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Abstract
This work explores a novel data augmenta-
tion method based on Large Language Mod-
els (LLMs) for predicting item difficulty and
response time of retired USMLE Multiple-
Choice Questions (MCQs) in the BEA 2024
Shared Task. Our approach is based on aug-
menting the dataset with answers from zero-
shot LLMs (Falcon, Meditron, Mistral) and
employing transformer-based models based on
six alternative feature combinations. The re-
sults suggest that predicting the difficulty of
questions is more challenging. Notably, our
top performing methods consistently include
the question text, and benefit from the vari-
ability of LLM answers, highlighting the po-
tential of LLMs for improving automated as-
sessment in medical licensing exams. We
make our code available at: https://github.com/
ana-rogoz/BEA-2024.

1 Introduction

High-stakes medical licensing exams, like the
United States Medical Licensing Examination
(USMLE), require well-crafted questions to accu-
rately assess a candidate’s knowledge and skills.
Traditionally, determining item difficulty and re-
sponse time (average time to answer) relied on
pretesting, which can be carried out by embedding
new items alongside scored items in live exams.
However, this method has been recognized as im-
practical due to resource limitations (Settles et al.,
2020).

This year’s Workshop on Innovative Use of NLP
for Building Educational Applications (BEA 2024)
directly addresses this problem and its resource lim-
itations by proposing a shared task on Automated
Prediction of Item Difficulty and Item Response
Time for USMLE exam items. This initiative fos-
ters collaboration and innovation in developing re-
liable prediction methods, while also contributing
to creating more efficient, secure, and informative
medical licensing exams.

This paper details our participation in the shared
task (Yaneva et al., 2024), where we investigated
the use of Large Language Models (LLMs) to pre-
dict difficulty and response time for retired USMLE
Multiple-Choice Questions (MCQs). Our main
contribution is to augment the dataset by incorpo-
rating answer choices generated by several zero-
shot LLMs (Falcon, Meditron, Mistral). To solve
the two prediction tasks (question response time
prediction, question difficulty prediction), we em-
ploy transformer-based models that alternatively
employ six different feature combinations. Our
findings indicate that predicting question difficulty
proves to be a more complex task. Interestingly, the
most successful models consistently incorporate
the question text, and benefit from the augmenta-
tion based on LLM-generated answers. Our results
highlight the potential of LLMs to enhance auto-
mated assessment methods in medical licensing
exams.

We also present post-competition methods that
obtain better results than the originally submitted
models. These newer models are aimed at address-
ing overfitting and our wrong choice of features.

2 Related work

The need for alternatives to the traditional pro-
cesses motivates the exploration of new meth-
ods for estimating item difficulty and response
time. Recent research (Ha et al., 2019; Yaneva
et al., 2020; Xue et al., 2020; Baldwin et al., 2021;
Yaneva et al., 2021) suggests promising results us-
ing machine learning models trained on item text
data to predict these characteristics.

One of the seminal studies in this direction (Ha
et al., 2019) investigated the feasibility of using
machine learning models to predict both item diffi-
culty and response time for multiple-choice ques-
tions in a high-stakes medical exam. The authors
focused on extracting various features from the
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Figure 1: An overview of the data preprocessing and model training workflow for predicting item difficulty and
response time of medical exam questions. The initial dataset is enriched with zero-shot prompted responses
generated by Large Language Models (LLMs). We then perform preprocessing over the augmented dataset by
scaling the target labels, adding new feature combinations, text cleaning and establishing the split for cross-validation.
Finally, two alternative transformer-based models are fine-tuned on the augmented data.

question text data, including linguistic features and
embedding types. Their models were then trained
to predict these difficulty and response time char-
acteristics. The encouraging results from this study
suggest that machine learning offers a promising
alternative to traditional, resource-intensive pretest-
ing methods for estimating these important exam
design elements. While the prior studies focused on
predicting difficulty and response time separately,
Xue et al. (2020) explored a method that could pre-
dict both simultaneously, using transfer learning.
Their research suggests that this approach offers
potential benefits in terms of efficiency.

In addition to predicting difficulty and response
time, researchers explored another valuable appli-
cation of machine learning: item survival predic-
tion (Yaneva et al., 2020). This task focuses on
estimating the likelihood of an item to be included
in the final exam based on its difficulty and other
question characteristics, and highlights the versatil-
ity of machine learning for various stages of exam
design. Another approach was presented by Bald-
win et al. (2021), who study the use of linguistic
features to predict the response process complexity,
which refers to the mental steps required to answer
a medical MCQ.

Instead of predicting difficulty, Yaneva et al.
(2021) leveraged the use of linguistic features to
predict the response process complexity associated
with answering medical MCQs. Their work sheds
light on the underlying factors that contribute to
the difficulty of these questions.

In summary, automated approaches offer several
advantages, such as efficiency (predicting from text
eliminates the need for pretesting, saving time and
resources), security (reduced reliance on pretest-

ing minimizes the risk of question exposure), and
scalability (automated methods allow for creating
larger pools of high-quality questions). Therefore,
continuously validating the use of machine learn-
ing to replace traditional methods is currently an
active research topic.

3 Methods

We start by annotating the original dataset with an-
swers obtained by prompting LLMs in a zero-shot
setup. The extended dataset is further processed by
scaling the target labels, creating additional feature
combinations, text cleaning, and setting the data
split for cross-validation. The cleaned dataset is em-
ployed to fine-tune two transformer-based models.
The end-to-end overview of the employed frame-
work is presented in Figure 1. Below, we describe
each step of our pipeline in detail.

3.1 Zero-Shot Prompting
We conjecture that LLMs can be employed to pro-
vide answers to the questions that need to be evalu-
ated in terms of difficulty and response time, and
the returned answers can be harnessed to better
solve the prediction tasks. For instance, the num-
ber of LLMs that give correct answers to a question
can be a strong indicator for the difficulty level of
the respective question. To this end, we rely on
three LLMs to obtain the answers, namely Falcon-
7B (Almazrouei et al., 2023), Meditron-7B (Chen
et al., 2023) and Mistral-7B (Jiang et al., 2023).
We resort to the use of models with 7B parameters,
due to our computing resource limitations. How-
ever, we compensate for the use of lighter LLMs by
integrating multiple models. While Meditron-7B
is specialized on the medical domain, which per-
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#Item Falcon Meditron Mistral
391 The correct answer is: C.

Weight loss program. The cor-
rect answer is: C.

The correct answer is option A.
The patient has a history of hy

The correct answer is D. Anti-
hypertensive therapy. The pa-
tient has

148 The answer is: A. Common
fibular (peroneal), The com-
mon

The correct answer is option A.
The common fibular nerve is

The correct answer is A. Com-
mon fibular (peroneal).
The common

562 The answer is: A. A, B. B, C.
C, D.

The correct answer is option D.
The correct answer is option D.

The correct answer is D. D.
The patient has a

Table 1: Examples of Falcon, Meditron and Mistral answers, when prompted with USMLE questions together with
the multiple-choice answers. The examples are not truncated (although it often seems so).

Feature name Description
ItemNum Index
ItemText Question text
Answer_[A-J] Multiple choice answers
Answer_Key Single value between A-J
Answer_Text The text of the correct answer
ItemType Text or PIX (i.e. image)
EXAM Step_[1, 2, 3]
Difficulty Real value indicating question

difficulty.
Response_Time Integer value indicating mean

response time (s).

Table 2: Initial set of features from the original shared-
task dataset.

fectly suits the provided shared task data, the other
LLMs are general purpose models. These choices
are aimed at enhancing the diversity of the mod-
els, which was previously reported as a relevant
aspect when constructing ensembles (Georgescu
et al., 2023). Hence, by combining the outputs
of the three LLMs, we aim to leverage the com-
plementary strengths of all models. The selected
LLMs are trained on distinct datasets, and they
exhibit different capabilities in reasoning, factual
recall, or creative text generation. By employing
diverse models, we aim to reduce the influence of
biases learned by individual models, thus achieving
a higher generalization capacity. For each sample,
we prompt the three LLMs in the following man-
ner:

PROMPT: "You are a student taking the
USMLE exam. Your task is to answer the
following question with one of the
multiple choices.

$ItemStem_Text

A.$Answer_A,
B.$Answer_B,
..."

Building on the provided prompts, Table 1 show-
cases example responses from the three LLMs
(Falcon-7B, Meditron-7B, and Mistral-7B). Inter-
estingly, we observe a wide spectrum of agreement,
ranging from all three models providing identical
answers to complete divergence in their responses.

3.2 Preprocessing

To ensure consistent scaling across labels, we nor-
malize the “Response_Time” and “Difficulty” tar-
get labels to a common range between 0 and 1.
Following the scaling of target variables, we apply
additional preprocessing steps to the LLM outputs.
To improve performance and data consistency, we
cleaned the LLM answer texts by removing any
extra spaces and new line characters.

To ensure the reproducibility of our results, we
provide the preprocessed and augmented dataset,
containing both training and test sets, at https://
github.com/ana-rogoz/BEA-2024.

3.3 Data Engineering

A detailed breakdown of the available features can
be found in Table 2. We checked how well input
features correlate to the target Response_Time and
Difficulty values, and concluded that the EXAM,
AnswerKey and ItemType columns display no cor-
relation, as shown in Figures 2, 3 and 4, respec-
tively. Thus, before the competition, we decided
to exclude these columns from all our experiments,
except for one baseline that includes all original fea-
tures. However, this decision overlooks an impor-
tant insight: although the AnswerKey alone does
not correlate with the labels, it could represent a
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Figure 2: Left: Correlation between the EXAM integer feature and the difficulty label. Right: Correlation between
the EXAM integer feature and the response time label.

Figure 3: Left: Correlation between the ItemType integer feature and the difficulty label. Right: Correlation
between the ItemType integer feature and the response time label.

very useful feature when combined with LLM an-
swers. This is because an LLM can answer “The
correct answer is D.”, and comparing this answer
with the AnswerKey feature can tell us if the LLM
was able to correctly identify the correct answer
or not. To this end, we combine the AnswerKey
feature with LLM features in our post-competition
models.

To enrich the input data provided to our models,
we engineer seven new features, as presented in
Table 3. These features combine original dataset

features with the LLM-generated answers. This
process aims to capture a more comprehensive rep-
resentation of the problem for the trained models.

To mitigate the limitations of the very small
dataset size, we employ a 5-fold cross-validation
procedure to train our models. This technique in-
volves shuffling the data and splitting it into five
fixed equally-sized subsets. Each fold is then used
for training and validation in turn, providing a ro-
bust evaluation of the models. The final extended
and shuffled dataset is part of our publicly available
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Figure 4: Left: Correlation between the AnswerKey integer feature and the difficulty label. Right: Correlation
between the AnswerKey integer feature and the response time label.

Feature set Merged features
all All initial feature columns
q_answers ItemText, Answer_*, An-

swer_Text
answers Answer_*
q_a ItemText, AnswerText
llms_a LLM answers, AnswerText
q_llms_a ItemText, LLM answers, An-

swerText
q_llms_a_key⋄ ItemText, LLM answers, An-

swerText, AnswerKey

Table 3: Combinations of features that are alternatively
used to train our models. The ⋄ symbol indicates the
feature set is added post-competition.

repository.

3.4 Models

Our work focuses on training and applying dif-
ferent models to the two regression tasks, namely
predicting response time and difficulty of medi-
cal questions. We utilize two transformer-based
approaches, well-suited for learning complex rela-
tionships. The models are trained on the new sets of
constructed features, which are detailed in Table 3.
We also include a basic linear modeling approach
as baseline. After the competition, we decided to
employ a model that uses frozen transformer-based
features and trains only a linear model on top of the
deep features. This decision is aimed at address-

ing the potential of overfitting transformer-based
models to the very small dataset available for the
competition.
Fine-tuned BERT. Our first method employs a
fine-tuned Bidirectional Encoder Representations
from Transformers (BERT) model (Devlin et al.,
2019) for the regression tasks. We leverage the
pre-trained BERT encoder to generate contextu-
alized representations for each text input as 768-
dimensional vectors. However, instead of the stan-
dard classification head, we implement a single-
neuron regression head. Finally, a sigmoid activa-
tion function is applied to the output layer, ensuring
the predictions fall within the desired range of 0 to
1.
Fine-tuned GPT-2. Similar to the BERT-based
approach, our second method fine-tunes a GPT-2
model (Radford et al., 2019) for regression. We
utilize the corresponding GPT-2 tokenizer to con-
vert text inputs into numerical representations. The
pre-trained GPT-2 model undergoes further train-
ing (fine-tuning) with a single-neuron output layer
at the end. Once again, we employ a sigmoid acti-
vation function to ensure the model’s predictions
fall within the interval [0, 1].
ν-Support Vector Regression + TF-IDF. In ad-
dition to transformer-based approaches, we in-
vestigate a linear regression method, namely ν-
Support Vector Regression (ν-SVR) (Schölkopf
et al., 2000). We experiment with two shallow
feature extraction techniques, namely TF-IDF and
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TF-IDF combined with Principal Component Anal-
ysis (PCA), focusing on the statistical properties of
words in a document.
ν-Support Vector Regression + BERT. Fine-
tuning large models, e.g. BERT or GPT-2, on small
datasets is prone to overfitting. To mitigate over-
fitting, an alternative to end-to-end fine-tuning is
keeping the pre-trained layers frozen, and train-
ing only the last regression layer. To this end, we
propose a model that employs BERT-based em-
beddings and trains a ν-SVR model on top, an ap-
proach that is also known as linear probing. As in-
put to the BERT model, we consider LLM answers
with and without the AnswerKey feature. The
resulting ν-SVR+BERT models are added post-
competition.

4 Experiments

4.1 Dataset

In the BEA 2024 Shared Task, the dataset pro-
vided by the organizers consists of retired Multiple-
Choice Questions (MCQs) from the United States
Medical Licensing Examination. The data is di-
vided into two distinct subsets: an initial training
set of 466 samples and a separate test set of 201
samples, which is used to evaluate the participants.

4.2 Evaluation

We assess the performance levels of our meth-
ods using two complementary metrics: the mean
squared error (MSE) and the Kendall τ correlation.
MSE measures the average squared difference be-
tween predicted and actual values, indicating how
well the model fits the data, while the Kendall τ
correlation evaluates the model’s ability to capture
the general trend of the data, providing insights
into its generalization capability.

4.3 Hyperparameter Tuning

The hyperparameters of all models are deter-
mined via grid search. For the transformer-
based methods (BERT, GPT-2), we employ a
grid search over the maximum number of input
tokens in {100, 150, 200, 250, 300, 350, 400, 512},
learning rate values in {10−4, 5 · 10−4, 10−5, 5 ·
10−5, 10−6, 5 · 10−6}, and number of training
epochs in {5, 10, 15, 20}. The models are opti-
mized using the AdamW optimizer (Loshchilov
and Hutter, 2019) on mini-batches of 32 sam-
ples. For the ν-SVR approaches, we employ
a grid search over the parameter C in the set

{0.01, 0.1, 0.5, 1, 5, 10, 50, 100} and values of ν
in {0.1, 0.2, 0.3, 0.4, 0.5}. The complete hyperpa-
rameter setup for our experiments, as well as the
methods themselves, are available as part of our
publicly available repository: https://github.com/
ana-rogoz/BEA-2024.

4.4 Cross-Validation Results
Due to the modest training dataset size (466 train-
ing samples), we employ 5-fold cross-validation
to obtain robust evaluation results. We present the
results based on the cross-validation procedure in
Table 4. The results represent the average MSE
and Kendall τ correlation values obtained across
the 5 folds. Our experiments show a notable differ-
ence in task difficulty. Indeed, predicting difficulty
proves to be significantly more challenging than
predicting response time.
Response time. Our 5-fold cross-validation re-
sults indicate that the SVR+BERT models based on
“q_llms_a_key” (0.0132) and “q_llms_a” (0.0134)
features achieve the best MSE values for question
response time prediction. They are followed by
the fine-tuned BERT based on “q_answers” fea-
tures (0.0148). In terms of the Kendall τ correla-
tion, the top three models are the same, but their
ranking is different. More precisely, the fine-tuned
BERT based on “q_answers” features surpasses the
SVR+BERT models in terms of Kendall τ .

We notice that the ν-SVR models based on TF-
IDF representations struggle to learn effective rela-
tionships between features and target labels. How-
ever, this is clearly an issue of the shallow TF-IDF
features, since the ν-SVR models based on BERT
embeddings are at the opposite end of the perfor-
mance spectrum.

Our experiments reveal two interesting findings
regarding feature selection for response time pre-
diction. First, transformer models that rely only on
the multiple-choice answers obtain sub-optimal re-
sults compared with those that include the original
question. This suggests that the question itself pro-
vides valuable information about the response time.
The second important observation is that the An-
swerKey feature becomes useful when combined
with LLM answers, boosting the performance of
SVR+BERT when using “q_llms_a_key” features
instead of ‘q_llms_a” features, with respect to both
MSE and Kendall τ measures.
Difficulty. Similar to the response time predic-
tion task, we analyze the top models for question
difficulty prediction in terms of both MSE and
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Task Model Features MSE ↓ Kendall τ ↑ Run

Response Time

BERT

all 0.0151± 0.0016 0.3810± 0.0543
q_answers 0.0148± 0.0011 0.4232± 0.0350 1
answers 0.0190± 0.0017 0.1334± 0.0241
q_a 0.0149± 0.0010 0.3718± 0.0452
llms_a 0.0171± 0.0003 0.2401± 0.0467
q_llms_a 0.0150± 0.0012 0.3912± 0.0414 2

GPT-2

all 0.0245± 0.0085 0.3550± 0.0876
q_answers 0.0157± 0.0023 0.4029± 0.0458 3
answers 0.0231± 0.0041 0.0703± 0.0404
q_a 0.0238± 0.0049 0.2949± 0.0766
llms_a 0.0292± 0.0102 0.1417± 0.0497
q_llms_a 0.0249± 0.0044 0.2536± 0.0984

SVR

q_llms_a + BERT 0.0134± 0.0011 0.4127± 0.0362 ∗
q_llms_a_key + BERT 0.0132± 0.0012 0.4141± 0.0289 ∗
q_a + TF-IDF 0.0254± 0.0017 0.1532± 0.0241
q_a + TF-IDF + PCA 0.0294± 0.0017 0.1132± 0.0652

Difficulty

BERT

all_input 0.0534± 0.0101 0.0780± 0.0469
q_answers 0.0534± 0.0102 0.0570± 0.0862
answers 0.0522± 0.0107 0.0795± 0.0481
q_a 0.0538± 0.0092 0.0812± 0.0189
llms_a 0.0562± 0.0105 0.0204± 0.0610
q_llms_a 0.0500± 0.0093 0.1470± 0.0447 1

GPT-2

all_input 0.0700± 0.0080 0.0727± 0.0640
q_answers 0.0659± 0.0052 0.1155± 0.0208 2
answers 0.0571± 0.0130 0.0323± 0.0518
q_a 0.0623± 0.0059 0.0802± 0.0507
llms_a 0.0707± 0.0377 0.1129± 0.0472
q_llms_a 0.0599± 0.0142 0.1259± 0.0333 3

SVR

q_llms_a + BERT 0.0576± 0.0087 0.1102± 0.0665 ∗
q_llms_a_key + BERT 0.0534± 0.0067 0.1592± 0.0616 ∗
q_a + TF-IDF 0.0551± 0.0033 −0.0895± 0.0305
q_a + TF-IDF + PCA 0.0614± 0.0025 −0.0896± 0.0350

Table 4: Results based on the 5-fold cross-validation procedure of the proposed methods for the response time and
difficulty prediction tasks. To select the runs for each task, we employ the Kendall τ correlation. For each task, we
highlight the top three Kendall τ correlations in red (bold), green, blue, respectively. We highlight the best MSE for
each task in bold. The ↓ and ↑ symbols indicate when lower or upper values are better, respectively. The ∗ symbol
indicates the results are added post-competition.

Kendall τ correlation. Interestingly, the models
achieving the best MSE scores, namely the fine-
tuned BERT models based on “q_llms_a” (0.0500)
and “answers” (0.0522) features, incorporate the
correct answer information. However, in terms of
Kendall τ , the top models are slightly different.
While the SVR+BERT with “q_llms_a_key” fea-
tures (0.1592) reaches the highest correlation, the
second and third best models employ “q_llms_a”
features in combination with BERT (0.1470) and
GPT-2 (0.1259). Notably, all these models benefit

from the inclusion of questions and LLM answers.
Moreover, all but one of the top models for both
metrics include the question text as input. This
reinforces the importance of the question itself for
predicting difficulty. Furthermore, the best Kendall
τ scores are obtained by models that always incor-
porate both the question and LLM answers. This
highlights the potential of LLMs in capturing nu-
ances beyond the provided question and answer
choices, leading to more accurate predictions.

Similar to the previous task, the ν-SVR models
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Task Model Features RMSE ↓ MSE ↓ Kendall τ ↑ Run Rank

Response Time

BERT q_answers 26.846 0.0333 0.3579 1 11/34
BERT q_llms_a 26.768 0.0331 0.3482 2 10/34
GPT-2 q_answers 26.073 0.0366 0.4767 3 7/34
SVR q_llms_a + BERT 25.621 0.0160 0.4472 ∗ 5/35
SVR q_llms_a_key + BERT 25.613 0.0160 0.4399 ∗ 5/35

Difficulty

BERT q_llms_a 0.308 0.0654 0.2179 1 9/43
GPT-2 q_answers 0.337 0.1031 0.0275 2 34/43
GPT-2 q_llms_a 0.328 0.1502 0.0008 3 30/43
SVR q_llms_a + BERT 0.292 0.0638 0.0517 ∗ 1/44
SVR q_llms_a_key + BERT 0.281 0.0582 0.1519 ∗ 1/44

Table 5: Test results of our best performing methods for the response time and difficulty prediction tasks. We report
the official evaluation metric (RMSE), along with our metrics (MSE and Kendall τ ). The ↓ and ↑ symbols indicate
when lower or upper values are better, respectively. The ∗ symbol indicates the results were added post-competition.

based on TF-IDF features seem to produce subpar
results, given that their Kendall τ scores indicate
negative correlations between predictions and tar-
get labels. However, the ν-SVR models based on
BERT embeddings achieve comparable results with
the fine-tuned transformer-based approaches, and
one of the former models (based on “q_llms_a_key”
features) performs even better in terms of Kendall
τ than the top-three submitted models.

4.5 Final Test Results

For the test dataset, we report our two evaluation
metrics, MSE and Kendall τ , on the normalized la-
bels, as well as the official evaluation metric, i.e. the
Root Mean Squared Error (RMSE), on the raw tar-
get labels. For the final evaluation on the official
test set, we selected the top three models in terms
of Kendall τ values. The corresponding results are
presented in Table 5. In the same table, we also
include our post-competition results.
Response time. All three submitted methods reach
higher (worse) MSE values on the test set compared
with the 5-fold cross-validation results, perhaps
due to overfitting. The best MSE is achieved us-
ing the fine-tuned BERT model and the “q_llms_a”
features (0.0331), surpassing the models based on
“q_answers” features. The MSE-based ranking of
the three runs on the test set is not the same as
the one obtained via cross-validation. The ranking
based on the Kendall τ correlation is also differ-
ent, with the best model on the test set being the
fine-tuned GPT-2 based on “q_answers” features
(0.4767). This model also achieves better RMSE
on the test set. However, for the other two submit-
ted models, the RMSE metric is not correlated with

Kendall τ . Compared with the other competitors,
our best model ranked 7th out of 34 models.

Our post-competition results obtained by the ν-
SVR+BERT models reveal consistent MSE and
Kendall τ values across test and cross-validation
evaluations. This suggests that keeping the pre-
trained BERT frozen leads to a higher general-
ization capacity when the data available for fine-
tuning is so small (less than 500 samples). No-
tably, calculating the RMSE on the held-out test set
demonstrates that the SVR+BERT models outper-
form our officially submitted models, potentially
obtaining a better rank (5th place out of 35).
Difficulty. The MSE values of our final sub-
missions for the difficulty prediction task are
higher (worse) for two out of three methods, when
compared with the values reported during the 5-
fold cross-validation experiments. The respec-
tive methods are the fine-tuned GPT-2 based on
“q_answers” features and the fine-tuned GPT-2
based on “q_llms_a” features. The same two meth-
ods reach poor Kendall τ values, indicating almost
no correlation between ground-truth and predicted
labels. However, for our first run, which is repre-
sented by the fine-tuned BERT based on “q_llms_a”
features, both MSE and Kendall τ values are com-
parable to the corresponding values reported using
cross-validation (MSE: 0.0500 vs. 0.654, Kendall
τ : 0.1470 vs. 2179). Our findings are in line with
the official results based on RMSE, which show
that the fine-tuned BERT based on “q_llms_a” fea-
tures is our best run. Compared with the models
submitted by other participants, our best model
for the question difficulty task ranks 9th out of 43
models.
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Our post-competition ν-SVR-based models
yield superior performance compared to all three
models submitted for the official evaluation.
Remarkably, both post-competition models ex-
hibit consistent MSE values between the cross-
validation and test sets, hinting at the effective
mitigation of overfitting which seems to affect our
fine-tuned BERT and GPT-2 models. The config-
uration based on “q_llm_a_key” features achieves
the lowest MSE of 0.0582, followed closely by
the configuration based on “q_llms_a” features,
with an MSE of 0.0638. This further confirms the
utility of the AnswerKey feature in combination
with LLM answers. Furthermore, considering the
official RMSE metric, our post-competition mod-
els achieve impressive results. The SVR+BERT
based on “q_llm_a_key” features attains the lowest
RMSE of 0.281, followed by the version based on
“q_llm_a” features with an RMSE of 0.292. These
results would have positioned our post-competition
models at the top of the leaderboard.

5 Conclusion

In this paper, we presented our approaches to the
BEA 2024 Shared Task on Automated Prediction of
Item Difficulty and Item Response Time of retired
USMLE MCQs. Our main contribution is a task-
specific data augmentation method based on adding
answers to MCQs using LLMs prompted in a zero-
shot setup. We carried out exhaustive experiments
for both tasks, using two strong transformer-based
models, in both fine-tuning and linear probing set-
tings. We employed seven different types of fea-
ture combinations, while leveraging LLM-based
answers. The empirical results showed four key
findings. First, the difficulty prediction task is sig-
nificantly harder than the response time prediction
task. Second, we noticed that the top-performing
approaches always made use of the question text.
Third, LLM answers had a positive impact on per-
formance, especially on the more difficult predic-
tion task. Fourth, linear probing (training an SVR
on frozen pre-trained features) shows a better gen-
eralization capacity than end-to-end fine-tuning,
most likely due to the small training set available
for the competition.

6 Limitations

To collect answers from the LLMs, we used a V100
GPT Colab runtime, with 78.2 GB Disk Space,
which only allowed us to prompt the smallest ver-

sions of the three LLMs, each based on 7 billion
parameters. Due to our resource limitations, we
were not able to prompt larger LLMs, which could
have led to better results.

The limited number of samples was an important
challenge for the evaluated transformers, which are
prone to overfitting on small datasets. The final
results indicate that our models suffered from some
level of overfitting. In future work, we aim to study
several ways to avoid overfitting, such as using
dropout, frozen layers, regularization terms, etc.
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