Error Tracing in Programming: A Path to Personalised Feedback

Martha Shaka, Diego Carraro and Kenneth N. Brown
Centre for Research Training in Al, Insight, School of Computer Science & IT,
University College Cork
Ireland
m.shaka@cs.ucc.ie, diego.carraro@insight-centre.org, k.brown@cs.ucc.ie

Abstract

Knowledge tracing, the process of estimating
students’ mastery over concepts from their past
performance and predicting future outcomes,
often relies on binary pass/fail predictions. This
hinders the provision of specific feedback by
failing to diagnose precise errors. We present
an error-tracing model for learning program-
ming that advances traditional knowledge trac-
ing by employing multi-label classification to
forecast exact errors students may generate.
Through experiments on a real student dataset,
we validate our approach and compare it to
two baseline knowledge-tracing methods. We
demonstrate an improved ability to predict spe-
cific errors, for first attempts and for subsequent
attempts at individual problems.

1 Introduction

The increasing importance of digital technologies
has made programming a critical skill. The teach-
ing of programming has long been recognised as
difficult, and novice programmers often struggle
with syntax, and with conceptual and problem-
solving skills (Figueiredo and Garcia-Penalvo,
2021; Thuné and Eckerdal, 2019). Practical as-
signments, designed to enhance understanding, of-
ten become stumbling blocks due to compiler er-
rors that are not informative for beginners, leading
to confusion or discouragement (Medeiros et al.,
2019). Further, given large class sizes, providing
personalised feedback from instructors is difficult
(Parihar et al., 2017; Song et al., 2019). Recent
research has explored Automatic Feedback gen-
eration, including test-case analysis (Xiong et al.,
2018) and Al-driven Automatic Program Repair
systems (Bhatia and Singh, 2016; Gulwani et al.,
2018; Suzuki et al., 2017). But many of these sys-
tem fail to trace the individual learner’s profile or
unique learning trajectory, thus reducing the effec-
tiveness of the feedback provided (Ghosh et al.,
2021).

In contrast, Knowledge Tracing (KT), an edu-
cational data mining technique, has the potential
to create personalised learning experiences by pre-
dicting student performance based on their mastery
of concepts (Piech et al., 2015; Wang et al., 2017;
Emerson et al., 2019). In programming education,
KT is useful for recommending exercises, predict-
ing assignment outcomes, and identifying students
at risk of underperforming (Huang et al., 2019;
Azcona et al., 2019). But traditional KT models
often overlook the granularity of student responses,
treating all correct or incorrect attempts uniformly
(Ghosh et al., 2021). Programming errors, though,
vary widely, from simple syntax mistakes like a
missing semicolon, to more complex issues such as
failing to implement a loop correctly. Deep Knowl-
edge Tracing (DKT) (Piech et al., 2015) uses neural
networks to identify specific patterns, and thus al-
lows more specific feedback.

This paper propose a refined application of DKT
to identify precise compiler errors. By analysing
the error patterns in students’ historical perfor-
mance, we aim to identify the specific concepts
or syntax elements that a student has not yet mas-
tered. This then enables the delivery of targeted
feedback focused on those elements. In addition,
by analysing the patterns of multiple students in a
class, we can highlight common error patterns, for
further action by educators.

Our contributions are as follows. (1) We in-
troduce a novel KT task, error-based knowledge
tracing, to learn a meaningful representation of
student submissions. We introduce a new error-
based deep knowledge tracing model (Error-DKT)
to track the progressive student error patterns. (2)
We conducted experiments on a real-world student
code database and found that incorporating error
features significantly enhances the accuracy of spe-
cific error predictions, elevating the F1 score from
0.27 (as seen in existing models) to 0.5. (3) We dis-
cuss the broader implications and limitations of this

330

Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications, pages 330-342
June 20, 2024 ©2024 Association for Computational Linguistics

research within programming education, proposing
new research directions to bridge the gap between
generic feedback systems and the need for individ-
ualised educational support.

2 Related Work

Knowledge Tracing (KT) is designed to predict stu-
dents’ future performance by analysing their past
interactions with learning materials. Initially, KT
relied on probabilistic models such as Bayesian
Knowledge Tracing (BKT) (Corbett and Anderson,
1994), which estimates students’ mastery using a
Bayesian Network and a set of fixed parameters
(guess, slip, learn, and sometimes forget). BKT’s
extended by Kiser et al. (2017) through the intro-
duction of Dynamic BKT, to account for interac-
tions between different knowledge components.

Deep Knowledge Tracing (DKT) leverages re-
current neural networks to harness the sequential
patterns in student interaction data, effectively cap-
turing not only correctness of responses but also
the order and context of these interactions (Piech
et al., 2015). Recent advances includes techniques
such as attention mechanisms (e.g., AKT-Context-
aware attentive knowledge tracing (Ghosh et al.,
2020)), external memory modules (e.g., DKVMN-
Dynamic key-value memory networks for knowl-
edge tracing (Zhang et al., 2017)), and GKT-Graph-
based KT (Nakagawa et al., 2019), each aiming to
better understand the learning process’s complexi-
ties. DKT has outperformed recent deep learning
models (Shi et al., 2022; Liu et al., 2022). Liu
et al. (2023); Abdelrahman et al. (2023) gives a
comprehensive review of KT models.

Traditional DKT models primarily rely on se-
quences of question numbers and the correctness
of attempts for prediction, often overlooking de-
tailed information about students’ approaches to
solving questions (Shi et al., 2022; Ghosh et al.,
2021; Abdelrahman et al., 2023). This omission
restricts their predictive power across different do-
mains. However, incorporating domain-specific
features has been shown to enhance performance.
For example, in the mathematical domain, Liu
et al. (2020) enhanced predictions by including
question-concept relationships derived from Pre-
training Embeddings via Bipartite Graph (PEBG),
while in the programming domain, Shi et al. (2022)
introduced code features using code2vec.

There has been a push to extend DKT’s appli-
cation beyond mere correctness prediction. Ghosh

et al. (2021) adapts DKT to forecast the specific
options students select in multiple-choice ques-
tions. Inspired by this, our work aims to tackle the
more complex scenario of open-ended program-
ming questions, which creates the challenge of in-
terpreting diverse compiler errors. Liu et al. (2022)
develops Open-ended Knowledge Tracing (OKT),
which integrates an enhanced DKT model with
code features from an abstract syntax tree neural
network-ASTNN (Zhang et al., 2019) and textual
question features from GPT-2, aiming to predict
student performance. They then employ a GPT-2-
based text-to-code generator, guided by the DKT
model’s hidden state as a knowledge estimate, to
generate diverse code solutions that mirror the stu-
dent’s comprehension.

3 Methodology

Our work introduces an alternative approach for
DKT to predict directly the specific errors students
are likely to encounter. We assess how different do-
main features like student code submissions, refer-
ence solutions, and question-concept relationships
affects error prediction. After pinpointing indi-
vidual errors, we employ a bottom-up approach,
aggregating these error predictions to assess over-
all student performance as pass (error-free) or fail
(submission with errors). This is to assess whether
focusing on granular error predictions can enhance
the accuracy of student outcome forecasts com-
pared to traditional DKT predictions. Figure 1 il-
lustrates our proposed model structure.

3.1 Dataset

We use a dataset from a US university’s Spring
Semester introductory Java programming course,
conforming to ProgSnap2 format (Price et al.,
2020). This dataset includes data from 410 students
across five assignments, totaling 50 programming
questions that assess various concepts like loops
and conditions. Students submitted multiple at-
tempts per exercises until achieving a 100% score,
with submissions ranging from 10 to 20 lines of
code and automatically graded based on test cases.

We focused on Assignment 1, which consists of
10 questions, selected for its high error frequency
and variety, providing a comprehensive base for
error analysis (details in Table 1). Our analysis em-
ploys two subsets: Set-I, categorising submissions
with compiler errors as "incorrect” and those with-

331

Reference
Solution
(ASTI\\IN)

Student Solution
(Code2Vec)

\

Input

Question-
Concept (PEBG)

Question-text
(GPT-2)

|

Error and
Results (Vector)

]

y

N

—>

LSTM La

yer

l

Fully Connected Layer

l

Activati

Sigmoid

on

/

Holistic
Error (HE)

l

Only Error
(OE)

Output

\

Correctness

}

Individual
Error (IE)

Figure 1: Architecture of Error Tracing, integrating various
errors and overall performance, as described in section 3.3.

Description Dataset
Total submissions (subs) 9995

Subs with errors 5948 (59.5%)
Avg errors per subs 1.6

Top 3 frequent errors [0, 1, 5]

Top 2 common pairs [1,3]11, 2]
Total No of students 386

Avg students per question 368

Most attempted question | 5 (= 4000 errors)
Least attempted question | 4 (= 750 errors)

Table 1: Key Features of the Dataset: Summarises sub-
mission counts, error rates, common errors, and student
engagement metrics, highlighting critical areas of focus
within student interactions.

out as "correct”, specifically for error prediction.
Set-1II is for binary (pass/fail) prediciton, labelling
any submission without a perfect score as "incor-
rect” due to compiler or logical errors, and those
with full marks as "correct”.

To mitigate class imbalance in Set-I, we identi-
fied the top 10 errors for proof of concept which
includes nine error types and a pass class, with oc-
currences from 5000 to 400 across the questions,
detailed in Table 2.

feature embeddings and LSTM layers to predict student

ID | Description Frequency

0 | Passed/ No error 4047

1 | ’ID’ expected e.g like ";)(" | 2128

2 | Missing return statement | 1291

3 | Illegal start of expression | 1163

4 | not a statement 850

5 | ’else’ without ’if’ 629

6 | Cannot find symbol: vari- | 624
able ID

7 | Bad operand types for bi- | 554
nary operator 'ID’, like
"&&, ¥, +,>=,<"

8 | Incompatible types, like | 444
datatypes mismatch

9 | Reached end of file while | 426
parsing, maybe a missing
delimiter or closing brace

Table 2: Overview of key error types in student submis-
sions, presenting both the frequency and characteristics
highlighting common obstacles in the learning process.

3.2 Problem Definition

Our approach treats students’ code submissions as
a temporal sequence, aiming to trace their concept
mastery over time. Each submission at time step
t is represented as x; = (py, ¢, St, €, e, {ref 1),
encapsulating the problem p;, concept ¢, code solu-
tion s;, errors e, result (pass/fail) r;, and reference

332

Predictions

Hidden
states

69 (oo G55
59 -Gos9 -EED)
(009 -@EEB)

Input
features

i 55— 605065
10— 6550 — &

3
i
i
)
i
g

18 ? -
160 6550 60

k]
Q.
o
]
9
]
2

T Q2

= KC 1 if/else (ke 2:for loop | KC 3: while loop |

"""""
m v v IEm m v

Figure 2: Overview of a simplified RNN Model. The
model performs predictions at each timestep, using the
previous hidden state (representing estimated mastery)
complemented by a diverse input features.

solution {ref};. Given T is the maximum number
of attempts, we define students submission as St
= {x1,x2,x3,...,27}. Our aim is to predict the
specific errors ep; that might arise in the next
problem pr 1, based on the student’s previous sub-
missions. For example, as illustrated in Figure 2,
our target is identifying potential errors (e7) at time
step t7 based on submissions from ¢; to tg, while
correctness prediction determines the likelihood of
a pass/fail result (77).

3.3 Error Tracing with DKT

We built an error tracing model (Error-DKT !)
that utilises a Long Short-Term Memory (LSTM)
neural network and a combination of prediction
strategies to solve the challenges in multi-label er-
ror prediction. As illustrated in Figure 1, it includes
constructing detailed input features and a layered
architecture, featuring an LSTM layer to discern
hidden knowledge states, and a fully connected
layer that converts LSTM outputs for multi-label
prediction. We investigated two predictive strate-
gies:

Standalone prediction: This strategy employs
methods where individual models operate indepen-
dently to make error predictions.

Holistic Error prediction (HE) a single model is
trained to identify probabilities for specific error
classes, including a unique "no error" class. This
model employs a dynamically adjustable threshold
to determine the overall presence/absence status.
For instance, if there are four possible error types,
the HE model will predict among five outcomes,
where one represents the absence of errors

Only Error prediction (OE) focuses solely on

"https://github.com/kencyshaka/Error-DKT

detecting errors in a submission. Referring to the
example above, OE model will predict the presence
of four error classes; if all predictions fall below
a certain threshold, the submission is classified as
error-free.

Individual Error prediction (IE) a separate model
is trained for each error type. Using the same ex-
ample with four error types, four distinct models
would be trained. Their predictions are then ag-
gregated to formulate a comprehensive view of the
errors in a student’s attempt.

Ensemble Methodology: This two-step ap-
proach initially evaluates the likelihood of any error
occurrence before pinpointing exact errors using
insights gained from the initial assessment. The
Ensembled Error Prediction strategy combines the
strengths of conventional DKT in determining sub-
mission correctness with the detailed error tracing
capabilities of our model to isolate precise errors.

3.4 Baseline Models

To tackle the novel challenge of predicting specific
programming errors without established bench-
marks, we develop two baseline models using sta-
tistical probabilities. The Simple Baseline Model
use overall dataset statistics to forecast error proba-
bilities, identifying the two most frequent errors per
question from historical data. In contrast, the Com-
plex Baseline Model offers a granular analysis,
calculating error probabilities for each question-
attempt pair and pinpointing the two most common
errors based on historical data, though it overlooks
individual error histories. Additionally, we bench-
mark against the Open-ended Knowledge Tracing
OKT approach (Liu et al., 2022), which employs
a large language model to generate student code.
We run that code through a compiler to identify
expected errors, excluding the errors not included
in our set thus providing a direct comparison with
our error tracing model.

4 Experimental Setup

Our experimental setup, detailed below, outlines
the data collection methods, model training proto-
cols, and evaluation metrics used to rigorously test
the efficacy of our proposed models.

4.1 Data Preprocessing

We grouped the submissions by student and di-
vided them into training and test sets with a ratio
of 4:1. A random split method is used for perfor-
mance prediction, with an iterative stratification

333

 https://github.com/kencyshaka/Error-DKT

technique, specifically MultilabelStratifiedShuffle-
Split (Sechidis et al., 2011), used to address class
label imbalances for error prediction. We further
split the training set to allocate 25% for valida-
tion, facilitating hyperparameter tuning. The entire
training dataset, including the validation subset,
was subsequently utilised for model training, with
performance evaluation conducted on the test set.

4.1.1 Constructing Input Features
The input feature x; for each timestep is:

z =[Ee(re) ® (Ep(pr) © 0) & (Ec(er) © O)
® (Erer{ref}: © 0) @ (Eer({er}:) © O)]
(D

©® and [J signify element-wise multiplication
and the binary presence or absence of embeddings,
respectively. @ concatenates to create the final em-
bedding, integrating the problem content (E,), stu-
dent and reference code (E. and E,.¢), and errors
(Eer), alongside results (E;) to effectively predict
student performance.

Problem and Code Embeddings Problem rep-
resentation () merges textual content (£,1) and
concept relationships (£)2) into a comprehensive
embedding. E,; leverages a GPT-2 model trained
on Java datasets for textual transformation (Liu
et al., 2022), while Ep2 employs a bipartite graph
to capture problem-concept dynamics, following
the PEBG methodology (Liu et al., 2020).

Code representation adopts ASTNN (Zhang
et al., 2019) for the reference solution (E;..) and
a modified code2vec (Alon et al., 2019) approach
for student submissions (), facilitating dynamic
adaptation during model training (Shi et al., 2022).

Categorical Embeddings Categorical features,
such as error lists and outcome indicators, are trans-
formed into vector representations. Error lists are
encoded into binary vectors (Ee,), with the vec-
tor size reflecting the total number of distinct er-
rors. Similarly, result embeddings (E,) denote at-
tempt results and question interactions (Piech et al.,
2015), utilising a binary format to represent the
data efficiently.

4.2 Network Architectures and
Hyperparameter Optimisation

We systematically explored hyperparameters to
identify the optimal model configuration, assessing
their impact on model performance through aver-
age loss and F1 scores on the validation dataset.

This iterative process, conducted 100 times, aimed
to pinpoint the hyperparameter set yielding the best
validation results, which was then applied across
the entire training set to construct the final model
for subsequent testing and evaluation phases.

Input features, including code embeddings (E.),
reference solution embeddings (Ey,..y), and tex-
tual problem embeddings (E,1), were configured
following default parameters from prior studies
in Code-DKT (Shi et al., 2022) and OKT (Liu
et al., 2022). For the problem-concept relationship
component (Ep2), we use the PEBG framework,
varying parameters such as embedding size (d =
{64,128}), epochs (10, 50, 100, 200), learning rate
(0.001, 0.005,0.0015), hidden states (128, 256),
and batch size (16, 32, 128), with the optimal set-
tings highlighted in bold.

Our architecture exploration was tailored to spe-
cific tasks, employing varying hyperparameters to
refine the model’s structure. This included adjust-
ments to LSTM layers (1, 2,4, 8, 10), learning rates
(uniform distribution, min=0.00001, max=0.001),
batch sizes (16, 32, 64, 128), epochs (10, 20, 40,
50, 70, 100), threshold settings, and loss types (Bi-
nary Cross Entropy, Focal Loss (Lin et al., 2018),
Class Balanced (Cui et al., 2019) and Distributed
Balanced Loss (Wu et al., 2020)). The selected hy-
perparameters for each multi-label task in Section
3.3 are summarised in Appendix A.3 Table 6.

Model training and evaluation on an NVIDIA A-
40 GPU averaged 10 minutes, while the same tasks
took about 4 hours on a local CPU. For further
details, see Appendix A.3, Table 6. We use the
Adam optimizer for learning rate scheduling in
training. Consistent with prior research (Shi et al.,
2022), we limited the number of student attempts
to 50 for each problem, focusing on the most recent
submissions to better reflect current understanding
and skills.

4.3 Evaluation Metrics

Model performance: The primary metric for er-
ror prediction is the weighted average F1 score,
tailored to reflect the proportion of each error class
within the dataset. This approach guarantees a
balanced evaluation, highlighting the model’s pre-
cision for common errors while proportionally con-
sidering less frequent ones. Weighted average pre-
cision and recall further detail the model’s predic-
tive accuracy. Additionally, we use the weighted
average F-beta score, emphasising precision more
than recall. This prioritisation is crucial, as it en-

334

sures that any predicted errors intended to guide
interventions are reliably identified, maximising
the relevance and efficacy of educational support.
For performance prediction on the correctness
(pass/fail), we use the Area Under the Receiver
Operating Characteristic curve (AUC) alongside
the average F1 score to assess model performance.

Educational Context: We analyse the model’s
performance in two educational scenarios: over-
all accuracy and accuracy in predicting the first
attempt at solving a problem. The latter is crucial
for identifying early intervention opportunities in
knowledge tracing (Emerson et al., 2019), while
the overall performance metric helps differentiate
between types of errors (conceptual vs. syntactical)
and debugging skills.

Problem and Error Analysis: Further, we evalu-
ate the model’s effectiveness across individual ques-
tions to capture how well historical performance
data informs future error predictions. We also eval-
uate the model performance on the most common
to the least frequent errors. This analysis is crucial
for understanding the model’s capacity to predict
common errors (easy task) and uncommon errors
(hard task).

5 Results

Results are shown in Table 3, for the baselines, the
error prediction tasks and the ensemble approaches.

5.1 Error Prediction

Predictive Performance The Error-DKT mod-
els, employing single-step and ensemble strategies,
outperform baselines, e.g, OKT by +15.8% and
+23.2% respectively, showcasing their superior per-
formance in predicting overall student errors. This
efficacy is particularly highlighted in the ensemble
approach, which underscores the benefit of first
identifying error-free submissions before employ-
ing Error-DKT models to pinpoint specific student
errors, thereby improving overall prediction accu-
racy. Specifically, focused error prediction models
(OE and IE) benefit from this approach, e.g, OE
using Distributed Balance loss has +35% increase
in accuracy for first attempts.

Performance at predicting first attempt is gen-
erally higher than for all attempts, including for
OKT (Liu et al., 2022). We believe this is because
each question is initially the same for each student,
and cohort data for previous questions is informa-
tive. Once a student has submitted an attempt that

Model First Overall
F1 | F-beta | F1 | F-beta

Simple 305 | 32.6 | 229 | 21.1
Complex | 409 | 39.7 | 26.1 | 25.1
OKT 471 | 418 | 275 | 229
HE-BCE | 492 | 48.8 | 428 | 42.5
HE-FL 50.8 | 48.2 | 433 | 41.8
OE-BCE | 202 | 198 |16.7| 173
OE-DB 16,5 | 19.3 | 30.7 | 30.3
IE 17.0 | 194 | 34.1 | 34.1
HE-BCE | 52.0 | 51.9 | 4377 | 4438
HE-FL 531 | 531 | 50.7 | 50.1
OE-BCE | 522 | 512 |364 | 372
OE-BCE* | 52.6 | 51.6 | 44.7 | 444
OE-DB 515 | 514 | 452 | 457
IE 514 | 51.6 | 469 | 478

Table 3: Evaluation of Model Performance Across Er-
ror Prediction Tasks: The table presents F1 and F-beta
scores for *First’ and *Overall’ attempts. It starts with
baseline model metrics, progresses through Error-DKT
error prediction tasks (Holistic Error), OE (Only Error),
IE (Individual Error), and concludes with ensemble ap-
proaches combining Error-DKT predictions with DKT
outcomes. OE-BCE* denotes the model trained solely
on submissions with errors. The losses are BCE-Binary
Cross Entropy, FL-Focal and DB-Distributed Balance.
Bold values highlight top performance within each sec-
tion.

fails, the student is then responding to the compiler
messages, and so the task becomes individualised,
negating the benefit of more data on each individual
student.

Interestingly, the holistic approach (HE) demon-
strated superior performance over focused error
predictions (IE, OE), especially in contexts with
limited data and high imbalance, indicating the
challenges of granular error prediction. The en-
hanced performance of IE and OE in overall at-
tempts, as opposed to first attempts, suggests that
accumulating more data leads to improved accu-
racy. Furthermore, utilising various loss functions
to tackle class imbalances significantly enhances
model performance. For instance, employing Fo-
cal loss results in a +1.6 improvement for HE pre-
diction compared to Binary Cross Entropy, and
dynamically adjusting thresholds for error classes
also contributes to this advancement.

Per Problem The analysis shows variations in
predictive model performance, which could be due
to the distinct challenges, skill requirements and

335

Ensemble predictions per problem

65

60

551

F1 Score
S o
& S

IS
S

354

30+

251

Problems (total)

Figure 3: Ensemble Model’s Performance per Problem:
Overall Attempts.

prevalence of errors in each problem. A general pat-
tern shows that the model’s performance increases
in predicting student errors as they advance in their
assignments, as shown in Figure 3. This trend em-
phasises the crucial role of historical performance
data in enhancing error prediction for Error-DKT.

Also, we observe the volume of submissions
and the frequency of errors committed by students,
which emerge as significant factors influencing
model predictions due to the diverse and person-
alised strategies students employ. For example,
problem 5 and 6 exhibits a significant decline in
prediction accuracy, as highlighted in Figure 3 pri-
marily due to their high error rates—twice and
three times more than other problems, respectively
(see Appendix A.2 Figure 10). In addition, by
comparing the student-problem attempts in Figure
9 and Table 5 in Appendix A.2, we can see that
problem 5 and 6 require many more attempts per
student, and so appear to be different from the other
questions. More attempts means we are again pre-
dicting the response to the compiler messages, and
our predictive performance declines

In contrast, as shown in Figure 4, focused error
prediction models (OE, IE) benefit from more er-
ror data, enabling these models to fine-tune their
predictions more effectively compared to the dam-
age they cause to the holistic model (HE). Fur-
thermore, the analysis reveals that models perform
better on problems that require similar skill sets
in later stages (e.g., Problems 7, 9, and 10), sug-
gesting that Error-DKT can successfully model stu-

Standalone predictions per problem

501

40

F1 Score
w
8

20+

104

Problems (total)

Figure 4: Error-DKT Model’s Performance with various
Prediction tasks per Problem: Overall Attempts.

dents’ knowledge of common error patterns.

Per Error Figure 5 shows the model struggling
to accurately predict rare errors across different er-
ror classes. Nevertheless, an uptick in the models’
ability to predict errors in classes 3 and 7, likely
due to their frequent occurrence in problems 5 and
6 (see Appendix. A.1, Figure 7), suggests models
like IE can benefit more. Additionally, errors 4
and 5, less common but often occurring with com-
mon error 1 (see Appendix. A.1, Figure 8), exhibit
enhanced prediction accuracy. This indicates that
models successfully extract insights from prevail-
ing error patterns, thereby improving their predic-
tive capabilities. We also note that the OKT models
predominantly predicted the error class 2, "miss-
ing a return statement”. This observation suggests
that the estimated student knowledge level failed to
prompt the LL.M to generate codes incorporating
previously unseen errors, such as those involving
missing semicolons or unclosed curly brackets.

5.2 Correctness Prediction

Our methods focus on predicting individual errors,
raising the question of whether these predictions
can be aggregated into a holistic pass/fail assess-
ment. According to the results in Table 4, this
approach yields poorer performance compared to
the original DKT method, which directly evaluates
pass/fail outcomes. However, by incorporating the
diverse input features outlined in Equation 1, we
can significantly improve the correctness prediction

336

Error prediction per class

7014 —e— HE-BCE
HE-FL
\ —e— OE-BCE
60 —e— OE-DB
—e— |E
50+
401
<
o
IS
%]
—
i 30
20
104
04
N N D N) D N N) N
Q,Q, & qﬁa'» ’ﬂb Nc)b Q’L R W P)
\Q N 3 Q Q Q Q
Q ~ Vv > “ © A

ErroriDs (total)

Figure 5: Model’s Performance with various Prediction
tasks per Error class.

capabilities of the original DKT model.

Model First Overall
AUC | F-beta | AUC | F-beta

Simple 46.7 | 409 | 509 | 58.1
Complex | 58.0 | 46.0 | 61.6 | 67.2
OKT n/a 30.8 n/a 43.0
HE-BCE | 73.0 | 66.3 72.5 77.5
HE-FL 719 | 67.1 65.5 74.3
OE-BCE | 68.0 | 60.5 634 | 70.1
OE-DB 68.7 60.8 68.7 | 75.1
1IE 68.4 | 60.5 65.3 71.3
DKT 75.5 727 | 75.3 78.5
DKT* 76.9 | 723 | 774 | 79.1

Table 4: Model performance (AUC, F-beta) evaluation
based on correctness (pass/fail) prediction. DKT* is
trained using the new set of input features

5.3 Knowledge-driven prediction of students’
submissions

The heatmaps presented in Figure 6 illustrate the ca-
pabilities and limitations of the Error-DKT model.
The model exhibits proficiency in predicting er-
rors that occur frequently but shows difficulty in
identifying rarer errors. The effectiveness of the
ensembled (two-step) approach is evident, as the
accuracy of Step I predictions directly influences
the subsequent error identification. For example, in
Case 1, despite Step I yielding false positives, Step
II strongly indicates the presence of errors, which
are confirmed with ground truth values. This sug-

gests the potential for alternative ensemble strate-
gies that might allow Step II predictions to carry
more weight. In contrast, Case 2 highlights that en-
hancing the accuracy of Step I predictions, which
is generally more straightforward, could potentially
lead to overall better performance in the model.

6 Conclusion and Future Works

In our study, we enhanced traditional knowledge
tracing methods by developing a framework capa-
ble of predicting overall correctness and specific
student errors. Our Error-DKT models demon-
strated significant effectiveness, substantially out-
performing baseline OKT models in overall at-
tempts prediction with improvements of +15.8%
and +23.2% using single-step and ensemble strate-
gies (Holistic Error prediction), respectively. The
ensemble approach significantly enhances accuracy
by initially distinguishing error-free submissions
from erroneous ones, and then specifically pinpoint-
ing the errors in submissions forecasted to fail.

Predictions for initial attempts generally exhibit
higher accuracy, likely due to the uniformity of
these submissions and the rich historical data avail-
able. However, as students revise their submissions
in response to compiler feedback, the complexity
of prediction increases, particularly for subsequent
attempts. This issue is compounded in problems
with high error rates and frequent submissions, like
Problems 5 and 6, where performance notably de-
clines. Despite the advantages in error prediction,
our method showed less effectiveness in integrating
individual errors into holistic pass/fail assessments
compared to direct evaluations by traditional DKT
methods. Nonetheless, the integration of diverse
input features enhances the DKT model’s ability to
predict correctness. These findings underscore the
potential of Error-DKT to improve the precision
of error predictions and affirm the ongoing need
for models that can adapt to complex error patterns
and improve feedback mechanisms in educational
settings.

For future work, several promising directions
emerge. First, experimenting with advanced DKT
architectures like AKT and DKVMN and refined
ensemble methods may improve error prediction
and accommodate a wider array of error types with
more extensive datasets. Secondly, optimising the
OKT model to extend its predictive competence to
logical as well as compiler errors could yield more
comprehensive error detection. Thirdly, there’s

337

()
=
© ® N o v & W N e

Problems

=
1)

3 E) &

Attempted Questions

10

0.8

0.6

3
pass {0 . 1]
K1 HRRREanC-E

-
3 oo

—
O
=
wooN e

Errors/Pass

© ®© N o u &

[T

Anigeqoud pajoipaid

04

0.2

—to0

Figure 6: Ensembled Error-DKT prediction heatmap for a student over 27 attempts: (a) showcases Step I's
correctness predictions, with yellow boxes indicating accurate predictions and red boxes highlighting incorrect
predictions and the numbers in the cells represent the ground truth values, (b) displays specific error predictions
using the Holistic approach, where red boxes with "1’ signify undetected errors, and those with *0’ indicate errors
incorrectly predicted absent due to Step I's assessment. Grey boxes represent false error predictions.

a significant opportunity to enhance knowledge
tracing models to interpret learned patterns, cor-
relating them to specific knowledge areas, such
as debugging skills reflected in students’ coding
progression. Finally, integrating our framework
with an automated feedback mechanism will be
vital in evaluating its effectiveness in delivering
personalised, actionable feedback to students.

7 Limitations

Our study faces certain limitations. First, the mod-
est performance of our Error-DKT models is partly
due to the challenging prediction task and a small
dataset (386 student summaries, referenced in Ta-
ble 1). Despite this, Error-DKT shows promise in
identifying specific student struggles better than
baseline models. Second, we focus on a narrow
dataset from one assignment and semester, limit-
ing generalisation to wider programming contexts
or error types. Given the novelty of this KT task,
our concentration was solely on predicting com-
piler errors, with no examination of logical errors.
This scope raises questions about the model’s ap-
plicability across various programming scenarios.
Lastly, using only DKT as a baseline for extending
our approach may narrow our comparative anal-
ysis. Other current models like AKT, DKVMN

could offer different insights or performance met-
rics. Nonetheless, our choice was informed by
DKT’s better performance to more recent deep
models in related research (Shi et al., 2022; Liu
et al., 2022), making it a logical starting point for
exploring error predictions.

8 Acknowledgements

This work was conducted with the financial sup-
port of the Science Foundation Ireland Centre
for Research Training in Artificial Intelligence
under Grant No. 18/CRT/6223 and Grant No.
12/RC/2289-P2 at Insight the Science Foundation
Ireland Research Centre for Data Analytics, which
is co-funded under the European Regional Devel-
opment Fund.

References

Ghodai Abdelrahman, Qing Wang, and Bernardo Nunes.
2023. Knowledge tracing: A survey. ACM Comput.
Surv, 55.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran
Yahav. 2019. code2vec: Learning distributed rep-
resentations of code. Proceedings of the ACM on
Programming Languages, 3(POPL):1-29.

David Azcona, I-Han Hsiao, and Alan F Smeaton. 2019.
Detecting students-at-risk in computer programming

338

https://doi.org/10.1145/3569576
https://doi.org/10.1007/s11257-019-09234-7

classes with learning analytics from students’ dig-
ital footprints. User Modeling and User-Adapted
Interaction.

Sahil Bhatia and Rishabh Singh. 2016. Automated cor-
rection for syntax errors in programming assignments
using recurrent neural networks.

Albert T. Corbett and John R. Anderson. 1994. Knowl-
edge tracing: Modeling the acquisition of procedural
knowledge. User Modeling and User-Adapted Inter-
action, 4:253-278.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and
Serge Belongie. 2019. Class-balanced loss based on
effective number of samples. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 9260-9269.

Andrew Emerson, Fernando J. Rodriguez, Bradford
Mott, Andy Smith, Wookhee Min, Kristy Elizabeth
Boyer, Cody Smith, Eric Wiebe, and James Lester.
2019. Predicting early and often: Predictive stu-
dent modeling for block-based programming envi-
ronments. International Educational Data Mining
Society.

J Figueiredo and F Garcia-Pefialvo. 2021. Teaching
and learning tools for introductory programming in
university courses. pages 1-6.

Aritra Ghosh, Neil Heffernan, and Andrew S Lan. 2020.
Context-aware attentive knowledge tracing. In Pro-
ceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining,

pages 2330-2339.

Aritra Ghosh, Jay Raspat, and Andrew Lan. 2021. Op-
tion tracing: Beyond correctness analysis in knowl-
edge tracing. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intel-

ligence and Lecture Notes in Bioinformatics), 12748
LNAI:137-149.

Sumit Gulwani, Ivan Radicek, and Florian Zuleger.
2018. Automated clustering and program repair for
introductory programming assignments. ACM SIG-
PLAN Notices, 53:465-480.

Zhenya Huang, Qi Liu, Chengxiang Zhai, Yu Yin, En-
hong Chen, Weibo Gao, and Guoping Hu. 2019. Ex-
ploring multi-objective exercise recommendations
in online education systems. International Confer-
ence on Information and Knowledge Management,
Proceedings, pages 1261-1270.

Tanja Kiser, Severin Klingler, Alexander G Schwing,
and Markus Gross. 2017. Dynamic bayesian net-
works for student modeling. IEEE Transactions on
Learning Technologies, 10(4):450—462.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollar. 2018. Focal loss for dense object
detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 42(2):318-327.

Naiming Liu, Zichao Wang, Richard Baraniuk, and An-
drew Lan. 2022. Open-ended knowledge tracing for
computer science education.

Qi Liu, Shuanghong Shen, Zhenya Huang, Enhong
Chen, Senior Member, and Yonghe Zheng. 2023. A
survey of knowledge tracing. IEEE TRANSACTIONS
ON KNOWLEDGE AND DATA ENGINEERING, v3.

Yunfei Liu, Yang Yang, Xianyu Chen, Jian Shen,
Haifeng Zhang, and Yong Yu. 2020. Improving
knowledge tracing via pre-training question embed-
dings. IJCAI International Joint Conference on Arti-
ficial Intelligence, 2021-January:1577-1583.

Rodrigo Pessoa Medeiros, Geber Lisboa Ramalho, and
Taciana Pontual Falcao. 2019. A systematic liter-
ature review on teaching and learning introductory
programming in higher education. IEEE Transac-
tions on Education, 62.

Hiromi Nakagawa, Yusuke Iwasawa, and Yutaka Mat-
suo. 2019. Graph-based knowledge tracing: model-
ing student proficiency using graph neural network.
In IEEE/WIC/ACM International Conference on Web
Intelligence, pages 156—163.

Sagar Parihar, Ziyaan Dadachanji, Praveen Kumar
Singh, Rajdeep Das, Amey Karkare, and Arnab Bhat-
tacharya. 2017. Automatic grading and feedback
using program repair for introductory programming
courses. ITiCSE.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya
Ganguli, Mehran Sahami, Leonidas Guibas, Jascha
Sohl-Dickstein, Stanford University, and Khan
Academy. 2015. Deep knowledge tracing. Advances
in Neural Information Processing Systems, 28.

Thomas W. Price, David Hovemeyer, Kelly Rivers,
Ge Gao, Austin Cory Bart, Ayaan M. Kazerouni,
Brett A. Becker, Andrew Petersen, Luke Gusukuma,
Stephen H. Edwards, and David Babcock. 2020.
Progsnap2: A flexible format for programming pro-
cess data. Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE,
pages 356-362.

Konstantinos Sechidis, Grigorios Tsoumakas, and Ioan-
nis Vlahavas. 2011. On the stratification of multi-
label data. In Machine Learning and Knowledge Dis-
covery in Databases: European Conference, ECML
PKDD 2011, Athens, Greece, September 5-9, 2011,
Proceedings, Part 111 22, pages 145-158. Springer.

Yang Shi, Min Chi, Tiffany Barnes, and Thomas W
Price. 2022. Code-dkt: A code-based knowledge
tracing model for programming tasks. Proceedings
of the 15th International Conference on Educational
Data Mining.

Dowon Song, Myungho Lee, and Hakjoo Oh. 2019.
Automatic and scalable detection of logical errors in
functional programming assignments. Proceedings
of the ACM on Programming Languages, 3.

339

https://doi.org/10.1007/s11257-019-09234-7
https://doi.org/10.1007/s11257-019-09234-7
https://doi.org/10.1145/1235
https://doi.org/10.1145/1235
https://doi.org/10.1145/1235
https://doi.org/10.1007/BF01099821/METRICS
https://doi.org/10.1007/BF01099821/METRICS
https://doi.org/10.1007/BF01099821/METRICS
https://doi.org/10.1109/CVPR.2019.00949
https://doi.org/10.1109/CVPR.2019.00949
https://doi.org/10.1109/SIIE53363.2021.9583623
https://doi.org/10.1109/SIIE53363.2021.9583623
https://doi.org/10.1109/SIIE53363.2021.9583623
https://doi.org/10.1007/978-3-030-78292-4_12/TABLES/2
https://doi.org/10.1007/978-3-030-78292-4_12/TABLES/2
https://doi.org/10.1007/978-3-030-78292-4_12/TABLES/2
https://doi.org/10.1145/3192366.3192387
https://doi.org/10.1145/3192366.3192387
https://doi.org/10.1145/3357384.3357995
https://doi.org/10.1145/3357384.3357995
https://doi.org/10.1145/3357384.3357995
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/TPAMI.2018.2858826
https://aclanthology.org/2022.emnlp-main.254
https://aclanthology.org/2022.emnlp-main.254
https://arxiv.org/abs/2105.15106v3
https://arxiv.org/abs/2105.15106v3
https://doi.org/10.48550/arxiv.2012.05031
https://doi.org/10.48550/arxiv.2012.05031
https://doi.org/10.48550/arxiv.2012.05031
https://doi.org/10.1109/TE.2018.2864133
https://doi.org/10.1109/TE.2018.2864133
https://doi.org/10.1109/TE.2018.2864133
https://doi.org/10.1145/3059009.3059026
https://doi.org/10.1145/3059009.3059026
https://doi.org/10.1145/3059009.3059026
https://doi.org/10.1145/3341525.3387373
https://doi.org/10.1145/3341525.3387373
https://doi.org/10.48550/arXiv.2206.03545
https://doi.org/10.48550/arXiv.2206.03545
https://doi.org/10.1145/3360614
https://doi.org/10.1145/3360614

Ryo Suzuki, Gustavo Soares, Elena Glassman, Andrew
Head, Loris D’ Antoni, and Bjorn Hartmann. 2017.
Exploring the design space of automatically syn-
thesized hints for introductory programming assign-
ments. Conference on Human Factors in Computing
Systems - Proceedings, Part F127655:2951-2958.

Michael Thuné and Anna Eckerdal. 2019. Analysis
of students’ learning of computer programming in a
computer laboratory context. European Journal of
Engineering Education, 44:769-786.

L. Wang, Angela Sy, Larry Liu, and C. Piech. 2017.
Learning to represent student knowledge on program-
ming exercises using deep learning. Educational
Data Mining.

Tong Wu, Qingqiu Huang, Ziwei Liu, Yu Wang, and
Dahua Lin. 2020. Distribution-balanced loss for
multi-label classification in long-tailed datasets. In
Computer Vision — ECCV 2020, pages 162—178,
Cham. Springer International Publishing.

Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang,
and Gang Huang. 2018. Identifying patch correctness
in test-based program repair. Proceedings - Interna-
tional Conference on Software Engineering, pages
789-799.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,
Kaixuan Wang, and Xudong Liu. 2019. A novel
neural source code representation based on abstract
syntax tree. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages
783-794.

Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan
Yeung. 2017. Dynamic key-value memory networks
for knowledge tracing. In Proceedings of the 26th

international conference on World Wide Web, pages
765-774.

A Appendix

A.1 Error Distribution

Error Distributions per Problem

100 -

80 A Problem ID
mmm Problem 1
Problem 2
mmm Problem 3
601 B Problem 4
s Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10

Percentage

40

20 A

M-J_I_LL
N
~ [e¢] o

© H &N o < 1 ©
Error ID

Figure 7: The percentage distribution of each question
in the top ten error classes.

Co-occurance of Errors
0.8
-
0.7
0.6
0.5

0 - -0.4

Error IDs

© -0.3

-0.2

' ' ' ' ' ' ' ' ' ' -0.0
0 1 2 3 4 5 6 7 8 9
Error IDs (sorted based on frequency)

Figure 8: The heatmap showing the co-occurrence of
the top ten errors.

Figure 7 maps out the primary distribution of er-
rors across various problems, Figure 8 highlights an
intricate aspect of this landscape: the co-occurrence
of errors. This heatmap shows how frequently rarer
errors appear alongside more common ones, of-
fering insights into error correlations that can in-
fluence teaching strategies. Understanding these
relationships is key to creating targeted interven-
tions that simultaneously address multiple areas
of student difficulty, thus streamlining the path to
mastery and enhancing the overall efficacy of pro-
gramming education.

A.2 Students Attempts

While nearly all students attempted the questions
(see Figure 9), there was a notably higher num-
ber of attempts on questions five and six, with
submissions averaging between 1700 to 2500 as
highlighted in Table 5. This increase in attempts
corresponded with a higher occurrence of errors
in these questions (see Figure 10), suggesting that
students were struggling to correct their mistakes,
potentially encountering new challenges as they
explored different solutions.

A.3 Model Architecture Configuration

Table 6 details the architecture and parameters that
define the final models in our study. It encompasses
the chosen input features, training configurations,
loss functions, and the durations required for both
training and inference across each model.

340

https://doi.org/10.1145/3027063.3053187
https://doi.org/10.1145/3027063.3053187
https://doi.org/10.1145/3027063.3053187
https://doi.org/10.1080/03043797.2018.1544609
https://doi.org/10.1080/03043797.2018.1544609
https://doi.org/10.1080/03043797.2018.1544609
https://doi.org/10.1145/3180155.3180182
https://doi.org/10.1145/3180155.3180182
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086

Number of Students per Problem

Number of Students
= = N N w w B
o w o w o w1 o
o o o o o o o
L L L L L

u
o
!

o
|

Problem IDs

Figure 9: The total numbers of student attempting the
10 questions in assignment one.

Problem ID | Number of Attempts
1 663
2 694
3 699
4 653
5 2578
6 1743
7 678
8 852
9 635
10 800

Table 5: Number of Attempts per Problem

Committed Errors per Problem

35001

30001

25001

N
=]
IS)
Is)

Committed Errors
=
w
=3
o

1000 4

500 q

Problem IDs

Figure 10: The number of errors committed in each
student based on all the attempts.

341

Model Input Features | Model Ar-| Output| Training Con- | Train and infer-
chitecture figurations ence Time
Simple Base- | Top errors per | - 10 - 1m36s
line problem
Complex Top errors per | - 10 - 1m36s
Baseline problem per at-
tempts
HE-BCE E:(rt), Ee(e:), | layers=1, 10 1r=0.00073, Tm44s
Ec(ct) hidden=512 epochs=28,
bs=16
HE-FL E:(rt), Ee(e:), | layers=1, 10 1r=0.0004, 8m14s
Ep(pt) hidden=256 epochs=70,
a(F1)=0.96,
y(FL)=2.31,
bs=16
OE-DBloss | E(r:), Ee(e:), | layers=1, 9 1r=0.000485, 14m14s
Eqery({ref}:) | hidden=256 epochs=80,
a(FL)=0.96,
v(FL)=4.82,
B(CB)=0.955,
a(DB)=0.93,
v(DB)=0.89,
B(DB)=1.53,
bs=16
OE-BCE E:(rt), Ee(et), | layers=1, 9 1r=0.0009, 10m44s
Egfrery({ref}:) | hidden=256 epochs=80,
bs=16
IE-BCE E:(rt), Ee(e:), | layers=1, 9 1r=0.0009, 25m32s
Egfrery({ref}:) | hidden=256 epochs=80,
bs=16
DKT E (1) layers=1, 1 1r=0.0005, 8m35s
hidden=512 epochs=50,
bs=16
OE-BCE* E:(rt), Ee(et), | layers=2, 9 1Ir=0.00071, 6m32s
Ep(pt) hidden=256 epochs=70,
bs=16

Table 6: Model architecture configurations for various prediction task and the set of best input features.

342

