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Abstract

Automatic Readability Assessment (ARA)
aims to predict the level of difficulty of a text,
e.g. at Grade 1 to Grade 12. It can be helpful
for teachers and students in identifying and re-
vising text to the desirable level of difficulty.
ARA is an ordinal classification task since the
predicted levels follow an underlying order,
from easy to difficult. However, most neural
ARA models ignore the distance between the
gold level and predicted level, treating all lev-
els as independent labels. This paper investi-
gates whether distance-sensitive loss functions
can improve ARA performance. We evaluate a
variety of loss functions on neural ARA mod-
els, and show that ordinal log-loss can produce
statistically significant improvement over the
standard cross-entropy loss in terms of adjacent
accuracy in a majority of our datasets.

1 Introduction

Automatic Readability Assessment (ARA) aims to
predict the level of difficulty of a text, e.g. at Grade
1 to Grade 12. It can be helpful for teachers and
students in identifying and revising text to the desir-
able level of difficulty. ARA is an ordinal classifica-
tion task since the levels follow an underlying order,
from easy to difficult. Yet, in ARA models trained
with traditional machine learning, the use of ordinal
classification has yielded mixed results (Heilman
et al., 2008; Feng et al., 2010; Jiang et al., 2014).
Further, most neural ARA models treat the task as
multi-class classification (Xia et al., 2016; Azpiazu
and Pera, 2019; Filighera et al., 2019; Tseng et al.,
2019; Deutsch et al., 2020; Martinc et al., 2021;
Lee et al., 2021) and ignore the distance between
the gold level and predicted level. In these models,
a classifier is typically trained with the standard
cross-entropy loss function, which treats the diffi-
culty levels as independent labels. Further, perfor-
mance evaluation often penalizes incorrect predic-
tions equally, regardless of their distance from the
gold.

Recognizing the ordinal nature of ARA could
potentially enhance performance and enable more
accurate evaluation. A loss function that reflects
label distance could be suitable, since the bound-
ary between difficulty levels may not be clear-cut,
especially on fine-grained scales. While severe
mistakes are never desirable, a sufficiently close
prediction may be acceptable in some applications,
such as retrieval of extra-curricular reading mate-
rials. Evaluation metrics that reflect the average
distance from the gold label would therefore be
more informative.

Distance-sensitive loss functions have received
relatively little attention in neural ARA. Zeng et
al. (2022) showed that soft labels could improve
performance, but the evaluation was limited to
BERT and only one loss function. We present
a more comprehensive study on a variety of loss
functions, evaluated on a range of pre-trained lan-
guage models, hyper-parameters, and performance
metrics. Experimental results show that ordinal log-
loss (Castagnos et al., 2022) performs best overall
for neural ARA models. It achieves a statistically
significant improvement over the standard cross-
entropy loss in terms of adjacent accuracy in a
majority of our datasets, though sometimes at the
expense of accuracy.

The rest of the paper is organized as follows.
After a review of the major loss functions in Sec-
tion 2, we give details on the experimental set-up
in Section 3. We then report results in Section 4.

2 Previous work

Many text classification tasks, ranging from ARA
and essay scoring, to sentiment and review rat-
ing prediction, have an ordinal structure. Let
Y = {r,ra,...,rx } be the set of possible labels.
Ordinal binary classification exploits the structure

'Code and data can be accessed at
https://github.com/hhlim333/Readability-Assessment-
with-Ordinal-Log-Loss
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with K —1 binary classifiers (Frank and Hall, 2001).
Ordinal Multi-class Classification with Voting was
found to be potentially helpful in improving ARA
performance (Jiang et al., 2014). Ordinal regres-
sion models have been applied to ARA models
trained in traditional machine learning. While Heil-
man et al. (2008) found that the Proportional Odds
Model offered competitive performance, Feng et
al. (2010) reported that ordinal classifiers did not
perform better than standard classifiers. Loss-
sensitive classification, which is the focus of this
paper, utilizes loss functions that impose higher
penalty to predictions further from the gold label,
based on a distance function d(r;, r;) that specifies
the distance between labels r; and r;. Two main
families of these loss functions are as follows.

2.1 Soft labels

Soft labels for ordinal regression (Bertinetto et al.,
2020) is a distance-sensitive loss function that has
been found to be effective for ARA. The soft label
is defined as follows:

__exp(=B-d(ri,))
S exp (=B - d(rk,7¢))

where 7 is the gold label; r; € ) is the ¢-th label;
and the hyperparameter (3 specifies how much more
probability mass to assign to labels closer to the
gold.

Zeng et al. (2022) applied the soft label version
of Diaz and Marathe (2019) to ARA using a simple
distance function: the distance between the gold
and an adjacent label is a positive constant, and
infinity for all other labels. A BERT-based neural
classifier trained on this loss function outperformed
the standard cross-entropy loss on both English and
Chinese data.

(1

%

2.2 Ordinal log-loss
Ordinal log-loss (OLL) is defined as:

N
— > log(1 — pi)d(y, i) )
=1

where the hyperparameter « adjusts the amount of
penalty, with a higher value leading to the greater
penalty for predicted labels at a longer distance
from the gold (Castagnos et al., 2022). OLL is
distinguished in its use of the weight —log(1 — p;),
rather than p; as in many other loss functions, to
impose greater penalty on more severe errors.

Castagnos et al. (2022) have shown OLL to be
beneficial in a number of text classification tasks,
but their evaluation focused only on BERT-tiny.
This paper is the first attempt to apply OLL on
ARA. We conduct a comprehensive study utilizing
a variety of loss functions and pre-trained language
models, and analyzing trade-off between accuracy
and adjacent accuracy.

3 Experimental Set-up

This section describes the loss functions (Sec-
tion 3.1), the datasets (Section 3.2) and training
procedure (Section 3.3).

3.1 Loss functions

We investigate the following loss functions for
training neural ARA models:>

Baseline The standard cross-entropy loss.

WKL Weighted Kappa Loss (de la Torre et al.,
2018).

EMD Earth Mover’s Distance (Hou et al., 2016).

OLL-« Ordinal log-loss (Castagnos et al., 2022)
with the hyperparameter «, as defined in Sec-
tion 2.2.

SOFT-3 Soft labels (Bertinetto et al., 2020) with
the hyperparameter (3, as defined in Sec-
tion 2.1.

Zeng et al The model proposed by Zeng et
al. (2022) (Section 2.1), based on the soft label
version of Diaz and Marathe (2019), which
does not use the 8 hyperparameter.

Following Castagnos et al. (2022), we tuned
the o parameter for OLL on {1,1.5,2} and the
B parameter for SOFT on {2,3,4}. They were
optimized on the validation set of the Cambridge
Dataset to « = 1 and 8 = 2, respectively. We used
the default distance function d(r;,r;) = |r; — 1]
in all experiments.

3.2 Datasets

Our experiments make use of three English and
two Chinese datasets (see detailed statistics in Ap-
pendix A):

Zhttps://github.com/glanceable-io/ordinal-log-loss
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Loss Cam CC OSE CMT CMER

function MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE
Baseline | 0.387 | 0.533 | 1.047 | 1.729 | 0.042 | 0.077 | 1.244 | 3.524 | 1.696 | 5.666
Zengetal | 0.347 | 0.413 | 0.953 | 1.494 | 0.056 | 0.084 | 1.118 | 2.985 | 1.681 | 5.623
OLL-1 0.347 | 0.400 | 0.776 | 1.012 | 0.074 | 0.13 | 1.112 | 2.894 | 1.638 | 4.847
SOFT-2 0.333 | 0.400 | 1.035 | 1.694 | 0.042 | 0.077 | 1.159 | 3.169 | 1.679 | 5.592
EMD 0.433 | 0.553 | 0.906 | 1.541 | 0.046 | 0.06 | 1.171 | 3.104 | 1.664 | 5.205
WKL 0.867 | 1.493 | 1.235 | 2.671 | 0.446 | 0.614 | 2.252 | 10.107 | 3.455 | 19.177

Table 1: Mean Absolute Error (MAE) and Mean Squared Error (MSE) in ARA using RoBERTa on the English
datasets Cambridge (Cam), Common Core (CC) and OneStopEnglish (OSE); and using MacBERT on the Chinese

datasets CMT and CMER

Cambridge (Cam) This dataset contains articles
for various Cambridge English Exams, la-
beled with five levels (A2-C2) in the Com-
mon European Framework of Reference (Xia
et al., 2016). We use the train/validation/test
set of the downsampled version provided by
Lee et al. (2021), which consists of 60 items
per level.?

OneStopEnglish (OSE) This corpus consists of
189 aligned texts, each written at three read-
ing levels: beginner, intermediate, and ad-
vanced (Vajjala and Luci¢, 2018), hence a total
of 567 texts.*

Common Core (CC) The Common Core corpus
consists of 168 texts, labeled at five grade
bands (Grades 2-3, 4-5, 6-8, 9-10, and
11-12) from Appendix B of the English Lan-
guage Arts Standards of the Common Core
State Standards (Chen and Meurers, 2016).°

China Mainland Textbook (CMT) This corpus
consists of a total of 2,723,430 characters, dis-
tributed in 2,621 texts in twelve grades, all
taken from Chinese textbooks from the first
grade of primary school to the third grade of
high school in mainland China (Cheng et al.,
2019).

China Mainland Extracurricular Reading
(CMER) This corpus consists of 2,260 texts
distributed at Grade 1 to 12, taken from
extracurricular reading books for children and
teenagers.®

3 Accessed at https://github.com/brucewlee/

4 Accessed at https://github.com/nishkalavallabhi/
Shttps://xiaobin.ch/Chen_Meurers_16Frequency/
®https://github.com/JinshanZeng/DTRA-Readability

3.3 Pre-trained language models

We evaluated the pre-trained language models
BERT, RoBERTa, BART, and XLNET’ in English
experiments. In the Chinese experiments, we used
MacBERT®, which was shown to perform best in
previous research on Chinese ARA (Lim et al.,
2022). All models were downloaded from Hug-
gingFace transformers v4.5.0 (Wolf et al., 2020).°

4 Experimental results

All results are averaged based on stratified 5-fold
cross-validation with a 8:1:1 split for train/valida-
tion/test. We first report overall results based on
Mean Absolute Error (MAE) and Mean Squared
Error (MSE) (Section 4.1), and then analyze their
performance in terms of adjacent accuracy and ac-
curacy.'® Henceforth, all Chinese results are based
on MacBERT, and the English results on RoOBERTa,
sicne they performed best among the four PLMs
evaluated (see Table 7 in Appendix D).

4.1 Mean Error

Table 1 shows the performance of neural ARA
models in terms of MAE and MSE when trained
with the loss functions described in Section 3.1.
Weighted Kappa Loss (WKL) produced the worst
performance, below the standard cross-entropy
baseline in all datasets. Earth Mover’s Distance
(EMD) outperformed the baseline in four out of

"https://huggingface.co/bert-base-uncased,roberta-
base,bart-base,xInet-base-cased

8https://huggingface.co/hfl/chinese-macbert-large

We used AdamW (optimizer) (Kingma and Ba, 2015),
linear (scheduler), 10% (warmup steps), 8 (batch size), 3
(epoch) for all pre-trained language models. For English ex-
periments, we use the learning rate of 2e-5 for BERT and
3e-5 for the other pre-trained language models. For Chinese
experiments,we use the learning rate of 2e-5 for MacBERT.

10All metrics are calculated with SciKit-learn (Pedregosa
etal., 2011).
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Loss (a) Accuracy (b) Adjacent Accuracy

Function Cam CC OSE | CMT | CMER | Cam CC OSE | CMT | CMER
Baseline 0.68 | 0.294 | 0.975 | 0.364 | 0.285 | 0.940 0.659 | 0.982 | 0.686 | 0.561
Zengetal | 0.68 | 0.318 | 0.958 | 0.382 | 0.277 0.98 0.729 | 0986 | 0.735 | 0.575
OLL-1 0.673 | 0.341 | 0.954 | 0.368 | 0.232 | 0.987* | 0.882** | 0.972 | 0.740% | 0.563
OLL-1.5 0.64 | 0.329 | 0.846 | 0.316 | 0.209 | 0973 | 0.882** | 0.993 | 0.738* | 0.573
OLL-2 0.56 | 0.341 | 0.891 | 0.317 | 0.201 0.98 | 0.824** | 0.989 | 0.731* | 0.583
SOFT-2 0.693 | 0.294 | 0.975 | 0.381 | 0.277 0.98 0.671 | 0.982 | 0.718* | 0.574
SOFT-3 0.727 | 0.294 | 0.979 | 0.387 | 0.281 | 0.967 0.682 | 0.986 | 0.726* | 0.555
SOFT-4 0.713 | 0.294 | 0979 | 0.367 | 0.29 0.96 0.659 | 0.982 | 0.699 | 0.568
EMD 0.62 | 0.376 | 0.961 | 0.359 | 0.243 | 0.953 0.753 | 0993 | 0.709 | 0.573
WKL 0.387 | 0.271 | 0.639 | 0.182 | 0.105 0.8 0.659 | 0916 0.5 0.307

Table 2: ARA performance based on (a) accuracy; and (b) adjacent accuracy (* means a statistically significant
improvement at p < 0.05 according to McNemar’s Test over the baseline; ** means statistically significant
improvement over both the baseline and the Zeng et al. model)

five datasets, yielding the lowest MSE on OSE.
The Zeng et al model improved upon the baseline
in all datasets except OSE. SOFT-2 outperformed
Zeng et al in three out of the four datasets, and
produced the best performance on Cambridge (tied
with OLL-1), suggesting the utility of the 5 hy-
perparameter. Overall, OLL-1 achieved the best
performance, with the smallest MSE on four of the
five datasets. In the remainder of the discussion,
we will focus on Zeng et al, SOFT-3 and OLL-q.

4.2 Adjacent accuracy

Table 2(b) shows the results in terms of adjacent
accuracy. The OLL-a models outperformed the
baseline in the vast majority of settings, suggesting
their ability to reduce severe ARA errors.!! Of
the four PLMs, the best performance was obtained
with RoBERTa (Appendix D).

OLL-1 achieved the best adjacent accuracy
at 0.987 on Cambridge and 0.882 on Common
Core.!? It also scored the highest Macro F1 and
Weighed F1 on these two datasets (see Table 5
in Appendix C). OSE is particularly challenging
since the baseline already achieved excellent per-
formance at 0.989 adjacent accuracy; OLL was
able to make an improvement on adjacent accuracy
and F1 only when « is set to 1.5. OLL-1 improved
upon the baseline on both Chinese datasets, and
outperformed Zeng et al on CMT.

llAmong all combinations of « values, PLMs and datasets,
there are only two exceptions: OLL-1 with RoBERTa on OSE,
and with BART on Cambridge.

12Statistically significant at p = 0.0391 and p = 0.0000,
respectively, according to McNemar’s Test.

4.3 Accuracy

OLL-1 generally performed worse than the base-
line, both in terms of accuracy (Table 2(a))'? and
F1 (Table 6 in Appendix C). SOFT-2 improved
upon the baseline and Zeng et al in most settings,
although the improvement was not statistically sig-
nificant.

SOFT-3 established a new state-of-the-art in ac-
curacy and F1 for neural ARA models, on both
the Cambridge and OSE datasets. Its performance
(accuracy at 0.727 and 0.979, respectively) sur-
passed the previous best (0.680 and 0.975) in neural
models (Lee et al., 2021), although it is still out-
performed by hybrid models, which require hand-
crafted linguistic features. SOFT-3 also obtained
the best result in Chinese on CMT (0.387), outper-
forming the baseline and the Zeng et al model.

5 Conclusion

Since ARA is an ordinal classification task, the
magnitude of classification error should in principle
be taken into account. This paper has presented
a comprehensive evaluation of a variety of loss
functions that are sensitive to the distance between
the predicted label and gold label.

Our experiments on neural ARA models suggest
that ordinal log-loss (OLL) is able to capture the
ordinal nature of the task, reducing the mean abso-
lute error and mean squared error on most datasets.
It produces significant improvement over the stan-
dard cross-entropy function in terms of adjacent
accuracy, but at the expense of accuracy in some

3We obtained slightly higher accuracy for the baseline on
the OSE dataset than reported by Lee et al. (2021).
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settings. These results suggest that future ARA
models should consider using OLL for applications
that need to avoid severe errors but do not require
precise classification.

A number of research directions may be pursued.
First, ARA accuracy could be further improved by
optimizing the distance function in the ordinal log-
loss and soft label models. Second, the usability of
the ARA model in an educational setting, for exam-
ple assisting teachers and students in text selection
and revision, is also worth investigating.

Acknowledgements

This work was partly supported by the Lan-
guage Fund from the Standing Committee
on Language Education and Research (project
EDB(LE)/P&R/EL/203/14) and by a Teaching De-
velopment Grant from City University of Hong
Kong (project 6000834).

References

Ton Madrazo Azpiazu and Maria Soledad Pera. 2019.
Multiattentive recurrent neural network architecture
for multilingual readability assessment. Transactions

of the Association for Computational Linguistics,
7:421-436.

Luca Bertinetto, Romain Mueller, Konstantinos Ter-
tikas, Sina Samangooei, and Nicholas A. Lord. 2020.
Making better mistakes: Leveraging class hierarchies
with deep networks. In Proc. IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Francois Castagnos, Martin Mihelich, and Charles
Dognin. 2022. A Simple Log-based Loss Function
for Ordinal Text Classification. In Proc. 29th Inter-
national Conference on Computational Linguistics
(COLING), pages 4604-4609.

Xiaobin Chen and Detmar Meurers. 2016. Characteriz-
ing Text Difficulty with Word Frequencies. In Proc.
11th Workshop on Innovative Use of NLP for Build-
ing Educational Applications (BEA), page 84-94.

Yong Cheng, Dekuan Xu, and Xueqgiang Lv. 2019. Au-
tomatically Grading Text Difficulty with Multiple
Features. Data Analysis and Knowledge Discovery,
3(7):103-112.

Jordi de la Torre, Domenec Puig, and Aida Valls. 2018.
Weighted kappa loss function for multi-class clas-
sification of ordinal data in deep learning. Pattern
Recognition Letters, 105:144—154.

Tovly Deutsch, Masoud Jasbi, and Stuart Shieber. 2020.
Linguistic Features for Readability Assessment. In
Proceedings of the Fifteenth Workshop on Innovative
Use of NLP for Building Educational Applications.

Raul Diaz and Amit Marathe. 2019. Soft labels for
ordinal regression. In Proc. IEEE/CVF Conference
on Computer Vision and Pattern Recognition, page
4738-4747.

Lijun Feng, Martin Jansche, Matt Huenerfauth, and
Noemie Elhadad. 2010. A Comparison of Features
for Automatic Readability Assessment. In Proc.
COLING.

Anna Filighera, Tim Steuer, and Christoph Rensing.
2019. Automatic text difficulty estimation using em-
beddings and neural networks. In European Con-
ference on Technology Enhanced Learning, page
335-348. Springer.

Eibe Frank and Mark Hall. 2001. A simple approach to
ordinal classification. In Proc. 12th European Confer-
ence on Machine Learning (ECML), page 145-156.

Michael Heilman, Kevyn Collins-Thompson, and Max-
ine Eskenazi. 2008. An Analysis of Statistical Mod-
els and Features for Reading Difficulty Prediction. In
Proc. Third Workshop on Innovative Use of NLP for
Building Educational Applications.

Le Hou, Chen-Ping Yu, and Dimitris Samaras. 2016.
Squared earth mover’s distance-based loss for train-
ing deep neural networks. In arXiv preprint
arXiv:1611.05916.

Zhiwei Jiang, Gang Sun, Qing Gu, and Daoxu Chen.
2014. An Ordinal Multi-class Classification Method
for Readability Assessment of Chinese Documents.
LNAI, 8793:61-72.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Proc. 3rd In-
ternational Conference for Learning Representations,
San Diego.

Bruce W. Lee, Yoo Sung Jang, and Jason Hyung-Jong
Lee. 2021. Pushing on Text Readability Assessment:
A Transformer Meets Handcrafted Linguistic Fea-
tures. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing.

Ho Hung Lim, Tianyuan Cai, John S. Y. Lee, and Me-
ichun Liu. 2022. Robustness of Hybrid Models in
Cross-domain Readability Assessment. In Proc. 20th
Workshop of the Australasian Language Technology
Association (ALTA).

Matej Martinc, Senja Pollak, Marko, and Robnik-
Sikonja. 2021. Supervised and Unsupervised Neural
Approaches to Text Readability. Computational Lin-
guistics, 47(1):141-179.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, and O. Grisel. 2011. Scikit-learn: Ma-
chine learning in python. Journal of machine learn-
ing research, 12(Oct):2825-2830.

Hou-Chiang Tseng, Hsueh-Chih Chen, Kuo-En Chang,
Yao-Ting Sung, and Berlin Chen. 2019. An Inno-
vative BERT-Based Readability Model. In Lecture
Notes in Computer Science, vol 11937.

347



Cam CC OSE
Grade | Texts | Textlength | Texts | Text length | Texts | Text length
1 60 140.12 20 294.65 189 531.97
2 60 271.25 30 320.70 189 677.90
3 60 614.50 45 472.09 189 820.76
4 60 778.73 36 549.83 na na
5 60 761.85 37 612.05 na na

Table 3: Number of texts and average length at each
grade in the Cam, CC and OSE dataset

Sowmya Vajjala and Ivana Lucié. 2018. On-
eStopEnglish corpus: A new corpus for automatic
readability assessment and text simplification. In
Proc. 13th Workshop on Innovative Use of NLP for
Building Educational Applications, pages 297-304.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingFace’s Transformers: State-of-the-art Natural
Language Processing. In Proc. Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, page 38—45.

Menglin Xia, Ekaterina Kochmar, and Ted Briscoe.
2016. Text readability assessment for second lan-
guage learners. In Proc. 11th Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, page 12-22.

Jinshan Zeng, Yudong Xie, Xianglong Yu, John S. Y.
Lee, and Ding-Xuan Zhou. 2022. Enhancing Au-
tomatic Readability Assessment with Pre-training
and Soft Labels for Ordinal Regression. In Find-
ings of the Association for Computational Linguis-

tics: EMNLP 2022, pages 4586-4597.

A Appendix: Dataset statistics

This section provides detailed statistics for all
datasets.

B Appendix: Computing details

We used a NVIDIA Tesla V100 GPU to train 80%
of the full dataset. The following is the total train-
ing time of the experiments on OLL-1, measured
in seconds:

English Experiments (BERT, RoBERTa, XLNet,
BART):

» Cambridge (638,496,1410,607)
¢ OneStopEnglish (1261, 948, 2286, 1110)
e CommonCore (382,310,776,377)

Chinese Experiment (MacBERT):

CMT CMER

Grade | Texts | Text length | Texts | Text length
1 235 108.95 218 145.53
2 320 198.58 217 308.44
3 386 329.48 234 538.35
4 321 425.39 229 628.08
5 282 569.82 200 682.41
6 252 660.89 255 701.29
7 199 1202.13 221 1227.19
8 142 1176.94 205 1324.25
9 134 1443.84 188 1302.54
10 140 1617.08 100 2182.08
11 89 1900.85 96 2252.34
12 121 1930.74 97 2043.69

Table 4: Number of texts and average length at each
grade in the CMT and CMER dataset

« CMT (12498)
« CMER (11809)

C Appendix: F1 Evaluation

This section reports F1 evaluation, based on ad-
jacent accuracy (Table 5) and accuracy (Table 6),
respectively. We used RoBERTa on the English
datasets Cambridge (Cam), Common Core (CC)
and OneStopEnglish (OSE); and MacBERT on the
Chinese datasets CMT and CMER.

D Appendix: Evaluation on other PLMs

This appendix provides detailed results for all pre-
trained language models (BERT, RoBERTa, XL-
Net, BART).
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Loss Macro F1 Weighted F1

Function Cam CC OSE | CMT | CMER | Cam CC OSE | CMT | CMER
Baseline | 0.938 | 0.527 | 0.982 | 0.593 | 0.518 | 0.938 | 0.551 | 0.982 | 0.655 | 0.548
Zengetal | 0.98 | 0.615 | 0.986 | 0.647 | 0.532 | 098 | 0.658 | 0.986 | 0.715 | 0.562
OLL-1 0.987 | 0.839 | 0.972 | 0.642 | 0.502 | 0.987 | 0.862 | 0.972 | 0.721 | 0.544
OLL-1.5 | 0973 | 0.833 | 0.993 | 0.661 | 0.513 | 0.973 | 0.859 | 0.993 | 0.722 | 0.554
OLL-2 0.98 | 0.742 | 0.989 | 0.631 | 0.518 0.98 | 0.788 | 0.989 | 0.712 | 0.563
SOFT-2 0.98 | 0.544 | 0982 | 0.629 | 0.533 | 0.98 | 0.572 | 0.982 | 0.694 | 0.562
SOFT-3 0.966 | 0.557 | 0.986 | 0.636 | 0.511 | 0.966 | 0.588 | 0.986 | 0.705 | 0.539
SOFT-4 0.959 | 0.527 | 0.982 | 0.605 | 0.528 | 0.959 | 0.551 | 0.982 | 0.673 | 0.555
EMD 0.952 | 0.722 | 0.993 | 0.62 0.53 0.952 | 0.722 | 0.993 | 0.686 | 0.565
WKL 0.766 | 0.626 | 0.894 | 0.437 | 0.216 | 0.766 | 0.605 | 0.894 | 0.473 | 0.248

Table 5: ARA performance in F1, based on adjacent accuracy

Loss Macro F1 Weighted F1

Function Cam CC OSE | CMT | CMER | Cam CC OSE | CMT | CMER
Baseline | 0.658 | 0.091 | 0.975 | 0.282 | 0.253 | 0.658 | 0.134 | 0.975 | 0.324 | 0.27
Zengetal | 0.668 | 0.131 | 0.958 | 0.322 | 0.246 | 0.668 | 0.173 | 0.958 | 0.363 | 0.262
OLL-1 0.654 | 0.206 | 0.954 | 0.279 | 0.201 | 0.654 | 0.242 | 0.954 | 0.346 | 0.221
OLL-1.5 | 0.591 | 0.189 | 0.812 | 0.236 | 0.167 | 0.591 | 0.226 | 0.812 | 0.286 | 0.181
OLL-2 0.496 | 0.182 | 0.868 | 0.227 | 0.153 | 0.496 | 0.224 | 0.868 | 0.273 | 0.168
SOFT-2 0.68 | 0.095 | 0.975 | 0.305 | 0.246 | 0.68 | 0.139 | 0.975 | 0.351 | 0.262
SOFT-3 0.717 | 0.093 | 0.979 | 0.318 | 0.253 | 0.717 | 0.136 | 0.979 | 0.361 | 0.264
SOFT-4 0.699 | 0.091 | 0.979 | 0.294 | 0.259 | 0.699 | 0.134 | 0.979 | 0.337 | 0.274
EMD 0.569 | 0.243 | 0.961 | 0.288 | 0.204 | 0.569 | 0.284 | 0.961 | 0.329 | 0.214
WKL 0.237 | 0.157 | 0.539 | 0.083 | 0.024 | 0.237 | 0.139 | 0.539 | 0.08 | 0.026

Table 6: ARA performance in F1, based on accuracy
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Metric — Accuracy Adjacent Accuracy

PLM Loss Func. | Cam CcC OSE Cam CC OSE
BERT Baseline 0.573 | 0.388 | 0.919 | 0.907 0.694 | 0.989
Zengetal | 0.567 | 04 | 0.719 0.94 0.835 | 0.993
OLL-1 0.5 | 0365 | 0.709 | 0.973* | 0.812* | 0.989
OLL-1.5 0.44 | 0.365 | 0.737 | 0.973* | 0.788* | 0.996
OLL-2 0.467 | 0.353 | 0.705 | 0.973* 0.765 | 0.993
SOFT-2 0.593 | 0.388 | 0.768 | 0.913 0.753 | 0.993
SOFT-3 0.573 | 0.376 | 0.765 | 0.913 0.718 | 0.993
SOFT-4 0.587 | 0.353 | 0.754 0.92 0.659 | 0.993
WKL 0.407 | 0.318 | 0.505 | 0.813 0.753 | 0.863
EMD 0.48 | 0.353 | 0.786 0.92 0.776 | 0.993
RoBERTa | Baseline 0.68 | 0.294 | 0.975 0.94 0.659 | 0.982
Zengetal | 0.68 | 0.318 | 0.958 0.98 0.729 | 0.986

OLL-1 0.673 | 0.341 | 0.954 | 0.987* | 0.882%* | 0.972
OLL-1.5 0.64 | 0329 | 0.846 | 0.973 | 0.882%* | 0.993
OLL-2 0.56 | 0.341 | 0.891 0.98 0.824** | 0.989

SOFT-2 0.693 | 0.294 | 0.975 0.98 0.671 | 0.982
SOFT-3 0.727 | 0.294 | 0.979 | 0.967 0.682 | 0.986
SOFT-4 0.713 | 0.294 | 0.979 0.96 0.659 | 0.982
WKL 0.387 | 0.271 | 0.639 0.8 0.659 | 0916
EMD 0.62 | 0.376 | 0.961 | 0.953 0.753 | 0.993
BART Baseline 0.62 | 0.388 | 0.968 | 0.927 0.776 | 0.989
Zengetal | 0.593 | 0.435 | 0.944 0.92 0.788 | 0.996

OLL-1 0.52 | 0.353 | 0.965 0.92 0.847 | 0.993
OLL-1.5 0.493 | 0.318 | 0.958 0.94 0.871** | 0.993
OLL-2 0.42 | 0.294 | 0.916 0.94 0.882%* | 0.996
SOFT-2 0.6 | 0412 | 0.947 0.92 0.776 | 0.993
SOFT-3 0.6 | 0435 | 0944 0.9 0.8 0.986
SOFT-4 0.627 | 0.388 | 0.954 | 0.907 0.776 | 0.989
WKL 0.393 | 0.294 | 0.596 0.8 0.612 | 0.902
EMD 0.56 04 10961 | 0913 0.788 | 0.993

XLNET Baseline 0.573 | 0.365 | 0.804 | 0.933 0.671 | 0.993
Zengetal | 0.713 | 0.388 | 0.811 | 0.933 0.8 0.993
OLL-1 0.653 | 0.318 | 0.737 | 0.967 0.824* | 0.996
OLL-1.5 0.593 | 0.365 | 0.818 | 0.973** | 0.847* | 0.993
OLL-2 0.467 | 0.329 | 0.807 | 0.973** | 0.835* | 0.993
SOFT-2 0.667 | 0.388 | 0.877 | 0.933 0.753 | 0.993
SOFT-3 0.653 | 0.424 | 0.891 0.92 0.741 | 0.996
SOFT-4 0.633 | 0.341 | 0.853 | 0.933 0.753 | 0.993
WKL 0.42 | 0.318 | 0.481 0.86 0.659 0.86
EMD 0.587 | 0.318 | 0.856 0.9 0.741 | 0.989

Table 7: ARA performance on the English datasets (* means statistically significant improvement at p < 0.05
according to McNemar’s Test over the baseline; ** means statistically significant improvement over both baseline
and Zeng et al.)
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