
Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 403–413
June 20, 2024 ©2024 Association for Computational Linguistics

 

 
 

Abstract 

The practice of soliciting self-explanations 

from students is widely recognized for its 

pedagogical benefits. However, the labor-

intensive effort required to manually assess 

students’ explanations makes it impractical 

for classroom settings. As a result, many 

current solutions to gauge students’ 

understanding during class are often limited 

to multiple choice or fill-in-the-blank 

questions, which are less effective at 

exposing misconceptions or helping 

students to understand and integrate new 

concepts. Recent advances in large 

language models (LLMs) present an 

opportunity to assess student explanations 

in real-time, making explanation-based 

classroom response systems feasible for 

implementation. In this work, we 

investigate LLM-based approaches for 

assessing the correctness of students’ 

explanations in response to undergraduate 

computer science questions. We investigate 

alternative  prompting approaches for 

multiple LLMs (i.e., Llama 2, GPT-3.5, and 

GPT-4) and compare their performance to 

FLAN-T5 models trained in a fine-tuning 

manner. The results suggest that the highest 

accuracy and weighted F1 score were 

achieved by fine-tuning FLAN-T5, while 

an in-context learning approach with GPT-

4 attains the highest macro F1 score. 

1 Introduction 

Interactivity is critical to learning (Blasco-Arcas et 

al. 2013; Herppich et al. 2016). It has been widely 

demonstrated that by increasing interactivity in the 

classroom, we can significantly improve students’ 

learning outcomes (Beauchamp and Kennewell 

2010; Mayer et al. 2009). Student-teacher 

interaction is one of the most influential factors in 

learning (Beauchamp and Kennewell 2010), and 

when classrooms are interactive, students become 

more engaged, more participative, and are more 

motivated to learn (Bachman and Bachman 2011; 

Barnett 2006; Caldwell 2007). In addition, 

interactivity can improve comprehension and lead 

to improved learning (Freeman et al. 2014). 

Despite these benefits, many STEM classrooms 

use lectures as the primary method of instruction. 

The lack of interactivity poses serious issues in 

undergraduate education (Freeman et al. 2014), and 

large class sizes can inhibit meaningful exchanges 

between instructors and students in traditional 

classrooms (Caldwell 2007). The passive nature of 

lectures is particularly problematic in STEM 

courses, as research shows that undergraduate 

students in classes that use a traditional lecture 

format are much more likely to fail than students in 

classes that use a more active learning method 

(Freeman et al. 2014).  

Classroom response systems have been touted as 

a potential solution to this problem. These systems 

capture and grade student responses to multiple 

choice questions posed by instructors during 

lectures. Each student submits a response using a 

handheld transmitter (a “clicker”), and software on 

the instructor’s computer records, grades, and 

displays students’ answers for the class to view. 

While research has shown that classroom response 

systems can promote student engagement and 

facilitate the learning of factual knowledge 

(Campbell and Mayer 2009; Hunsu et al. 2016), 

studies have also shown that “clickers” are less 

effective for promoting deep and meaningful 

learning. In fact, traditional classroom response 
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systems may actually obstruct students from 

developing a conceptual understanding of concepts 

and principles, particularly for novice students 

(Shapiro et al. 2017). Because students simply 

select an answer from a list of choices, “clickers” 

do not enable students to construct or generate their 

own responses to questions, which is a key 

component of active and constructive learning (Chi 

and Wylie 2014).  

Decades of research have shown that self-

explanation has a significant impact on student 

learning (Chi et al., 1994; Fonseca and Chi 2011). 

By explaining concepts and examples to 

themselves as they learn, students trigger the self-

explanation effect, where they actively probe their 

own understanding and address gaps in their 

knowledge. Enabling students to generate short-

answer textual explanations to prompts posed by 

instructors during lectures could open a rich 

communication channel between instructors and 

students. Eliciting self-explanations from students 

has the potential to yield substantial learning 

benefits for students in undergraduate STEM 

classrooms, and it has been widely demonstrated 

that self-explanation helps students learn much 

more effectively than students who do not engage 

in self-explanation (Chi et al., 1994; Fonseca and 

Chi 2011; Johnson and Mayer 2010; Roy and Chi 

2005). Because self-explanation requires students 

to explain concepts to themselves in their own 

words, they learn much more deeply. However, 

despite the great potential offered by self-

explanation for promoting learning, students in 

undergraduate STEM classrooms often have 

limited opportunities to engage in this type of 

active and constructive learning activity due to 

limited class time for discussion. Similarly, 

instructors have limited time to assess students’ 

self-explanation responses and provide formative 

and timely feedback during lectures. 

In this paper, we present a large language model-

based approach that automatically assesses 

students’ written responses. We investigate the 

performance of four Transformer-based large 

language models—Llama 2 (Touvron et al. 2022), 

GPT-3.5 (OpenAI 2023), GPT-4 (OpenAI 2023), 

and FLAN-T5 (Chung et al. 2022)—in assessing 

the correctness (i.e., fully correct, partially correct, 

and incorrect) of student self-explanations to 

undergraduate computer science questions. These 

explanations were collected from undergraduate 

students, including those who participated in an 

undergraduate course using the EXPLAINIT system 

we have developed. Our findings suggest that 

FLAN-T5 demonstrates high performance in terms 

of accuracy and weighted F1, when fine-tuned 

using a prompt that includes information taken 

from a grading rubric in combination with an 

exemplar response provided by the instructor. 

However, we also find that the highest macro F1 

score is achieved by GPT-4 in a few-shot learning 

setting, where examples of only ten students’ 

explanation responses are provided without any 

additional information from a rubric or an exemplar 

response. We discuss the tradeoffs between these 

models and the implications of our research for 

practical applications of LLM-based explanation 

assessment in classroom response systems. 

2 Related Work 

It has been found that students explaining concepts 

to themselves has a profound effect on learning. 

Known as the self-explanation effect (Chi et al. 

1994; Fonseca and Chi 2011; Sidney et al. 2015), 

the result of self-explanation goes beyond simply 

rehearsing information: it requires students to 

express concepts in their own words, relate 

concepts to prior knowledge, make inferences, 

integrate information with prior knowledge, and 

monitor and repair faulty knowledge. Thus, self-

explanation is a deeply constructive activity (Roy 

and Chi 2005). The significant learning gains 

associated with self-explanation have been 

demonstrated in a wide range of STEM disciplines 

including computer science (Pirolli and Recker, 

1994), engineering (Johnson and Mayer 2010), 

chemistry (Crippen and Earl 2007), algebra 

(Atkinson et al. 2003), biology (McNamara 2004), 

physics (Chi et al. 1994), and physiology (Butcher 

2006). Our EXPLAINIT classroom response system 

leverages the self-explanation effect to improve 

STEM classroom learning. 

Widely known as “clickers,” classroom response 

systems have emerged as a tool to bridge the gap 

between students and instructors and to make 

lectures more interactive. Used by millions of 

students, classroom response systems allow 

students to anonymously respond to multiple 

choice questions presented during lectures. 

Research has shown that students appreciate the 

ability to compare their own answers to those of 

their peers, receive immediate feedback, and test 

their knowledge, and that “clickers” can increase 

student interactivity during lectures (Freeman et al. 

404



 

 
 

2014; Hunsu et al. 2016; Kay and LeSage 2009). 

However, studies have also shown that clickers fail 

to promote deep and meaningful learning, which 

can be particularly problematic for students in 

STEM classes who are required to conceptually 

understand important concepts, relationships, and 

theories to effectively solve problems (Shapiro et 

al. 2017). Closely related to our work, commercial 

classroom response systems have been explored in 

various classroom settings. These systems typically 

support students through classroom discussions, 

questions, and assignments, and they support 

instructors with features for course material 

creation and assessment, which are incorporated 

with learning management systems. While they 

provide a range of functionalities required for a 

classroom response system, such as the ability to 

pose various types of questions (e.g., multiple 

choice, fill-in-the-blank, short answer questions), 

their automated assessment is typically limited to 

multiple choice and fill-in-the-blank types of 

questions that accept a predetermined set of 

answers, while they require a manual assessment 

process for other types of questions.  

Deep learning-based language models such as 

BERT (e.g., Liu et al. 2019), FLAN-T5 (e.g., 

Chung et al. 2022), GPT (e.g., Brown et al. 2020), 

and Llama (Touvron et al. 2023) have been pivotal 

in the recent advancements in natural language 

processing (NLP; Torfi et al. 2020). In learning 

analytics, additional sources of training data, 

including data collected for free-response prompts 

(Rivera-Bergollo et al. 2022), text providing 

additional context for free-response prompts 

(Condor et al. 2021), response assessment rubrics 

(Condor et al. 2022), and synthetic data generated 

via data augmentation strategies (Lun et al. 2020), 

have effectively enhanced the training of NLP 

models, leading to improved predictive 

performance. NLP techniques have been used to 

accurately analyze student textual responses in the 

context of short-answer science assessment (Smith 

et al. 2019), student written reflections (Carpenter, 

Geden, et al. 2020), student-tutor dialogue 

(Carpenter, Emerson, et al. 2020), and student self-

explanations (Chen and Wang 2022).  

While previous work demonstrated considerable 

success with LLMs for short answer grading 

(Takano and Ichikawa 2022; Zhang et al. 2022) and 

short answer question generation (Moore et al. 

2022), a research area that has seen limited 

exploration is assessing students' free-text 

explanations (Nicula et al. 2023). Building on 

recent advances in NLP and deep learning-based 

language modeling techniques, our work makes a 

novel contribution by investigating an approach to 

assess students’ self-explanations, collected from 

an undergraduate Artificial Intelligence course, 

utilizing large language models with fine-tuning 

and few-shot learning. 

3 EXPLAINIT Classroom Response 

System 

The EXPLAINIT classroom response system 

leverages the self-explanation effect and active, 

constructive, and interactive learning, along with 

state-of-the-art natural language processing, to 

significantly improve STEM undergraduate 

education. With a specific focus on computer 

science, biology, and physics, it aims to create 

highly engaging classroom learning experiences. 

EXPLAINIT offers the opportunity to 

fundamentally improve classroom dynamics by 

supporting both students and instructors. The 

system is designed to support both students and 

instructors in undergraduate STEM courses by 

analyzing and providing feedback on students’ 

explanations through an integrated five-step 

explanation feedback loop (Figure 1): (1) the 

instructor issues an explanation prompt, which 

appears in the EXPLAINIT app on students’ 

computing devices (e.g., laptops, tablets, phones); 

(2) students write free-text explanations ranging 

from a sentence to a short paragraph in the 

EXPLAINIT app on their computing devices; (3) 

EXPLAINIT automatically analyzes students’ 

explanations and provides real-time formative 

feedback to students individually in their apps; (4) 

EXPLAINIT provides a summary of correctness of 

student explanations to the instructor; and (5) the 

instructor makes “instructional pivots” by 

immediately tailoring pedagogy to respond to 

students’ explanations to improve student 

learning and engagement by focusing the lecture 

and classroom discussion on the most important 

elements of the course material. Collectively, 

these interactive explanation-based activities are 

designed to synergistically lead to improved 

student learning and promote greater student 

engagement in undergraduate STEM classrooms. 

Our initial prototype of the EXPLAINIT 

classroom response system was implemented 

using a web-based application architecture to 

support enhanced scalability, where instructors 
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and students can choose their platforms of choice 

such as laptops and handheld devices, while the 

software enables real-time interactions with the 

user interfaces. The EXPLAINIT user interfaces 

consist of an Instructor Authoring Tool, Instructor 

Dashboard, and Student Explanation App. The 

streams of communication data are uploaded into 

a cloud-based database by the server. For data 

synchronization and analysis purposes, all 

interaction data is timestamped. To support these 

functionalities, we implemented the software 

modules to include APIs using the HTTP 

protocol. We use Microsoft’s Azure cloud 

computing service to host our cloud-based 

services. 

The Instructor Authoring Tool enables 

instructors to create or edit questions and an 

exemplar correct response per question. All 

questions and responses are categorized by their 

subjects and topics in the tool. All authored 

content is stored and accessed from the cloud, 

allowing the original instructor to reference their 

own created questions for future courses. The 

Instructor Dashboard presents the pool of 

questions per subject and topic, and it allows 

instructors to select and send questions to the 

Student Explanation App, so that students can 

view and interact with the questions in real-time 

during lectures. The Instructor Dashboard is also 

designed to display student-written responses and 

NLP assessment results in visual analytics. The 

Student Explanation App enables students to 

receive questions posed by instructors and write 

self-explanation responses to instructor-posed 

questions. When students submit their responses, 

the Student Explanation App taps into the 

Explanation Analyzer, which performs NLP-

driven assessment of student explanations, 

generates tailored feedback to students, and 

dispatches analytical summaries to instructors 

through Instructor Dashboard. The Explanation 

Analyzer is in the development phase, and our 

findings about the Explanation Analyzer’s NLP 

performance are presented in this paper. 

4 Study and Data 

This work uses data collected during a classroom 

pilot study of the EXPLAINIT system. The 

participants in the classroom study consisted of 36 

consented undergraduate students enrolled in a 

Computer Science course focused on Artificial 

Intelligence. Thirty-two students completed a 

demographic pre-survey, and among them 8 

indicated that they identified as female, 23 as male, 

and 1 preferred not to indicate gender 

identification. Participants ranged in age from 18 to 

28 (M = 21.1, SD = 1.64). Of these participants, 

40.6% were Asian, 50.0% were White, and 9.4% 

preferred not to answer. 

Prior to using EXPLAINIT in the class, the 

instructor used the Instructor Authoring Tool to 

prepare a set of questions, each accompanied by an 

exemplar correct answer. These answers were 

presented to students immediately after they 

submitted their responses to the respective 

questions. The classroom implementation unfolded 

over 6 weeks within a single semester. Throughout 

this period, a total of 13 questions were sent to the 

class, eliciting 356 responses from 36 participants, 

which were utilized in our evaluation (Table 1). 

Students’ responses to the questions were 

labeled by two of the researchers, who are experts 

in computer science. First, a rubric item was 

constructed for each question that described the 

qualities of a correct, partially correct, or incorrect 

answer to the question. For example, the rubric for 

the question “In a neural network, what function is 

responsible for introducing non-linearity to the 

model?” indicated that a correct response should 

mention the term “activation function”, a partially 

correct response might present an example of an 

activation function (e.g., “sigmoid”) without 

explicitly mentioning the term “activation 

function”, and that an incorrect response would not 

include any of this information. We also referenced 

instructor-provided exemplar answers to further 

refine the rubrics for each question. These were 

comprehensive and well-reasoned responses, 

serving as a representative correct answer to each 

question. 

Then, based on the developed rubric, both 

researchers labeled twenty percent of the student 

Figure 1: The EXPLAINIT explanation-based  

classroom response system. 
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responses. After one cycle of rubric refinement, a 

Cohen’s Kappa of 0.702 was achieved, indicating 

substantial agreement (McHugh 2012). All labels 

that the annotators did not agree on were discussed 

and agreement on a single label was reached. 

Across all questions, 73% of explanations were 

labeled as correct, 22% were labeled as partially 

correct, and 5% were labeled as incorrect. 

5 Method 

We evaluated the performance of Llama 2 

(Touvron et al. 2022), GPT-3.5 (OpenAI 2023), 

GPT-4 (OpenAI 2023), and FLAN-T5 (Chung et 

al. 2022) on the self-explanation assessment task. 

Large language models (LLMs) have been 

demonstrated to achieve state-of-the-art 

performance on many natural language processing 

tasks, with GPT-4 particularly excelling with few-

shot prompting where training examples are 

integrated into the task description (OpenAI 2023). 

This enables GPT-4 to readily adapt to new tasks 

without re-training, avoiding the prohibitive cost of 

updating its extensive parameters. However, GPT 

models’ proprietary nature and associated costs 

pose barriers to its educational adoption, such as 

EXPLAINIT. 

To address this challenge, we also evaluated the 

performance of open-source models, FLAN-T5 

and Llama 2. FLAN-T5 is an instruction-fine-tuned 

language model that has demonstrated competitive 

performance with other state-of-the-art models 

across a range of tasks when it was released (Chung 

et al. 2022). Llama 2 is an open-source pre-trained 

large language model that has demonstrated 

leading performance compared to other open-

source models and performs similarly to GPT-3.5 

on several tasks (Touvron et al. 2023). In this work, 

we investigate the performance of the base FLAN-

T5 model (250M parameters) and Llama 2-7B, the 

smallest version of the model. These versions of 

FLAN-T5 and Llama 2 were selected due to their 

computational efficiency. For all models, default 

hyperparameters were used. 

We investigated several different zero-shot and 

few-shot prompting approaches to evaluate the 

Question Topic 
Number of 

Questions 

Sent 

Number of 

Student 

Responses 

What does the term "deep" in deep learning refer to? 
What is the basic building block of a neural network 

called? 
In a neural network, what function is responsible for 

introducing non-linearity to the model? 

Deep Learning 1 28 

Deep Learning 1 27 

 

Deep Learning 1 24 

What is clustering in the context of machine learning? Clustering 2 37 

Name a commonly used algorithm for clustering and 

briefly describe how it works. 
Clustering 

2 34 

What is the main difference between K-means and 

hierarchical clustering? 
Clustering 

2 37 

The K-means algorithm may end up with different 

clustering results when the initial clustering centers are 

chosen differently. Yes or No? 

Clustering 

2 36 

What is the "purity" of an external measure for cluster 

quality? 
Clustering 

1 22 

What are support vectors in the context of SVMs SVM 1 23 

How does a soft-margin SVM differ from a hard-margin 

SVM? 
SVM 1 23 

Is it always better to use a soft-margin SVM to ensure 

model flexibility? Why? 
SVM 1 22 

Is an SVM more suitable for small datasets than large 

datasets? Why? 
SVM 1 23 

Can SVMs be used for both classification and regression 

tasks? Example? 
SVM 1 20 

 

Table 1: Descriptive statistics of questions sent during the classroom study. 
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performance of Llama 2, GPT-3.5, and GPT-4 for 

automated assessment of students’ self-

explanation. As a baseline, these models were 

provided with instructions that described the task 

(i.e., “Please evaluate a student's explanation 

response to the following question.”) in addition to 

the question and student response. Then, we 

systematically evaluated the impact on model 

performance of including the following 

information in the prompt: (a) rubric items for the 

current question, (b) an exemplar correct response 

provided by the instructor, and (c) other students’ 

labeled responses to the current question. Prompts 

were constructed with all possible combinations of 

the different information elements, and model 

performance was evaluated for each combination. 

For the prompts incorporating student self-

explanation responses, 10-fold student-level cross-

validation was used to prevent bias from students’ 

individual writing styles and to ensure 

generalizability, avoiding data leakage in model 

evaluation. Additionally, this approach accurately 

represents the real-world scenario that will be faced 

when deploying EXPLAINIT in future classroom 

implementations, as the students interacting with 

the system will be new but the models will have 

access to past student’s responses to each question. 

Due to LLM token limits and the per-token cost of 

proprietary models like GPT-4, we sampled ten 

responses from the training set for each cross-

validation fold to include in the prompts rather than 

including the entire training set. 

In comparison to Llama 2, GPT-3.5, and GPT-4, 

the FLAN-T5 base model's smaller parameter 

count facilitates easier and more cost-effective 

training. Given its sufficient size for fine-tuning 

using our available resources, we chose this 

approach over few-shot prompting. We applied 

LoRA for efficient fine-tuning, changing only a 

subset of the model’s parameters to conserve time 

and computational resources, while achieving 

similar performance to full fine-tuning (Hu et al. 

2021). The evaluation of fine-tuned FLAN-T5 

models is also based on 10-fold student-level cross-

validation using the same data split as was used for 

in-context learning with the other models. 

However, rather than including example 

explanations and their assigned labels in the 

prompt, they were used as training examples in a 

supervised learning approach. As with the in-

context learning approach, we explored variants of 

prompts including the rubric item for each question 

and/or the exemplar correct response created by the 

instructor. A separate FLAN-T5 model was fine-

tuned for each prompt variant. 

6 Results 

Results from all experiments are presented in Table 

2. Our task involves multi-class classification, 

where each student response is categorized into 

correct, partially correct, or incorrect. We 

evaluated the explanation assessment models in 

terms of accuracy, macro F1, and weighted F1. As 

noted above, all combinations of the three different 

information elements (i.e., rubric, exemplar 

response, and student example responses) were 

explored for each LLM. Due to length constraints, 

Table 2 reports only the results of including one 

element at a time as well as including all types of 

information, while the findings from all 

combinations are discussed in this paper. 

Across all experiments, FLAN-T5 models that 

were fine-tuned with rubric information and the 

instructor’s exemplar response achieved the 

highest accuracy (acc.=0.824). This was a 

substantial improvement over the majority 

baseline, which always predicts the most common 

class (acc.=0.730), as well as the next-highest 

performing approach, which was GPT-4 with ten 

student examples included in the prompt 

(acc.=0.775). In terms of macro F1 score, GPT-4 

with ten labeled student explanation responses 

included in the prompt achieved the highest 

performance (F1=0.664). This was a significant 

improvement over the majority baseline 

(F1=0.281) and the next-highest performing 

approach, which was GPT-4 with all three 

information elements included in the prompt 

(F1=0.641). In terms of weighted F1 score, FLAN-

T5 models that were fine-tuned with rubric 

information and the instructor’s exemplar response  

achieved the highest performance (F1=0.798). This 

was an improvement over the majority baseline 

(F1=0.616) and a small improvement over the next-

highest performing approach, which was GPT-4 

with ten labeled student explanation responses 

included in the prompt (F1=0.792). 

In general, our results demonstrate that 

including rubric information in the prompt 

improved model performance. For FLAN-T5, 

Llama 2, and GPT-4, both accuracy and F1 score 

were improved relative to the prompting approach 

that only provided high-level instructions for the 

explanation assessment task. We observed the 
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largest improvement in model performance when 

the sole additional information was a set of ten 

labeled explanation responses from other students. 

With this prompt, Llama 2 and GPT-4 

demonstrated improved accuracy over the 

instruction-only approach, while Llama 2, GPT-

3.5, and GPT-4 exhibited improved macro F1 

scores. However, we found that including the 

instructor’s exemplar response into the prompt led 

to reduced model performance across all models 

except for Llama 2, compared to the instruction-

only approach. This reduction may stem from the 

exemplar responses often containing 

comprehensive details that exceed the question's 

scope, leading the models to apply a very strict 

standard in assessing student responses. 

Consequently, responses were more frequently 

categorized as partially correct or incorrect, even 

though they should be labeled correct within the 

question's intended scope. 

Next, we looked at the effects of including two 

information elements in the prompt. Note that these 

results are omitted from Table 2 to save space. We 

observed that the highest accuracy and F1 score for 

FLAN-T5 were achieved when the models had 

access to both rubric information and the 

instructor’s exemplar response. That is, we found 

that there was an additive effect of including 

multiple information elements for FLAN-T5 

models. In comparison, the general trend across the 

prompting approaches for Llama 2, GPT-3.5, and 

GPT-4 that utilized two information elements was 

that there was not an additive benefit of including 

multiple information elements. For example, GPT-

3.5 and GPT-4 including either rubric information 

or the exemplar response in addition to labeled 

student responses led to reduced performance 

compared to models that only had access to ten 

student example responses. In addition, Llama 2 

generally demonstrated a decrease in performance 

when using two information elements compared to 

only one; however, the combination of the 

exemplar response and ten student responses 

without the rubric led to improved performance 

over all approaches that incorporated only one 

information element. 

A distinct trend emerged when all three 

information elements were included in the prompt. 

Model Prompt Variation Accuracy 
F1 

(macro) 

F1 

(weighted) 

Majority 

Baseline -- 0.730 0.281 0.616 

FLAN-

T5-base 

(250M) 

Fine-tuned with instructions 0.803 0.476 0.764 

Fine-tuned with instructions + Rubric 0.820 0.506 0.789 

Fine-tuned with instructions + Exemplar response 0.792 0.465 0.754 

Fine-tuned with instructions + Rubric + Exemplar 

response 
0.824 0.550 0.798 

Llama 2-

7B 

Instructions only 0.509 0.184 0.538 

Instructions + Rubric 0.664 0.400 0.698 

Instructions + Exemplar response 0.526 0.234 0.579 

Instructions + 10 student examples 0.706 0.443 0.717 

Instructions + Rubric + Exemplar response + 10 

student examples 
0.744 0.444 0.751 

GPT-3.5 

Instructions only 0.664 0.545 0.684 

Instructions + Rubric 0.564 0.449 0.586 

Instructions + Exemplar response 0.519 0.425 0.539 

Instructions + 10 student examples 0.612 0.591 0.644 

Instructions + Rubric + Exemplar response + 10 

student examples 
0.533 0.537 0.560 

GPT-4 

Instructions only 0.685 0.574 0.708 

Instructions + Rubric 0.709 0.606 0.732 

Instructions + Exemplar response 0.651 0.422 0.686 

Instructions + 10 student examples 0.775 0.664 0.792 

Instructions + Rubric + Exemplar response + 10 

student examples 
0.754 0.641 0.779 

 

 

Table 2: Student explanation assessment results across models and prompt variations. 
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GPT-3.5 and GPT-4 models with access to all three 

information elements performed worse than 

models provided with only ten labeled student 

example responses, both in terms of accuracy and 

F1 scores. However, for Llama 2 models, 

incorporating all three information elements in the 

prompt resulted in the highest accuracy and F1 

scores compared to any other combinations of 

information. 

These results suggest that the best results are not 

necessarily guaranteed by providing the model 

with the maximum amount of task-related 

information. Models consistently performed well 

when the prompt included labeled examples of 

other students’ responses, but including the 

instructor-created exemplar response tended to 

reduce model performance as discussed. Adjusting 

the exemplar response provided to the models, by 

adding clarification or simplifying its content, 

could potentially lead to improved performance 

when this information element is included. This 

underscores an important area for future research. 

Overall, these results demonstrate that fine-

tuning FLAN-T5 and utilizing few-shot learning 

with GPT-4 are both viable approaches to this 

explanation assessment task. Although FLAN-T5 

requires more training data than GPT-4 to reach 

high performance levels (our preliminary analysis 

indicated that the predictive accuracy of a FLAN-

T5 model, fine-tuned with only the data from five 

focus group students, was 60%), this tradeoff may 

be acceptable considering that FLAN-T5 is open-

source and GPT-4 is proprietary. This consideration 

becomes more critical as our classroom 

implementation scales, especially in large 

classroom settings with multiple sessions where 

deployment costs become a significant factor. 

Conversely, if the EXPLAINIT system is 

implemented in a course where FLAN-T5 models 

have not been trained with student data from that 

course, GPT-4 with one-shot learning (with rubric 

information) might significantly outperform 

FLAN-T5, making GPT-4 potentially more 

suitable for the classroom response system. It will 

be crucial to weigh practical benefits, scalability, 

and cost considerations when deploying a runtime 

version of the explanation assessment system 

during the classroom use of EXPLAINIT. In practice, 

these results suggest that a hybrid system may be a 

viable approach. When a new question is deployed 

using the system, zero-shot learning with GPT-4 

can be used based on a pre-defined rubric that was 

created for assessing responses to the question. 

Since this information can be created at the same 

time as the question, it can be provided to the 

system when the new question is first deployed. 

Then, as student responses to the question are 

collected, they can be used to fine-tune a FLAN-T5 

model, which can then replace the GPT-4 model 

once it starts showing superior performance. 

7 Conclusion 

Prompting students to craft self-explanations has 

demonstrated to offer numerous educational 

advantages. However, it often requires substantial 

time and effort necessary for instructors to 

manually assess student responses and provide 

feedback for students, which renders them 

unsuitable in large classroom environments. To 

address this challenge, we present EXPLAINIT, a 

self-explanation-based classroom response system 

specifically designed to encourage students in 

formulating written self-explanations during 

undergraduate STEM lectures. Our NLP 

framework builds on Transformer-based large 

language models, such as FLAN-T5 and GPT-4, in 

assessing the correctness of student explanations, 

and it is evaluated using our dataset collected from 

classroom interactions with the EXPLAINIT system. 

Results demonstrate that fine-tuned FLAN-T5 

models using prompts with rubric information and 

an exemplar response achieved the highest 

accuracy and weighted F1 score, while few-shot 

prompting that provided GPT-4 with ten labeled 

student response examples achieved the highest 

macro F1 score. These results indicate the potential 

to use large language models for automated 

explanation assessment, which can be leveraged to 

provide adaptive support for students’ self-

explanations in classroom environments.  

Moving forward, there are several promising 

directions for future work. First, it will be important 

to implement the full suite of EXPLAINIT system 

functionalities, including NLP assessment models, 

in a classroom environment and investigate their 

impact on students’ learning outcomes. It would 

also be interesting to incorporate AI capabilities to 

support question and rubric generation, thereby 

reducing the amount of work required by 

instructors to use EXPLAINIT in their classes. 

Additionally, the explanation assessment system 

could be expanded to support a finer-grained 

assessment of students’ self-explanations. For 

example, concept-level assessment of students’ 
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self-explanations could provide more insightful 

feedback for both students and instructors. Also, it 

will be important to investigate this explanation 

assessment approach in disciplines other than 

computer science to evaluate its performance in 

other domains. Finally, it will be important to 

explore how different types of exemplar responses 

and rubric items impact model performance. If we 

are able to identify characteristics of exemplar 

responses and rubric items that most improve the 

predictive accuracy of our LLM-based framework 

for self-explanation assessment, that will enable 

our classroom response system to more effectively 

support student learning in new settings where 

there is limited student data that can be used to 

inform the assessment models. 

8 Limitations 

One limitation of our work is the challenge 

associated with evenly comparing fine-tuned 

models (i.e., FLAN-T5) with models that are 

evaluated based on few-shot in-context learning 

(i.e., Llama 2, GPT-3.5, and GPT-4). In our work, 

FLAN-T5 had access to 90% of the dataset as 

training data because of the 10-fold student-level 

cross-validation setup. In contrast, while the 

models that used in-context learning used the same 

cross-validation setup, they had access to only ten 

student responses that were sampled from the 

training set for each cross-validation fold. This 

limitation was a result of the practical consideration 

that LLMs have limited context lengths and that 

proprietary LLMs have monetary costs on a per-

token basis. As a result, it is not feasible to provide 

an unlimited number of labeled student explanation 

responses in the prompt to an LLM, and the limit 

of ten student responses was chosen because it 

seemed reasonable. To overcome this limitation, 

future work could systematically investigate 

whether there is a more optimal number of example 

student responses that balances between model 

performance and costs. Another limitation of this 

work is the generalizability of the result suggesting 

that including an exemplar response created by the 

instructor in the prompt led to reduced model 

performance. It may be the case that certain 

characteristics of the exemplar responses used in 

this work were suboptimal for providing an LLM 

with guidance on how to correctly assess students’ 

explanation responses. Further investigation into 

the impacts of various characteristics of exemplar 

responses would be helpful for addressing this 

limitation. 
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