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Abstract

Unsupervised clustering of student responses
to open-ended questions into behavioral and
cognitive profiles using pre-trained LLM em-
beddings is an emerging technique, but little
is known about how well this captures peda-
gogically meaningful information. We investi-
gate this in the context of student responses to
open-ended questions in biology, which were
previously analyzed and clustered by experts
into theory-driven Knowledge Profiles (KPs).
Comparing these KPs to ones discovered by
purely data-driven clustering techniques, we
report poor discoverability of most KPs, except
for the ones including the correct answers. We
trace this ‘discoverability bias’ to the represen-
tations of KPs in the pre-trained LLM embed-
dings space.

1 Introduction

Classifying students into behavioral or cognitive
profiles using unsupervised cluster analysis tech-
niques is a common application of machine learn-
ing to educational data (Le Quy et al., 2023; Martin
et al., 2023; Ariely et al., 2024; Rastrollo-Guerrero
et al., 2020; Bovo et al., 2013). Recently, there has
been a growing interest in applying this methodol-
ogy to textual student responses that are decoded
using pre-trained large language models into vector-
ized embeddings in semantic spaces (Martin et al.,
2023; Wulff et al., 2022; Masala et al., 2021). The
operational appeal of this approach is that it min-
imizes the need for expert knowledge, which is
costly to inject through human labeling procedures
(Nehm and Haertig, 2012; Tansomboon et al., 2017;
Li et al., 2023; Ariely et al., 2024). However, the
validity of patterns discovered this way depends
on the ability of the embeddings to maintain the
pedagogically meaningful information that existed
in the original, textual representations of responses
(Devlin et al., 2018; Seker et al., 2022) and of the al-
gorithmic method to discover them. Evaluation of

emergent profiles is often done in terms of the inter-
nal quality of the clustering, as data is usually not
available to estimate the extent to which the discov-
ered profiles align with a pedagogically meaningful
representation of the responses. Without such an
evaluation, a loss of important information can be
overlooked, potentially leading to sub-optimal edu-
cational decisions that rely on this analysis (Le Quy
et al., 2023).

To investigate whether this hypothesized risk
manifests in real-life educational context, we uti-
lize student answers to two constructed response
questions in high school biology. The data was pre-
viously analyzed by a team of biology education re-
searchers and experienced teachers, and graded ac-
cording to a theory-driven detailed analytic rubric
that is based upon the Causal-Mechanical Explana-
tion framework (Ariely et al., 2024; Salmon, 2006).
The rubric contained 10 (item 1) or 11 (item 2)
binary categories, each checking for the occurrence
of a specific key piece of information in the re-
sponse. Using these human-generated binary vec-
tors of length 10 (11), the responses were clustered
using a KMeans algorithm into a set of 6 (7) Knowl-
edge Profiles (KPs) that were found by teachers to
encapsulate specific patterns of errors.

The validity of the KPs was evaluated in several
ways. First, human experts conducted a qualita-
tive analysis to assess whether each KP captures a
specific and distinct pattern of errors. Second, we
analyzed the results computationally, showing that
i) the KPs were consistent across the two items,
namely, revealing the same type of conceptual er-
rors; and ii) the learners tended to exhibit the same
type of conceptual error (KP) in both items. Third,
we conducted an in-class formative assessment in-
tervention study that provided automated guidance
to students based on their KP, and showed signif-
icant improvement in their performance on a dif-
ferent prompt that measures the same conceptual
knowledge. These analyses provided strong evi-



dence that the KPs capture pedagogically meaning-
ful information (for full details, see Ariely et al.
(2022, 2024)).

Using these data, we are in a position to answer
two research questions:

RQ1 What is the correspondence between clus-
ters that are computed from pre-trained LLM
embeddings of student responses and theory-
based KPs?

To preview the result, we find that two clustering
techniques that are commonly used for such tasks
(Le Quy et al., 2023) – KMeans (Lloyd, 1982) and
HDBSCAN (McInnes et al., 2017) – largely fail to
discover the KPs though retrieval is somewhat bet-
ter for the profile containing the correct responses.
Following up on this finding, we go ‘upstream’, to
the pre-trained embeddings, and investigate:

RQ2 How well are the KPs represented in the pre-
trained embeddings space?

Our results reveal a strong relationship between
the quality of the responses in the profile (correct or
various degrees of incorrect) and the shape and den-
sity of its embeddings-based representation. We
refer to this relationship as an ‘Anna Karenina prin-
ciple’ and tie it to the profile discovery failure we
observed in RQ1.

The contribution of this work is twofold. First,
it is the first to demonstrate the Anna Karenina
principle in the context of pre-trained representa-
tion of student responses to open-ended questions.
Second, our results suggest that, in some cases, out-
of-the-box pre-trained LLM embeddings may be a
pedagogically unsound basis for profile discovery.

2 Related Work

2.1 NLP-based profiling of constructed
responses in science education

Open-ended items require students to develop and
construct their answers, reflect on their knowledge,
and integrate it with new ideas (Fellows, 1994).
Reasoning and evidence-based defense of an argu-
ment is key for testing scientific hypotheses (Toul-
min, 2003). Therefore, constructing causal explana-
tions is an essential skill for students of science to
learn (Ariely et al., 2024; Martin et al., 2023); prac-
tice and high-quality feedback are key elements in
helping students master the skill (Hattie and Tim-
perley, 2007; Gerard and Linn, 2016; Tansomboon
et al., 2017).

Analyzing open-ended items to provide feed-
back is a time-consuming, complex task. Automat-
ing some of the analyses for assessment and feed-
back purposes is promising for supporting teaching
and learning (Tansomboon et al., 2017; Gerard and
Linn, 2016; Ariely et al., 2023).

Most systems for automated evaluation of scien-
tific explanations to date had been designed in the
supervised machine learning framework (Schleifer
et al., 2023; Sung et al., 2019; Riordan et al.,
2020; Kumar et al., 2019; Mizumoto et al., 2019;
Li et al., 2021). Among the unsupervised ap-
proaches, Masala et al. (2021) extracted the main
takeaways from students’ feedback on different
components in academic courses, using KMeans to
cluster pre-trained BERT embeddings of students’
feedback. Martin et al. (2023) applied HDBSCAN
over pre-trained LLM embeddings and to find emer-
gent argumentation patterns’ characteristics. Wulff
et al. (2022) investigated HDBSCAN clustering
over LLM embeddings to evaluate the attention
of preservice physics teachers to classroom events
elicited from open-ended text responses. A semi-
supervised coding method in which homogeneous
clusters receive the same coding automatically and
heterogeneous clusters are fully labeled by humans
was proposed by Andersen et al. (2023) and applied
to student responses to PISA items.

2.2 Biases in pre-trained LLMs

While LLMs are powerful meaning representations
that undergird the state-of-art systems on a wide
range of NLP tasks, they are also known to exhibit
a plethora of social biases that could lead to so-
cial harm when the models are used in downstream
tasks (Bender et al., 2021). In a recent review of the
current state of research on LLM bias evaluation,
Goldfarb-Tarrant et al. (2023) criticize the field
for focusing heavily on the upstream, pre-trained
LLMs, in most cases without considering the con-
nection to a specific task the LLMs is being put to
(68% of the reports reviewed), citing this as a threat
to the predictive validity of bias measurements.

In fact, the literature that does consider the con-
nection between upstream (intrinsic) and down-
stream (extrinsic) behavior suggests that it is not
straightforward. Considering static embeddings
(e.g., word2vec) and a commonly used bias test,
the Word Embedding Association Test (WEAT)
(Caliskan et al., 2017), Goldfarb-Tarrant and col-
leagues (Goldfarb-Tarrant et al., 2021) found no



clear relationship with performance of models us-
ing the embeddings, as measured by differences in
precision and recall of retrieval of the target con-
struct on data from privileged and non-privileged
groups. Extension to contextual embeddings and
a wider range of tasks and measures yielded simi-
lar results (Cao et al., 2022; Kaneko et al., 2022).
Our contribution extends the discussion towards
social constructs beyond the typically considered
demographic attributes such as gender, race, eth-
nicity, age towards a distinction that is particularly
relevant when dealing with learner data – that of
learners at the more or less advanced state of under-
standing of the phenomenon under consideration.
We are not aware of prior work comparing LLM
representations based on knowledge-related pro-
files; the closest finding in the literature are exam-
ples of poorer performance of LLM-based systems
on data produced by English language learners with
respect to native speakers of English (Baffour et al.,
2023). Additionally, we explore LLMs in a rela-
tively low-resource language (Hebrew) in contrast
to the bulk of current work that focuses on English
or other high-resource languages: In the 90 LLM
bias studies evaluated by Goldfarb-Tarrant et al.
(2023), only two report results in a language that is
not highly resourced.

3 Data

The data consists of 669 student responses to two
open-ended items in high-school biology, collected
anonymously from students in grades 10-12 from
about 25 high schools of varied demographics and
socioeconomic status (based on location) across
Israel. Gender distribution was 70% females (typ-
ical to the gender distribution among high-school
biology majors in Israel). The items deal with the
connection between respiration and energy in phys-
ical activity in the context of smoking (Q1) and
anemia (Q2), taught as part of the core topic “The
human body”. The items were human-scored using
a similar analytic rubric containing 10 (Q1) or 11
(Q2) categories (Ariely et al., 2024). All rubric
categories are binary, each targeting specific infor-
mation that needs to be mentioned in a correct re-
sponse, such as “the role of hemoglobin in oxygen
transportation” or “changes in cellular respiration
rate”. The resulting binary vectors were clustered
using KMeans; the clusters were analyzed by ex-
perienced teachers and ranked from 1 to 6 (Q1)
or 7 (Q2) with larger numbers corresponding to

clusters with more severe errors. We denote these
clusters Knowledge Profiles, and index them from
1 (KP1) to 7 (KP7). See Ariely et al. (2024) for
a full description of the items and the assessment
framework. The items and examples of student
responses and their mapping into KPs can be found
in Appendix 1.

For the purposes of the analysis presented in this
paper, all responses were represented using rich
contextualized vectors – embeddings produced by
a pre-trained Large Language Model (LLM). The
LLM being used, AlephBERT (Seker et al., 2022),
is state-of-the-art for Hebrew. It was trained on a
large corpus of the Hebrew language, including:
Twitter tweets, Hebrew Wikipedia, and the Hebrew
subset of the Oscar (Suárez et al., 2020) dataset.
AlephBERT has the same architecture as BERT
(Devlin et al., 2018): 12 layers, 110M parame-
ters, and 12 attention heads. It was trained on a
52K-word Hebrew vocabulary on masked token
prediction task, and on the Hebrew language tasks:
word segmentation, part-of-speech tagging, and
full morphological tagging. It was further trained
on the tasks of sentiment analysis and named entity
recognition.

4 Methods

To evaluate whether raw LLM embeddings carry
useful knowledge for unsupervised profiling of re-
sponses, we experimented with two common clus-
tering approaches (Le Quy et al., 2023), KMeans
(Lloyd, 1982) and HDBSCAN (McInnes et al.,
2017), which implement different clustering mech-
anisms. The first discovers convex-shaped clusters;
its mechanism is centroid-based and applies an
Euclidean distance function. The second is density-
based and can be applied with various distance
metrics, e.g., a metric induced by cosine-similarity,
and the clusters may have various shapes. Both
approaches were used previously for profile dis-
covery in constructed response data (Ariely et al.,
2024; Martin et al., 2023; Wulff et al., 2022). Ex-
periments were conducted in Python, using scikit-
learn (Pedregosa et al., 2011), SBERT (Reimers
and Gurevych, 2019) and Pytorch (Paszke et al.,
2019).

4.1 KMeans

The KMeans is a widely used algorithm (Lloyd,
1982). The algorithm is initiated with a specified
number of clusters and a random initialization of



their centroids. The clustering approach minimizes
the within-cluster sum of squared distances, i.e.,
Euclidean distance. KMeans clusters are convex
and all samples are assigned to a cluster, i.e., there
are no outliers. Convexity means that for every two
points in the cluster, a straight line between them
also lies within the cluster.

4.2 Hierarchical Density-Based Spatial
Clustering of Applications with Noise
(HDBSCAN)

Another clustering approach, which is more promis-
ing in the context of LLMs’ embeddings (Martin
et al., 2023) is the HDBSCAN (McInnes et al.,
2017) algorithm. The approach here is creating
a mutual reachability graph where core samples
are points in areas of high density. A cluster is a
set of core samples and a set of non-core samples
that are neighbors of core samples but are not core
themselves. Non-core samples are at the fringes
of clusters. A core sample is such that there are
’min_samples’ other samples with a distance less
than ϵ from it, for some ϵ > 0 (Pedregosa et al.,
2011). The HDBSCAN mechanism performs clus-
tering for various ϵ values and the most stable clus-
tering is chosen.

The default metric for HDBSCAN is Euclidean
distance. To use cosine similarity, we turn it into a
distance function (McInnes et al., 2017):

∥x− y∥ =
√
2× (1− CosSim(x, y)) , (1)

where x, y are unit vectors, i.e., ∥x∥ = ∥y∥ =
1 (Manning, 1999). Since cosine similarity does
not depend on vectors’ magnitude, only on the
angle between the two vectors, we first turned every
embedding ei to a unit vector ei

∥ei∥ and then applied
the HDBSCAN on a pre-computed metric matrix
consisting of all pairwise distances between all
embeddings in the dataset using formula (1).

In contrast to the KMeans, HDBSCAN can find
clusters with varied densities and clusters may have
non-convex shapes.

4.3 Metrics for Comparing Clusters

To compare the similarity between the KPs and the
cluster assignments of the KMeans/HDBSCAN,
we used Adjusted Rand Index (ARI) (Vinh et al.,
2009). In ARI, similarity is interpreted as the num-
ber of pairs of items on which the clusterings agree,
adjusted for the amount of chance agreement. Let
D be a dataset containing n items that are classified

into m clusters by clustering C and, independently,
into k clusters by clustering E. For a pair of items
(i1, i2) ∈ D, C and E agree on it iff i1 and i2 are
either (1) assigned to the same cluster in both C and
E (let’s say there are a such pairs), or (2) assigned
to different clusters in both C and E (let’s say there
are b such pairs). Now, a + b is the number of
agreements between C and E. The ARI index is
given by:

RI =
a+ b(

n
2

) ; ARI =
RI − E[RI]

max(RI)− E[RI]
,

where E[RI] is the expected RI for some ran-
dom label assignment (Vinh et al., 2009), and
max(RI) equals to 1. The ARI values range from
−1 to 1, where 1 indicates perfect agreement, and
−1 indicates complete disagreement (Hubert and
Arabie, 1985). Since each student response in our
dataset is labeled with its KP, we evaluated the
ARI for each clustering assignment, i.e., KMeans
and HDBSCAN, compared to the KPs. This yields
a global comparison between the KPs and each
clustering assignment.

To evaluate the ‘discoverability’ of each KP, we
also conducted by-KP analysis, applying a retrieval
paradigm and considering each cluster as an at-
tempt to retrieve each of the KPs. We calculate
recall, precision, and F1 score using a contingency
matrix A = (amn)1≤m≤k, 1≤n≤f where rows are
the KPs k = 6, 7, and columns are the unsuper-
vised clusters Cn found by KMeans or HDBSCAN,
f = #fitted_clusters;

amn =
∣∣{x : x ∈ KPm ∩ Cn}

∣∣
the cell amn in the matrix A counts the number
of members of KPm that fell in cluster Cn. The
precision of retrieval of KPm using cluster Cn is
Pmn = amn

|C(n)| ; the recall is Rmn = amn
|KP (m)| . F1

score is Fmn = 2·Pmn·Rmn
Pmn+Rmn

, indicating the extent
to which we were able to retrieve KPm using the
emergent cluster Cn.

5 Results

5.1 RQ1: Correspondence between
embedding-based clusters and
theory-based Knowledge Profiles

5.1.1 Global alignment between the
clusterings

As described in Section 4, we evaluated the agree-
ment between clusterings that were computed from



the embeddings using two cluster analysis methods:
KMeans and HDBSCAN. As we were interested in
upper-bounding the discoverability of the KPs by
both algorithms, we “helped" them with additional
information (the number of clusters to the KMeans
algorithm, and allowing the HDBSCAN to grid
search for ‘good’ hyperparameters). With k equals
the number of KPs per item (six for Q1 and seven
for Q2), the resulting ARIs for the KMeans were
0.122 and 0.191, for Q1 and Q2, respectively. For
the HDBSCAN algorithm, we conducted a grid
search for two parameters: min_cluster_size,
i.e., the minimum number of samples in a
cluster (values:{3, 4, 5, 10, 15, 20, 30, 40}), and
min_samples, i.e., the number of samples in a
neighborhood for a point to be considered as a core
point (values: {1, 2, 3, 4, 5}). We report the best-
performing combination in terms of ARI: 0.037
for Q1 (with min_cluster = 5, min_samples =
2), and 0.038 for Q2 (with min_cluster = 3,
min_samples = 3). Based on these results,
we conclude that the clusters discovered by the
KMeans had low agreement with the KPs, and the
clusters discovered by the HDBSCAN had negligi-
ble agreement with the KPs.

5.1.2 Discoverability of specific KPs
We further investigated the clusters’ matching qual-
ity by calculating the F1 score per KP for each of
Q1 and Q2. For KMeans, the results show good re-
trieval of KP1, the cluster with the highest-quality
responses – F1 = 0.60, 0.67 for items Q1 and Q2
respectively – but much worse retrieval of the other
KPs, with maximal F1 = 0.40 for KP6 in Q1 and
F1 = 0.47 for KP2 in Q2. The clustering results
in terms of contingency tables and F1 Scores are
presented in Tables 1 to 4, with KPs as rows and
columns as fitted clusters.The maximum F1 scores
per profile are shaded in gray.

The evaluation of HDBSCAN clusters mirrored
that of KMeans, showing better retrieval of KP1 –
0.43, 0.46 F1 scores for Q1 and Q2 – than of any
other profile, with maximal F1 = 0.36 for KP6
in Q1 and F1 = 0.29 for KP2 in Q2. We observe
that, overall, results are worse for HDBSCAN than
for KMeans. The clustering results in terms of
contingency tables and F1 Scores are presented in
Tables 5 to 8, with KPs as rows and columns as
fitted clusters. The maximum F1 scores are shaded
in gray.

We then considered the possibility that more
coarse-grained profiles might emerge from the

clustering than the detailed KPs. To this end,
we tried different options for grouping KPs and
calculated the F1 scores between fitted clusters
and the grouped KPs. The best results show
an emergent pattern consistent in both items Q1
and Q2, where one cluster consists of the higher-
quality responses (KP1-KP4) an is retrievable with
F1 = 0.72, 0.74, and the other cluster consists
of lower-quality responses (KP5-KP7), retrievable
with F1 = 0.52, 0.45.

We tried this approach with the KMeans as well,
but the samples scattering across fitted clusters
there did not exhibit meaningful patterns.

5.2 RQ2: How well are the KPs represented
in the embeddings?

To answer this question, we first analyzed, descrip-
tively, the level of similarity between the embed-
dings within each KP, and between KPs. We then
conducted statistical tests to verify that the ob-
served patterns are statistically robust.
Within KP similarity. To analyze the level of sim-
ilarity within each KP, we computed the pairwise
cosine-similarity between all pairs in that KP. Ta-
bles 9 and 10 show the results, with KPs as rows
and fitted clusters as columns. Within-KP similar-
ities are in the diagonals. Since the pairwise co-
sine similarity values are not normally distributed1,
we report medians. The results show that KP1’s
embeddings (highest quality responses) have the
highest density; as the quality of a response goes
down, so does its similarity to other responses with
the same pattern of error.
Between-KP similarity. As can be further seen in
Tables 9 and 10, for both items, for every i > 1
the embeddings of KPi responses tend to be more
similar to the embeddings of KP1 than to embed-
dings of their own KP (the bolded values in the first
row are the largest in each column). This means
that erroneous responses of various types are more
similar to the correct responses than to those with
the same pattern of error.
Hypothesis testing. Next, we conducted statistical
tests to confirm that i) the distribution of the embed-
dings in each KP are indeed different and that ii)
the cosine similarity within each KP is correlated
with the responses quality.
i) A Kruskal-Wallis H-test confirmed that at least
one of the medians for the different KPs is signif-

1The two-sided Kolmogorov-Smirnov test: test statistic =
0.5, p < 0.001



A B C D E F
KP1 0 102 0 0 5 24
KP2 3 39 0 0 12 37
KP3 3 22 0 0 13 65
KP4 13 28 0 0 26 39
KP5 12 14 0 0 36 50
KP6 31 5 3 16 55 16

Table 1: Q1 KMeans contingency matrix.

A B C D E F
KP1 .00 .60 .00 .00 .04 .13
KP2 .04 .26 .00 .00 .10 .23
KP3 .04 .14 .00 .00 .10 .39
KP4 .15 .18 .00 .00 .21 .23
KP5 .14 .09 .00 .00 .28 .29
KP6 .33 .03 .05 .23 .40 .09

Table 2: Q1 KMeans F1 Scores.

A B C D E F G
KP1 10 0 2 13 13 127 0
KP2 51 0 22 13 4 30 0
KP3 11 0 10 21 14 28 0
KP4 12 0 18 25 16 13 5
KP5 5 0 16 23 29 6 1
KP6 3 0 29 8 8 6 10
KP7 4 9 20 11 8 3 12

Table 3: Q2 KMeans contingency matrix.

A B C D E F G
KP1 .08 0 .01 .09 .10 .67 0
KP2 .47 0 .19 .11 .04 .18 0
KP3 .12 0 .10 .21 .16 .19 0
KP4 .13 0 .17 .25 .18 .09 .09
KP5 .06 0 .16 .24 .34 .04 .02
KP6 .04 0 .32 .09 .10 .04 .22
KP7 .05 .24 .22 .12 .10 .02 .25

Table 4: Q2 KMeans F1 Scores.

icantly different from the others, for both Q1 and
Q2 (Q1: statistic = 338.435, p < 0.001; Q2:
statistic = 295.019, p < 0.001). A follow-up
Dunn’s post-hoc analysis indicated that the within-
KPs similarities differ significantly across all KP
pairs, for both Q1 and Q2, with p < 0.001. This
indicates that embeddings of responses from differ-
ent KPs have different distributions. Moreover, the
embeddings of high-quality responses are highly
dense, while embeddings of low-quality responses
are more scattered in the vector space.
ii) To show that the cosine similarities within
KPs are significantly correlated with the responses’
quality, we calculated for every sample x ∈ KP (i)
its cosine similarity to KP (i) centroid c(i), where
c(i) is the average embedding component-wise of
the embeddings in KP (i), i.e.,

CosSim(x, c(i)) ∀x ∈ KP (i).

We then calculated the Spearman corre-
lation between all the similarities values
∪k
i=1{CosSim(x, c(i)) : x ∈ KP (i)} where

k = 6, 7 for Q1, Q2 respectively, and the ordinal
variable of the KPs’ index, where lower index
represents higher-quality responses. The Spearman
correlation coefficient and its p-values are:

rQ1 = −0.686, p < 0.001

rQ2 = −0.633, p < 0.001

indicating a strong correlation (Xiao et al., 2016)
between the quality of a ‘family of responses’ (KP)
and the within-family similarity.

6 Discussion and Conclusion

Our data consists of 669 high-school student re-
sponses to two typical constructed response items
in high-school biology. The responses were hu-
man graded according to an analytic rubric that is
based on the Causal-Mechanical explanation frame-
work (Ariely et al., 2023), transforming each re-
sponse to a binary vector that encodes the grad-
ing according to the rubric categories. Previous
work demonstrated that applying cluster analysis
(KMeans) to these vectors, which result from a
process that applies a theoretical assessment frame-
work to concrete context by human experts, yields
stable clusters that reveal pedagogically meaning-
ful knowledge profiles, which were validated in
several ways (Ariely et al., 2024). (For more de-
tails, see Section 3.) We reasoned that given the
successful performance of pre-trained LLMs on
a variety of education-related meaning-intensive
tasks (Schleifer et al., 2023; Wambsganss et al.,
2023; Riordan et al., 2020; Sung et al., 2019), and
previous work that applied this specifically to pro-
file discovery (Martin et al., 2023; Wulff et al.,
2022), we want to evaluate whether unsupervised
profile discovery that is not aided by human knowl-
edge works sufficiently well to be applied out-of-



A B C D
KP1 19 0 112 0
KP2 29 0 62 0
KP3 36 0 67 0
KP4 49 0 57 0
KP5 61 0 51 0
KP6 71 7 43 5

Table 5: Q1 HDBSCAN contingency matrix.

A B C D
KP1 .10 0 .43 0
KP2 .16 0 .26 0
KP3 .20 0 .27 0
KP4 .26 0 .23 0
KP5 .32 0 .20 0
KP6 .36 .11 .17 .08

Table 6: Q1 HDBSCAN F1 Scores.

A B C D
KP1 23 0 142 0
KP2 39 0 81 0
KP3 27 0 57 0
KP4 30 0 56 3
KP5 32 0 48 0
KP6 33 0 31 0
KP7 32 3 32 0

Table 7: Q2 HDBSCAN contingency matrix.

A B C D
KP1 .12 0 .46 0
KP2 .23 0 .29 0
KP3 .18 0 .21 0
KP4 .20 0 .21 .07
KP5 .22 0 .18 0
KP6 .24 0 .12 0
KP7 .23 .09 .12 0

Table 8: Q2 HDBSCAN F1 Scores.

the-box.
The results of RQ1 reveal that two distinct com-

mon unsupervised clustering techniques largely
failed to discover the ‘gold’ KPs from the pre-
trained LLM embeddings. Inasmuch as a weak
relationship with the knowledge profiles was ex-
hibited by KMeans clusters (ARI of 0.12-0.19),
our retrieval-based analysis per profile showed that
KP1, the profile that captures the correct responses,
was the most discoverable profile, with F1-scores
of 0.60/0.67 (on Q1/Q2) for retrieving members
of KP1 using the best-aligned emergent cluster.
Thus, had the emergent clusters been used as a ba-
sis for feedback, only the correct responses would
have received pedagogically cogent feedback, since
responses belonging to low-knowledge KPs are
all intermixed in the emergent clusters. This phe-
nomenon was consistent across two items – Q1 and
Q2 – that were analyzed separately.

In an attempt to account for both the failure of
overall profile discovery based on pre-trained LLM
embeddings and for the bias towards the correct
responses exhibited by the emergent clusters, we
turned ‘upstream’ to inspect how the KPs are rep-
resented by the embeddings.

We found that the lower the knowledge level of
the profile, the less similar to each other its mem-
bers are in the embeddings space. It is this property
that we refer to as the Anna Karenina principle:
Analogously to Tolstoy’s observation that happy
families are similar to each other whereas each

unhappy family is unhappy in its own way, we
see that the correct responses are similar to each
other, whereas incorrect responses differ more from
each other the more incorrect (’unhappy’) they are
(strong correlation of r1 = −0.686, r2 = −0.633
for Q1/Q2). One could say that Tolstoy consid-
ered all unhappy families as an undifferentiated
mass; presumably, if classified by their specific
source of unhappiness (by family therapists, say),
profiles would have probably emerged. In our case,
the incorrect responses are grouped by teachers
according to the type of problem they exhibit; how-
ever, within-profile similarities are still lower than
those of correct responses and drift further apart
the bigger the problems. The lower density of the
poor-knowledge profiles may be one reason that
inhibits their downstream discovery.

Further analysis suggests that the privileged sta-
tus of ‘happy families’ (correct responses) extends
beyond their higher density. We also found that
while an average correct response is most similar
to another correct response, an average incorrect
response is closer in the embeddings space to a
correct response than to a member of its own pro-
file (Tables 9 and 10). That is, in some sense, the
correct responses are the center of the universe,
whereas the incorrect responses drift around them
in non-convex formations. The non-convexity of
the lower-knowledge profiles may be another in-
hibitor of their downstream discoverability. Taken
together, the ‘classic’ Anna Karenina property and



KP 1 2 3 4 5 6
1 .920 .910 .900 .899 .883 .852
2 .903 .896 .889 .880 .849
3 .897 .890 .883 .852
4 .877 .871 .837
5 .874 .845
6 .755

Table 9: Q1 pairwise cosine similarity median per KP.

KP 1 2 3 4 5 6 7
1 .916 .891 .896 .886 .873 .857 .837
2 .876 .870 .860 .854 .840 .820
3 .881 .870 .862 .844 .828
4 .866 .860 .843 .822
5 .861 .843 .823
6 .824 .796
7 .764

Table 10: Q2 pairwise cosine similarity median per KP.

the strong version that puts the correct responses
in the center suggest an explanation for both the
overall discovery failure observed downstream and
for the bias in favor of correct responses exhibited
by the emergent clusters.

Based on our results, pre-trained representations
may not lend themselves to making the necessary
distinctions to support pedagogical decisions such
as providing formative feedback that targets spe-
cific errors in student reasoning. In particular, our
results show a case where the representations are
not sufficiently nuanced to allow commonly used
clustering methods to identify any error-based pro-
files, only the profile of the correct responses. Since
it is the students who gave the incorrect responses
who are in most need of targeted formative feed-
back, the bias in favor of correct responses is es-
pecially counter-productive. Thus, our results tell
a cautionary tale about using emergent properties
of student response data built over pre-trained em-
beddings without domain- and task-specific tuning,
and without human supervision.

6.1 Limitations

It is possible that other clustering approaches could
have revealed clusters that are more similar to the
‘gold’ ones. However, given that despite the large
difference between KMeans and HDB SCAN’s al-
gorithmic approach, they were quite consistent in
both demonstrating poor overall agreement and be-
ing biased towards discovering the best KP, we

believe that reaching results that are qualitatively
different from another clustering method is unlikely.
It is also possible that emergent clusters do corre-
spond to an alternative meaningful partition of the
responses into groups, but that partition is not what
educators see when they analyze student responses.

The AlephBERT model used in this paper is
state-of-the-art for Hebrew, but it has a smaller
number of parameters compared to the most recent
LLMs for English. It is possible that with more
advanced LLM technology, the LLM representa-
tions of student responses will be more nuanced;
we will revisit our analyses with larger Hebrew
LLMs when available.

Due to the monolingual nature of our current
data, we have experimented with one language only.
Work is underway to collect comparable student
response data in Arabic.
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The instrument was administered to the students as
part of the regular instruction of the topic, based
on the teachers’ decision to use it as part of the
teaching routine (the instrument was published in
teachers’ forums), with teacher and school prin-
cipal approval that response data will be used for



research.
The goal of this research is to better understand

the relations between pre-trained LLM-based rep-
resentations of student responses to open-ended
questions in science, and representations of these
responses according to theory-driven rubrics ap-
plied by human experts. We study to what extent
conceptually/pedagogically similar responses tend
to maintain their proximity in the embedding space
as well, and the impact of deviations from this
property on downstream analysis. What makes
this especially relevant to Ethics is our finding that
the weaker students are the ones whose responses
suffer the most from representation mismatches
between the two representation spaces. This lim-
its the ability to automatically cater to these stu-
dents – the ones who are in the highest need for
personalized guidance – with formative feedback
that matches the gaps in their reasoning. By iden-
tifying and naming this phenomenon (‘the Anna
Karenina principle’ in automated short answer eval-
uation), we hope to start a discussion on the means
to both estimate its prevalence and to address it.

We demonstrate the Anna Karenina principle
on two tasks with one pre-trained model. It is
possible that results will look different with other
tasks and other large language models. There is a
potential danger of over-generalization based on
our results, whereby large language models, as a
species, so to speak, would be thought to suffer
from the Anna Karenina principle and their off-
the-shelf use would be avoided in learner-focused
applications. This, in turn, could hamper develop-
ment of useful LLM-based applications to support
learners. We believe that the best course of action
is to continue the study of the principle in order to
improve our understanding of what kind of models
are likely to exhibit the problem and for what kind
of task, as well as how to diagnose and correct it,
ideally without recourse to a large human-tagged
dataset. In parallel, future ethics-focused research
could investigate whether weaker learners should
be a protected category in educational applications,
akin to demographic categories like race or gender,
by investigating evidence of harm differentially
wrought on such learners through technology that
does not cater sufficiently precisely to their needs.

Data from this research cannot be shared pub-
licly due to privacy regulations, but may be pro-
vided for research purposes, along with its analysis
code, subject to the necessary approvals.
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Appendix 1

Item Text
Smoking item The smoke from cigarettes contains several harmful substances,

including the gas carbon-monoxide (CO). CO is released from
cigarettes while smoking, and has a stronger tendency than oxygen
to bind to Hemoglobin. Explain how high levels of CO make it
difficult for smokers to exercise.

Anemia item A person was found to have low levels of red blood cells in his blood
test (anemia). This person complained to his doctor about weakness
and difficulty to exercise. Explain how low levels of red blood cells
make it difficult for people with anemia to exercise.

Table 11: The constructed response items (reproduced from Ariely et al. (2024); original responses are in Hebrew).

Cluster description Exemplifying response
Full explanations: All/most of
the conceptual components and
the underlying causal relations
are present.

“Red blood cells bind oxygen and transfer it in the bloodstream,
from the lungs where it is absorbed, to all the cells of the body. A
low amount of red blood cells in the body leads to the transfer of less
oxygen to the body’s cells. Since oxygen is one of the reactants in
the process of cellular respiration - the energy production process,
less oxygen reaching the cells leads to damage to this process. Thus,
less available energy is produced in the body’s cells and this impairs
their function, which leads to fatigue and difficulty in performing
physical activity.” (Anemia item)

Gaps in causal connections:
All/most of the conceptual
components are present, but
all/most of the causal relations
are missing.

“The CO binds to the red blood cell instead of the oxygen and thus
oxygen does not reach the cells of the body and then cellular
respiration does not occur and the body cannot produce energy and
thus it stops physical activity due to lack of energy.” (Smoking item)

Specific sequential stages are
missing and causal relations are
often missing.

“CO gas is known to bind to Hemoglobin with a stronger tendency
than oxygen. When CO binds to Hemoglobin, it takes the oxygen’s
place, so much less oxygen is transported from place to place and
enters the cells. Lack of oxygen in the cells leads to less production
of ATP molecules. Since energy is required for physical exercise, the
result is that the person gets tired quickly and has difficulty
exercising.” (Smoking item)

Many sequential stages are
missing and causal relations are
often missing as well.

“Red blood cells carry the oxygen (because of Hemoglobin). When
there is anemia, then there is a low amount of red blood cells and
thus a low amount of oxygen reaches the muscles.” (Anemia item)

No explanation: All/most of
the sequential stages and the
underlying causal relations are
missing/irrelevant responses.

“I don’t know”
“Anemic people are tired because they have few red blood cells.”
(Anemia item)

Table 12: Examples of student responses and their classification into the KPs that were derived from the expert
scoring according to the theory-driven rubric (reproduced from Ariely et al. (2024); original responses are in
Hebrew).


