of the number of distractors, how-
ever, does not seem to follow a clear trend, as error
increases when using 4 and 7 distractors but it de-
creases when using 5, 6 and 8. The number of
distractors yielding the lowest prediction error is 6.

7 Conclusions

In this paper, we have described the three models
that were used in our submission to the BEA 2024
shared task: 1) a traditional feature-based regressor,
2) a transformer-based model and 3) an ensemble
model. Our best system, a linear regressor ensem-

ble, ranked 5th, producing near-optimal results. A
detailed analysis revealed that our ensemble model
is more accurate at predicting difficulty in the mid-
dle range, struggling to predict more difficult items.
Other aspects, such as the inclusion of pictures or
the number of distractors, do not have a significant
impact on prediction accuracy.

All in all, our experiments show that simple mod-
els based on linear regression or pre-trained lan-
guage models can achieve acceptable performance
without excessive fine-tuning.

In future work, we would like to explore the use
of custom loss functions in our transformer models
as well as new features and the addition of synthetic
data, since we believe that the performance of all
the systems that participated in the shared task was
hindered by the small size of the training data.
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A List of features

Group Features

Lexical Counts of: Words, Content Words, Content Words without Stop Words, Nouns, Verbs, Adjectives,
Numbers, Commas, Complex Words (> 3 syllables), and Types (unique words); Ratios of: Content
Words, Nouns, Verbs, Adjectives, Numbers, Commas, Complex Words and Types; Average Word
Length in Syllables.

Readability formulae | Flesh Reading Ease, Flesh Kincaid Grade Level, Gunning Fog, Coleman Liau

Semantic Counts of Polysemic Words; Proportion of Polysemic Words; Average Number of Senses of:
Content Words, Nouns, Verbs, Adjectives and Adverbs; Average Distance to WN of Nouns, Verbs
and Nouns and Verbs, Ratio of Words in WN

Syntactic Average Length of: Sentences, Noun Phrases; Count of: Negation, Noun Phrases, Verb Phrases,
Prepositional Phrases, Active Verb Phrases, Passive Verb Phrases, Agentless Passive Verbs, Relative
Clauses; Ratio of: Negation, Noun Phrases, Verb Phrases, Prepositional Phrases, Passive Verbs,
Active Verbs, Relative Clauses; Average Number of Words Before Main Verb, Passive Active Ratio
Cognitively motivated | Imageability, Familiarity, Age of Acquisition, Meaningfulness Ratio Colorado, Meaningfulness
Ratio Paivio

Cohesion-related Count and Ratio of: All Connectives, Temporal Connectives, Additive Connectives, Causal
Connectives, Referential Pronouns
Frequency-based Average Rank Frequency of Words and Content Words; Average Absolute Frequency of Words and

Content Words; Average Relative Frequency of Words; Count of Words and Content Words Not in
Top: 2000, 3000, 4000 and 5000 words

Similarity* Path Similarity, Cosine Similarity, Levenshtein Distance, Doc Similarity, Jaccard Similarity be-
tween Stem and Key; Average Cosine and Levenshtein Similarity: Between Key and Distractors
and Between Distractors

Other* Number of Distractors, Exam Type, Item Type

Table 5: List of features employed in our study. Features marked with * have been added to those adopted from Ha
etal. (2019)

B Training hyper-parameters

Learning rate 1x107°
Batch size 16
Weight decay 1x107°
Dropout 0.1

Number of epochs 3
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