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Abstract

Leading students to engage in argumentation-
focused discussions is a challenge for elemen-
tary school teachers, as doing so requires fa-
cilitating group discussions with student-to-
student interaction. The Mystery Powder (MP)
Task was designed to be used in online simu-
lated classrooms to develop teachers’ skill in
facilitating small group science discussions. In
order to provide timely and scaleable feedback
to teachers facilitating a discussion in the simu-
lated classroom, we employ a hybrid modeling
approach that successfully combines fine-tuned
large language models with features capturing
important elements of the discourse dynamic
to evaluate MP discussion transcripts. To our
knowledge, this is the first application of a
hybrid model to automate evaluation of teacher
discourse.

1 Introduction

Scientific argumentation is an essential skill, and
in elementary school classrooms, group science
discussions are a natural modality for providing
students with opportunities to engage in scien-
tific argumentation (Sampson and Blanchard, 2012;
Shemwell and Furtak, 2010). Accordingly, it is
essential that teachers are well equipped to facili-
tate such discussions. But facilitating them is not
straightforward. Many teachers are used to a lec-
ture style of interaction where they deliver the facts
and the students respond only to the teacher (Caz-
den, 1988; Lemke, 1990; Lloyd et al., 2016). In
contrast, in an ideal group science discussion, stu-
dents directly interact with their peers (rather than
just the teacher) and engage with each other’s ideas,
rather than only their own and the teacher’s (Fish-
man et al., 2017; Tenenbaum et al., 2020).

Digitally simulated classroom experiences have
become increasingly used to prepare teachers for
the work of teaching (Dalinger et al., 2020; Dieker
et al., 2014). In a simulated classroom, the teacher-

Figure 1: The Mursion Upper Elementary Classroom
Environment, with an excerpt from a Mystery Powder
discussion transcript. Two blocks of utterances (ex-
plained in section 4.2) are shown in blue and orange,
respectively. Image provided by Mursion, Inc.

in-training, also called a pre-service teacher (hence-
forth, PST), enacts a classroom scenario, interact-
ing in real time with student avatars puppeteered
by a trained human actor equipped with voice mod-
ulating software. In contrast to practicum experi-
ences, simulated classrooms afford development
of targeted skills in an environment that is both
standardized and low-stakes (Dalinger et al., 2020;
Bondie et al., 2021; Cohen et al., 2020; Ersozlu
et al., 2021). Automating as much as possible of
the simulation would help make the learning experi-
ence more affordable and thus accessible to a wider
range of teachers; it would also allow teachers to
engage in multiple rounds of practice to hone their
teaching skills. Of the two bottlenecks—the pup-
peteer enacting the student avatars and the human
expert evaluating the performance—we here ad-
dress the second, leaving the first to future work.

The present paper is a case study of developing
automated evaluation, with supervised learning, of
a PST’s performance in a simulated classroom. We
focus on the Mystery Powder (henceforth, MP)
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task (Mikeska et al., 2021), a particular lesson that
the PST is to teach in a simulated classroom (Figure
1) designed to develop PSTs’ competency in facili-
tating small group argumentation-focused science
discussions at the elementary level. Successful fa-
cilitation of a discussion is complex; in this work,
we address one of its dimensions, namely, the ex-
tent to which the teacher encourages student-to-
student interactions where students engage directly
with each other’s ideas (Mikeska et al., 2021; GO
Discuss Project, 2021).

In line with the manual evaluation process that
produced the training data (Mikeska et al., 2019),
our approach to automated evaluation had models
on two levels: classifiers identifying PST utter-
ances as positive examples of the desired teaching
practices; and regressors scoring the transcript as
a whole on the same practices (Nazaretsky et al.,
2023). Furthermore, we kept in mind two consid-
erations: classifier training must deal with the fact
that rater labels were non-exhaustive (only some
utterances are labeled); and regressors must ag-
gregate utterance-level information in an intuitive
way.

In terms of what features were used, we built
three types of models: (a) models based on the
analysis of the content of what the PST said, im-
plemented using fine-tuned large language models
(henceforth, LLMs); (b) models based on the struc-
ture of the interaction, who speaks when and in rela-
tion to whose utterance; and (c) combined models
using both content and structure. To our knowl-
edge, this is the first demonstration, in the con-
text of automated analysis of teacher discourse,
of a successful combination of fined-tuned LLMs
and shallow features into a hybrid model that out-
performs both components in isolation across the
board, for multiple levels of analysis (utterance-
level and transcript-level) and multiple indicators
of performance.

2 Related Work

2.1 Elements of high-quality teaching
practices

Recent research has addressed automated detec-
tion of high-quality teaching practices in human-
annotated corpora of real classroom transcripts.
Demszky and colleagues (Demszky et al., 2021;
Demszky and Hill, 2023; Alic et al., 2022) detected
features associated with dialogic instruction, such
as teachers’ conversational uptake (Demszky et al.,

2021) and open-ended questions (Alic et al., 2022),
which they found to benefit classroom outcomes
such as student satisfaction and participation. Simi-
lar discourse features were investigated in Jensen
et al. (2020), as part of an effort to bring easy-to-use
and high-quality audio recording setups to ordinary
classrooms. Suresh and colleagues (Suresh et al.,
2019, 2022b) performed a six-way classification of
teacher utterances into discursive strategies, called
“talk moves” (e.g. “Keeping everyone together”),
that promote equitable student participation. Tran
et al. (2023) classified student and teacher contri-
butions into ‘talk moves’ such as ‘teacher links
student contributions’ and ‘students support claims
with evidence’. Nazaretsky et al. (2023) studied
ways to evaluate to what extent participants pro-
vided meaningful contributions that moved the dis-
cussion forward. Most of the prior work, with few
exceptions such as Nazaretsky et al. (2023), con-
sidered transcripts of live interactions; simulated
environments with student avatars aim to extend the
practice earlier into the teacher preparation process,
before the teacher meets a real classroom (Dalinger
et al., 2020). Our work is in the much less explored
context of a simulated classroom.

A common theme in research on automated
models for high-quality teaching practice is the
intended application to providing automated feed-
back to teachers. Feedback may come in the form
of a dashboard summarizing the teacher’s perfor-
mance. The dashboard may report the (relative)
frequency of the target discourse features (Dem-
szky et al., 2023; Jensen et al., 2020). The dash-
board may also cite “positive examples” among the
teacher’s own utterances to reinforce productive
teaching practices (Demszky et al., 2023; Jensen
et al., 2020; Nazaretsky et al., 2023). The efficacy
of such automated feedback for benefiting class-
room outcomes (e.g. proportion of assignments
completed by the student) has been demonstrated in
a setting with 1:10 teacher-student ratio (Demszky
et al., 2023) as well for 1:1 mentoring (Demszky
and Liu, 2023).

2.2 Modeling Approaches

In terms of modeling approaches, prior work ex-
plored pre-trained deep neural embeddings to rep-
resent the content of an utterance and either use
them directly as features for detecting teachers’ dis-
course moves of interest (Suresh et al., 2019) or to
derive features such as similarity scores between
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neighboring teacher and student utterances when
modeling uptake (Demszky et al., 2021). Dem-
szky et al. (2021) reported that simpler lexical fea-
tures quantifying token overlap between student
and teacher words were also competitive. Jensen
et al. (2020) used a combination of linguistic fea-
tures such as parts of speech and markers of com-
parisons or definitions along with features captur-
ing other characteristics of the teacher-student in-
teraction, including utterance length and its nor-
malized position in the session, rate of speech and
pauses, in a supervised machine learning setting.

Fine-tuning an LLM-based classifier for the tar-
get data and task was also explored. Jensen et al.
(2021) found the performance of a BERT-based
classifier to be superior to that of feature-based
baselines on data of self-recorded classroom in-
teractions from English Language Arts teachers.
Nazaretsky et al. (2023) fine-tuned DistilBERT
(Sanh et al., 2020) on simulated classroom data
in the science domain. Suresh et al. (2021) ex-
plored BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) to classify student and teacher
utterances into ‘talk moves’ in the domain of math-
ematics. Tran et al. (2023) used a sequence model
BiLSTEM-CRF (Huang et al., 2015) with BERT
embeddings to classify utterances into a somewhat
different set of ‘talk moves’ in the domain of En-
glish Language Arts and showed that the sequence
model that takes into account neighboring utter-
ances outperformed the BERT-based models that
did not utilize sequence information, for detect-
ing some of the talk moves. Suresh et al. (2022b)
explored incorporating information from the dis-
course outside of the teacher’s and neighboring stu-
dent utterance, showing that taking a much larger
discourse context into account helps improve per-
formance; the best-performing models extended the
context to seven prior and seven subsequent utter-
ances. Kumaran et al. (2023) explored fine-tuning
of DialoGPT (Zhang et al., 2020), a dialog LLM
built on GPT-2 (Radford et al., 2019) on the stu-
dent subset of the ‘talk moves’ data (Suresh et al.,
2022a), utilizing a context of nine prior utterances.
These approaches tend to include elements of the
larger discourse context through incorporation of
larger and larger chunks of prior and/or subsequent
content into the LLM-based framework.

In the present study, we explore an approach that
models discourse dynamics more directly through
a set of features that would be used in tandem with

the fine-tuned LLM to provide the overall model
with information about relevant aspects of the struc-
ture of the discourse. Such hybrid models can also
provide some insights into the task, by separat-
ing the contribution of the fine-tuned LLM based
content models from that of the discourse-dynamic-
based model; different aspects may be more or less
important for modeling different components of
the complex performance task set to the teachers.

3 The Mystery Powder Task

3.1 The performance

In the MP task, the PST interacts with five upper
elementary student avatars in the simulated class-
room (Figure 1). Each avatar is standardized, in
terms of their personality (e.g. Will is soft-spoken)
and preconceptions related to the MP task (ex-
plained below). The human actor, who puppeteers
all five avatars, is well-versed in them and is in-
structed to ensure that they are responsive to the
PST’s instructions throughout the discussion.

The scenario is as follows. Prior to the discus-
sion, the class was shown samples of six pow-
ders: flour, cornstarch, baking soda, baking pow-
der, sugar, and salt. The class investigated several
properties of each sample including texture, color,
weight, reaction with vinegar, and outcome when
mixed with water. Subsequently, the class was pre-
sented a “mystery powder” sample—in fact baking
soda, unbeknowst to the students—and the students
investigated its properties as well. In small groups,
as pre-work to the discussion, the students reflected
in writing on their findings and generated evidence-
based claims about the mystery powder’s identity
and the properties that were useful to identify the
mystery powder. See Appendix for a reference ta-
ble for the powders (Figure 6) and an excerpt from
one of the group’s pre-work (Figure 7).

The PST has up to 20 minutes to facilitate a
discussion to help the five students arrive at a con-
sensus regarding (1) the identity of the mystery
powder, and (2) which properties are important for
this identification. As preparation, the PST has
access to the students’ written reflections and is
provided information about the accuracy of their
initial ideas. For instance, the PST must ensure that
the discussion rectifies the misconception (held by
Mina, Will, Jayla, and Emily) that weight is im-
portant for identifying the MP. See Figure 1 for an
excerpt from a discussion’s transcript.
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Dimension 3: Encouraging Student-to-Student Interactions

Indicator title Level 1
Beginning practice

Level 2
Developing practice

Level 3
Well-prepared practice

3a.
Peer interaction

The teacher assumes the
responsibility for the discussion
by rarely promoting peer
interaction AND frequently
mediates all student contributions.

The teacher occasionally
promotes peer interaction, AND
the majority of student
contributions are mediated
through the teacher.

The teacher frequently
promotes peer interaction,
AND the mediation of student
contributions is shared between
the teacher and the students.

3b.
Engagement with
others’ ideas

The teacher rarely encourages
students to engage with one
another’s ideas, conceptions, or
viewpoints.

The teacher occasionally
encourages students to engage
with one another’s ideas,
conceptions, or viewpoints.

The teacher frequently
encourages students to engage
with one another’s ideas,
conceptions, or viewpoints.

Table 1: Rubrics for Indicators 3A and 3B (Mikeska et al., 2021).

3.2 Rubric and manual evaluation

The MP rubric is made up of several dimension
scores, each of which is supported by several
more specific indicator scores (Mikeska et al.,
2021). The present study focuses on Dimension
3 (“Encouraging student-to-student interactions”)
and two of its indicators, Indicator 3A (“Peer in-
teraction”) and Indicator 3B (“Engagement with
other’s ideas”).1 See Table 1 for Indicator score
definitions.

After evaluation, the PST expects to see a feed-
back report that tells their strengths, areas for
growth, and recommended next steps in each Di-
mension. This report must give not only an overall
(i.e. transcript-level) evaluation but also support-
ing evidence (i.e. utterance-level) to reinforce the
PST’s desirable practices.

Accordingly, manual evaluation occurs on two
levels. First, the human rater cites, for each Indi-
cator, one or more utterances that exemplify the
target behavior (positive examples) or its opposite
(negative examples). Note that the rater is asked
only to provide some examples, not exhaustively
label every utterance in the transcript. Second, the
human rater scores the transcript, continuous on
a scale of 1 to 3 (e.g. a score of 1.40 is possible)
on each Indicator and then an integer from 1 to 3
for each Dimension. To calibrate judgments, raters
undergo extensive training, which includes com-
pleting self-guided webinars and evaluating sample
discussions.

3.3 Automated evaluation approach

Automated evaluation aims to follow the same two-
level process, via classifiers (for utterances) and
regressors (for transcripts). Conceptually, regressor

1Dimension 3 has a third indicator, “Ideas come from
students”, not within the scope of the present study.

features are aggregates of utterance-level informa-
tion, which include utterance class labels. How-
ever, ground-truth labels are not available for new
transcripts, so aggregating them is infeasible. In-
stead, in our approach, after training on the labeled
utterances, a classifier predicts positive probabil-
ities for all utterances, labeled and unlabeled. It
is then these predicted probabilities that are ag-
gregated into transcript-level features (described
in section 4.2). Thus, classifier training and eval-
uation uses ground-truth labels, for the subset of
utterances they are available; but regressor training
and evaluation uses only imputed probabilities.

4 Data, models, and features

4.1 Data

The MP dataset was collected in prior work
(Mikeska et al., 2019).2 A total of 79 PSTs fa-
cilitated discussions: 76 engaged in the simulation
twice; 3 engaged once. Of the 155 transcripts, 56
were coded by two raters. Reliability was measured
with intra-class correlation coefficients (ICCs) and
was sufficient (Cicchetti, 1994) for all three con-
structs: 0.816 for Indicator 3A; 0.679 for Indicator
3B; 0.635 for Dimension 3. For transcripts scored
by two raters, the final scores were the average be-
tween the raters—thus non-integer scores are also
possible for Dimension 3. The MP dataset has a
total of 14,558 utterances. For PSTs (6,713 utter-
ances), the interquartile range for utterance length
was 8 to 30 tokens; for students (7,845 utterances),
it was 4 to 20 tokens. Distributions of transcript-

2The Mystery Powder discussion and scoring data used
in this study was collected and generated as part of previ-
ous grants funded by the National Science Foundation (grant
#1621344, #2032179, and #2037983). Any opinions, findings,
and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.
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level scores are in Figure 2.
Allocation of transcripts into train and test parti-

tions was done by PST, so that PSTs in the training
data would not be again seen in the test set (Nazaret-
sky et al., 2023). 121 transcripts (from 62 PSTs)
were allocated to the training set and 34 transcripts
to the test set. For utterance-level analyses, each
utterance was allocated to the same partition (train
or test) as its parent transcript.

Indicator 3A Indicator 3B

Train Test Train Test

Class 0 1411 668 558 179
Class 1 267 86 426 144
(unlabeled) 3496 785 4190 1216

Table 2: Breakdown of PST utterances by class label,
construct, and train/test.

dimension 3 indicator 3A indicator 3B

1
.0

1
.5

2
.0

2
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Figure 2: Distributions of transcript scores (training
set).

Raters’ citations of positive examples were in
free-form text, which was manually coded by the
first author. The test set was coded after model
selection on the training set. Rater comments were
not always timestamps or direct quotes, so some
judgment was exercised. The following rules were
applied:

1. A PST utterance is labeled “1” (positive) if at
least one rater cited it as a positive example.

2. If a PST utterance is not labeled “1”, then it is
labeled “0” (nonpositive) if at least one rater

indicated that the transcript had no positive
examples in it.

3. If a PST utterance is not labeled “1”, then it is
labeled “0” (nonpositive) if at least one rater
indicated that it was a negative example. Since
there were only a few negative examples, they
were not assigned their own class.

4. If a PST utterance cannot be labeled either
“0” or “1” due to the above rules, it is left
unlabeled—excluded from training and evalu-
ation of the utterance-level classifiers.

Note that for training and evaluation of classi-
fiers, only the manually-labeled PST utterances are
used. But for training and evaluation of regressors,
all PST utterances are used, as predicted probabili-
ties are used instead of ground-truth labels.

Since PST performance is the focus of the study,
student utterances were used only to generate fea-
tures pertaining to the adjacent PST utterances, fol-
lowing a process explained in section 4.2. See
Table 2 for breakdown of the PST utterance labels
in the dataset. Only a small proportion of the utter-
ances are positive examples (in the training set, 5%
for Indicator 3A and 8% for Indicator 3B).

4.2 Models and features
As we inspected rater justifications and rubric defi-
nitions, we decided to hand-craft a number of fea-
tures as well as leverage neural language models
shown to be useful in prior work on teacher dis-
course analysis (see Section 2). In all, we consid-
ered 15 models, summarized in Table 3. Models
vary along three factors — level of analysis, target
construct, and type of features, as follows:

• A model is either (C) an utterance level classi-
fier, or (R) a transcript-level regressor.

• A model is concerned with (A) Indicator 3A,
(B) Indicator 3B, or (D) Dimension 3.

• A model is (N) content-based (via fine-tuning
an LLM), (S) structure-based (via handcrafted
features, some of which involve using LLMs
out of the box), or (X) a combination of both.

Note that only Indicators have utterance-level
analysis, so there are no classifiers for Dimension
3. Also note that models “compete” only in the
same cell (e.g. CAN vs. CAS vs. CAX).

Content-only classifiers (CAN and CBN) were
constructed by adding a linear classifier head on
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(A) Indicator 3A (B) Indicator 3B (D) Dimension 3

(C) Utterance-level classifier
CAN: content only CBN: content only

(none)CAS: structure only CBS: structure only
CAX: combined CBX: combined

(R) Transcript-level regressor
RAN: content only RBN: content only RDN: content only
RAS: structure only RBS: structure only RDS: structure only
RAX: combined RBX: combined RDX: combined

Table 3: All models. See the beginning of section 4.2 for an explanation of the rows and columns.

top of DistilBERT (Sanh et al., 2020) (66M param-
eters) using the HuggingFace toolkit (Wolf et al.,
2020). DistilBERT is a lightweight model that has
been used in educational settings (Nazaretsky et al.,
2023; Datta et al., 2023; Butt et al., 2022; Pearce
et al., 2023). Embedding and transformer layers
were frozen. Training was done with learning rate
0.001, batch size 32, and a linear scheduler with no
warmup. The number of epochs (between 1 and 10)
was a hyperparameter. As inputs to DistilBERT,
each utterance was prepended by the speaker (e.g.
“Carlos”), and the context for each PST utterance
was the student utterance immediately following
the teacher’s in the transcript. The intuition is that
how students respond is potentially informative for
whether the PST utterance is positive or not.

Unlike fine-tuning an LLM, which leverages ut-
terance content, classifiers with handcrafted fea-
tures mostly use turn-taking dynamics, that is, the
structure of the interaction. Utterances (student and
PST) are organized in blocks. Each PST utterance
begins a block, which spans the subsequent student
utterances until the next PST utterance. Figure 1
shows two color-coded blocks of utterances. By
computing features per block, features associated
with a PST utterance incorporate the turn-taking
structure in the subsequent student utterances.

For the structure-only classifier for Indicator 3A
(CAS), the following four features were computed

Classifiers Regressors

(LR) Logistic regression
(DT) Decision tree
(MP) Multilayer

perceptron
(RF) Random forest

(LR) Linear regression
(BR) Bayesian ridge re-

gression
(DT) Decision tree
(MP) Multilayer

perceptron
(RF) Random forest

Table 4: Classifiers and regressors to choose from.

per PST utterance based on its block:

• NUM_STUDTURNS: Number of student utter-
ances in the block.

• NUM_TEACHTOKS: Number of tokens in the
PST utterance itself.

• NUM_STUDTOKS: Number of tokens in the
students’ utterances in the block.

• NUM_KW1: “1” if the tokens “turn” and “talk”
both appear in the PST utterance; “1” if the
token “crosstalk” appears in the PST utter-
ance; and “0” otherwise. (“Turn and talk” is
the name of a commonly-used instructional
technique where students are put in pairs to
discuss an issue (Hindman et al., 2022). In the
case of the MP discussion, when this occurs,
the avatars produce mumbling sounds often
denoted in the transcript as “crosstalk”.)

For the structure-only classifier for Indicator 3B
(CBS), the handcrafted features capture student-
to-student uptake. Each student utterance u1 is
paired with the previous student utterance u0 in the
transcript. For every such pairing, the following
five features are computed:

• PROP_IN_LEFT: Proportion of tokens in u0
also found in u1, range: [0,1].

• PROP_IN_RIGHT: Proportion of tokens in u1
also found in u0, range: [0,1].

• JACCARD: Jaccard coefficient between the
two sets of tokens, range: [0,1].

• BLEU: BLEU (Papineni et al., 2002) score for
reference u0 and hypothesis u1, range: [0,1].

• SENTBERT: Cosine similarity between the
sentence-BERT (Reimers and Gurevych,
2019) embeddings of u0 and u1, range:
[−1,1].
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Content only, utterance level (CAN)

Structure only, utterance level (CAS)

Content+structure, utterance level (CAX)

Figure 3: Illustration of utterance-level modeling in
Indicator 3A, for a single PST utterance. Refer to Table
3 for model acronyms. Indicator 3B models (CBN,
CBS, CBX) proceed analogously. Structure features are
highlighted in yellow; content feature is highlighted in
turquoise.

Snowball stemming, as implemented in NLTK
(Loper and Bird, 2002), was used prior to comput-
ing word overlap. Each pair yields a 5-dimensional
feature vector. The feature vector of a PST utter-
ance is the mean-aggregate vector using the pairs
in its block, skipping over utterances with fewer
than 5 tokens. For PST utterances with no eligible
student utterances in the block, we use the lowest
possible value of the feature (e.g. 0 for JACCARD).

Combined classifiers (CAX and CBX) used
both types of features. For Indicator 3A (CAX),
the features were all the structure-only features
(e.g. NUM_TEACHTOKS from CAS) as well as the
DistilBERT-predicted positive probability (from
CAN). Indicator 3B (CBX) followed analogously.
Figure 3 is a cartoon summarizing which features
appear in which classifier.

For structure-only classifiers (CAS and CBS)
and combined classifiers (CAX and CBX), we used
shallow learning models as implemented in the
Scikit-learn toolkit (Buitinck et al., 2013). See
Table 4 for the classifiers considered and Table 7

Content+structure, transcript level (RAX)

Figure 4: Illustration of the transcript-level combined
model on Indicator 3A, for a single PST utterance. Refer
to Table 3 for model acronyms. The Indicator 3B model
(RBX) proceeds analogously.

(in the Appendix) for the hyperparameter grid.
At the transcript level, Indicator regressor fea-

tures are constructed by simple aggregates of
utterance-level information. For content-only In-
dicator regressors (RAN and RBN), there are only
two features: the relevant average DistilBERT-
predicted probability (from CAN or CBN); and
the count of PST utterances (or utterance blocks).
For structure-only Indicator regressors (RAS and
RBS), the features are the averages of the relevant
structure-only features (e.g. NUM_TEACHTOKS

from CAS, or JACCARD from CBS) and the count
of PST utterances. For combined Indicator regres-
sors (RAX and RBX), the features are the averages
from both types of features and the count of PST
utterances. Figure 4 in the Appendix is a cartoon
summarizing how utterances are aggregated. See
Table 4 for the regressors considered. See Table 8
(in the Appendix) for the hyperparameter grid.

As for Dimension 3 regressors (RDS, RDN, and
RDX), features are simply the union of the features
of the Indicator regressors. RDN inherits features
from RAN and RBN; RDS inherits features from
RAS and RBS; and RDX inherits features from
RAX and RBX.

All experiments were carried out on a MacBook
Pro laptop, with Apple M1 Pro chip. Computations
did not use GPU.

4.3 Model selection and evaluation

For model selection, we performed a 5-fold cross-
validation (CV) on the training set. Folds were
split by PST, as described for the train/test partition
(section 4.1).

For classifiers, the metric for model selection
was κ (Cohen, 1960); higher values are better.
For regressors, the metric was mean squared er-
ror (MSE); lower values are better. Since manual
scores range from 1 to 3, the predicted score was
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truncated to this range. For each of the 15 models
in Table 3, the final number of epochs (for LLMs)
or final estimator (for shallow learning models) was
selected using cross-validation in order to advance
to test set evaluation. For choosing the numbers of
epochs, the one-standard-error rule (Hastie et al.,
2017) was used.

Models that used the predicted probability from
DistilBERT as feature (i.e. all except CAS, CBS,
RAS, RBS, and RDS) used the best-performing
number of epochs from the corresponding fine-
tuned LLM classifier.

5 Results

Table 5 shows the test set results for classifiers. For
Indicator 3A, structure-based models dominated
content-based models. For Indicator 3B, the trend
was the opposite. For both Indicators, the combined
models had the best performance. See Appendix
for examples of positive-predicted utterances.

Table 6 shows the test set results for regressors.
For Indicator 3A, structure and content models
show similar performance. For Indicator 3B, the
fine-tuned LLM dominated. For both Indicators,
as well as the Dimension 3 score, the combined
models showed the best performance.

6 Discussion

6.1 Modeling approach
Our results show that classifiers focused on the
content of the PST utterance perform better for In-
dicator 3B, while those focused on the structure of
the discourse perform better for Indicator 3A. Thus,
the results suggest that it is quite difficult to get out
of the content of a PST’s utterance whether or not
the utterance encouraged peer interaction. How-
ever, since the simulated students (a) do not tend to
spontaneously engage in a multi-party discussion,
yet (b) are compliant with the teacher’s instructions,
whether or not multiple students speak following
the teacher is a fairly strong signal of whether the
teacher encouraged them to do so.

In contrast, whether or not the teacher encour-
aged the students to engage with each others’ ideas
is easier to recover from the actual PST utterance
than from evidence of lexical overlap or semantic
similarity between subsequent student utterances.
This may be because, given the highly constrained
topic of the conversation (properties of the six pow-
ders), on the one hand, consecutive student utter-
ances generally tend to have substantial textual

overlap, whether or not the teacher encouraged
that; on the other hand, overlap or semantic simi-
larity as captured in pre-trained models may not be
sufficiently nuanced to distinguish between actual
uptake and mere accidental, topic-induced, seman-
tic similarity or lexical overlap.

We observe that modeling the discourse dynamic
explicitly and separately from the fine-tuned-LLM-
based model of the content yields more explainable
models than models where the content of a large
surrounding context is used within the LLM-based
model. Thus, our design and results allow us to see
clearly the extent to which the fact of the within-
block students’ utterances, irrespective of what is
said, can predict the score on Indicator 3A, as well
as to observe the complementarity of the content
and structure as sources of information.

6.2 Generalization based on select examples

We observed previously that the design of the hu-
man evaluation campaign conducted prior and in-
dependently from the computational modeling was
such that raters were asked to provide justifications
for their scores in the form of specific utterances
that could serve as positive examples of the target
behavior; only 5–8% of the PST utterances were
picked as positive examples. The general preva-
lence of utterances that exhibit the target behavior
was not known a-priori, nor was it obvious that
better performance, based on holistic scores, would
clearly correspond to having more utterances that
exhibit such behaviors.

Figure 5 shows boxplots of the proportion of au-
tomatically predicted positive examples for either
Indicator by human-assigned holistic proficiency
levels according to Dimension 3 scores. First, we
observe that the system was able to detect many
more positive examples than were provided – even
at the lowest level of performance, most PSTs ex-
hibited the target behavior in more than 10% of
their utterances, while most of the best-performing
PSTs did it in more than 40% of theirs.

Second, we observe a strong differentiation be-
tween proficiency levels – boxes containing middle
50% of the performances per level have almost no
overlap. This provides validity evidence not only
for the automated modeling but for the human holis-
tic scores as well, showing that they correspond to
explicit, quantifiable transcript-level aggregation
of relevant evidence.

Third, the emergent differentiation enables easily
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Construct Model
Number of epochs

Accuracy Cohen κ F1
or estimator

Indicator 3A
CAN 3 epochs 0.899 0.283 0.321
CAS MP 0.924 0.604 0.646
CAX RF 0.931 0.641 0.679

Indicator 3B
CBN 6 epochs 0.774 0.531 0.711
CBS RF 0.632 0.260 0.602
CBX MP 0.793 0.571 0.739

Table 5: Test set evaluation results for utterance-level classifiers.

Construct Model Estimator MSE Pearson correlation

Indicator 3A
RAN MP 0.343 0.468
RAS RF 0.354 0.480
RAX RF 0.335 0.513

Indicator 3B
RBN LR 0.238 0.705
RBS MP 0.325 0.530
RBX LR 0.215 0.724

Dimension 3
RDN BR 0.242 0.547
RDS MP 0.202 0.631
RDX BR 0.183 0.678

Table 6: Test set results for transcript-level regressors. Lower MSE is better; higher correlation is better.
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Figure 5: Boxplot of human-assigned Dimension 3 pro-
ficiency level vs. percentage of model-predicted positive
examples (either Indicator) in transcript.

explainable and visually clear feedback whereby
a PST’s performance could be mapped against
teachers at various levels of proficiency, to com-
municate not only current performance level but
also how much more frequently one needs to im-

plement the target behavior in order to move to
the next level. Taken together, our results suggest
that having humans provide select evidence for the
score could be a viable alternative to a more com-
prehensive utterance-level annotation that is the
prevalent approach in the literature on automation
of the detailed evaluation of teacher discourse.

7 Conclusion

The goal of the current study was automated evalua-
tion of teacher discourse when facilitating a discus-
sion in a simulated elementary science classroom.
We showed that models focused on the content
of the teacher’s utterances using fined-tuned large
language models and models focused on the struc-
ture of the discourse modeled using handcrafted
features captured complementary aspects of the
target construct and could be fruitfully combined
into hybrid models that outperformed both con-
tent and structure models. Our results also demon-
strated strong generalization from a small number
of “score justifications" provided by expert human
raters, suggesting a potentially more efficient data
generation paradigm than an exhaustive annotation
of discourse moves.
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8 Limitations

A limitation of the current study is the use of only
one scenario for a simulated discussion, namely,
the Mystery Powder task for an elementary science
classroom and so it is not clear to what extent the
type of models discussed in this paper will gener-
alize to other scenarios. To address this limitation,
we are developing additional scenarios, collecting
discussion transcripts, and conducting human eval-
uations to generate data for additional studies that
would examine the generalization of the technique
proposed in this paper to new scenarios in both
science and mathematics contexts.

Another limitation is that the current data come
from pre-service teachers only; an online simula-
tion could also be useful for early career in-service
teachers. We are in the process of collecting data
from in-service teachers and will be able to exam-
ine generalization to a different user population
as the project progresses and more data become
available for computational analysis.

Our experiments did not vary the size of the con-
text window for DistilBERT. In line with Suresh
et al. (2022b), it is possible that larger windows
might substantially improve the performance of
the fine-tuned-LLM-based models. That said,
larger windows can potentially “encroach" on the
structure-based models’ territory making the dis-
tinction between what is due to the structure and
what is due to the content harder to maintain, and
with it, the explainability that comes from being
able to point to the distinct aspects of the simu-
lated discussions as information sources for the
models. The explainability of the models is impor-
tant not only for the PST buy-in, but also for the
interdisciplinary team that is working on creating
feedback reports based on the models’ output. An
explanation connecting the focus of the rubric to
the performance of models with different types of
information, as in section 6.1, helps the science
teacher educators on the team appreciate the align-
ment between the rubric and the automated models.

Another limitation of the current study is using
only DistilBERT. This model was picked for its
efficiency and prior successful use in educational
settings (Butt et al., 2022; Pearce et al., 2023); how-
ever, larger and more powerful models may support
stronger performance, especially for Indicator 3A,
where there is substantial room for improvement,
with the current best performance of r = 0.513.
Having established the baselines in this study, we

intend to explore additional LLMs, resources per-
mitting.

The data used in the study comes from predom-
inantly White and female PSTs, reflecting the de-
mographic at the data collection sites and in the
teacher population in the USA. In the ongoing data
collection, we are making an effort to reach out to
more diverse demographics. Demographic infor-
mation about the expert raters who provided scores
and justifications was not collected; this will be
rectified in future studies.

All current data come from pre-service teachers
in the USA and all simulated discussions are con-
ducted in English. In principle, actors who speak
other languages could be trained to provide online
practice to pre-service teachers in other cultural and
linguistic environments; however, the detail and nu-
ance of culturally appropriate teacher-student and
student-student interactions might differ. At the
moment, the scope and funding of the ongoing
project do not allow addressing this limitation.

9 Ethics statement

The transcripts, scores and score justifications used
in this study were collected with the approval of
our Institutional Review Board with informed con-
sent of the participants as part of previous stud-
ies. Participants were provided information about
the purpose of the study, the risks and benefits to
participating in the study, and details about what
participation entailed. The raters were paid for the
time they contributed to generating the scores and
score justifications and the PSTs were paid for be-
ing research participants. The PSTs were enrolled
in an elementary methods course at their university
and were recruited based on their professor’s par-
ticipation in the study. Each PST could voluntarily
consent to participate (or not) in the research study
to have their transcript data used for research pur-
poses. The consent form for participants included
the following statement about risks: “Some partici-
pants may experience a small degree of discomfort
when facilitating the discussions in the simulated
classroom environments.” All transcript data is de-
identified, and a PST is represented by a numerical
ID in each transcript. The data does not contain
offensive content. The collected data is used in
compliance with the consent. The consent form
contained an explanation of the intended use: “The
video recordings and transcripts of your sessions
will be used for research purposes . . . anonymized
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data and recordings may be used in future research
studies.”

Since the ultimate goal of the project is to enable
automated feedback to PSTs that would replace hu-
man feedback, there is a risk of incorrect feedback,
since it is unlikely that an automated system will
be accurate 100% of the time. First, human raters
also sometimes make mistakes. Second, at least
some of the use cases of the tool with feedback
are within teacher training programs led by teacher
educators; any feedback that surprised the PST or
seemed unclear or incorrect can be discussed with
the teacher educator. Third, every PST has access
to the video recording of their own simulated dis-
cussion from Mursion; they can review the video to
verify that the feedback makes sense with respect
to their performance. Finally, a PST can engage in
the simulation multiple times and it is possible that
some of the feedback mistakes will be rectified in
successive simulations.

Our use of the toolkits is in accordance with
their licensing terms: Apache 2.0 license for Hug-
gingFace transformers3 and BSD 3.0 license for
scikit-learn.4
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A Combined utterance-level classifier
predictions

Here are some utterance blocks whose PST utter-
ance was predicted positive for Indicator 3A, for
the combined model (CAX).

TEACHER
Okay. I’m trying to figure out how to explain this
the best way possible. Actually, Carlos, do you
want to explain it because sometimes hearing it
from a friend is easier.
CARLOS
Yeah. I didn’t want to look at the weight because
it just tells you how much there is, not what it is.
WILL
Hmm. Well that’s a little confusing.
CARLOS
Well, what I mean is if you have a slice of pizza
or you have a whole pizza, it’s still pizza, right?
It’s just a different size.
WILL
Well, yeah, I guess so. A slice of pizza is still
pizza.
CARLOS
Yeah, exactly and so it’s the same with this. It
doesn’t matter how much you have, It’s still the
same thing.
WILL
I guess the weight doesn’t actually tell you what
it is.
CARLOS
Yeah, exactly.

TEACHER
So in your small groups, and Carlos, you can
join with Jayla and Emily. Talk about how you
feel about the way that you went about the ex-
periment and how you feel that you could’ve
changed it.
EMILY
You know, I guess problem has enough proper-
ties, just not enough of the right properties.
CARLOS
Yeah. I thought I was on the right track with
only using the weight, but I guess I didn’t see it
or realize that what the color in this is also the
same one.
JAYLA
Yeah. I think because we were trying to be like
“Lets test all the properties” but I guess now that
we know that.

Here are some utterance blocks whose PST ut-
terance was predicted positive for Indicator 3B, for
the combined model (CBX).

TEACHER
Okay. Does anybody think that they should have
looked at more properties or less? And why?
CARLOS
Well, I think that they should have looked at
more properties because they only looked at a
couple. And they were also talking about how
they looked at weight and they didn’t need to
look at that one.

TEACHER
Okay. What does everyone else think about what
Jayla just said?
WILL
Well, what she said about why weight is an im-
portant property I didn’t think that. I thought it
was an important property, because you could
measure it. But what Carlos said makes sense.

B Some figures and tables

Figure 6: Reference table of powders and properties for
the Mystery Powder Task (Mikeska et al., 2021, p. 30).
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Figure 7: Pre-work by Jayla and Emily (Mikeska et al.,
2021, p. 30).
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cv_dict_classifier = {
"LR": (LogisticRegression(), {"C":[1,2,3,4,5,10,20], \
"class_weight":[None,"balanced"]}), \
"MLP": (MLPClassifier(random_state=42, max_iter=int(3e3)), {"hidden_layer_sizes": \
[1*(5,),2*(5,),3*(5,),1*(10,),2*(10,),3*(10,),1*(20,),2*(20,),3*(20,),1*(30,)

,2*(30,),3*(30,)], \
"activation": ["logistic", "tanh", "relu"], \
"solver": ["lbfgs", "sgd", "adam"], "alpha": [0.00005,0.0005]}), \
"DT": (DecisionTreeClassifier(random_state=42), { "splitter":["best","random"], \
"max_depth": np.arange(3, 15), "max_features":["log2","sqrt",None],"class_weight": [

None,"balanced"]}),
"RF": (RandomForestClassifier(random_state=42), {"max_depth": [5,10,20,30,None],
"max_features": [1,"sqrt"],"min_samples_leaf": [1,2,4],"min_samples_split":

[2,5,10],\
"class_weight": [None,"balanced"]})
}

Table 7: Classifier hyperparameter grids, for use with Scikit-learn.

cv_dict_regressor = {
"LR": (LinearRegression(), {"fit_intercept":[False, True]}), \
"MLP": (MLPRegressor(random_state=42,max_iter=int(3e3)), {"hidden_layer_sizes":
[1*(5,),2*(5,),3*(5,),1*(10,),2*(10,),3*(10,),1*(20,),2*(20,),3*(20,),1*(30,)

,2*(30,),3*(30,)],
"activation": ["logistic", "tanh", "relu"],
"solver": ["lbfgs", "sgd", "adam"], "alpha": [0.00005,0.0005]}), \
"DT": (DecisionTreeRegressor(random_state=42), { "splitter":["best","random"],
"max_depth": np.arange(3, 15), "max_features":["log2","sqrt",None]}), \
"BR": (BayesianRidge(), {"tol": [1e-4, 1e-3, 1e-2],
"alpha_1": [1e-7, 1e-6, 1e-5, 1e-4, 1e-3], "lambda_1": [1e-7, 1e-6, 1e-5, 1e-4, 1e

-3],
"fit_intercept": [False, True]}), \
"RF": (RandomForestRegressor(random_state=42),{"max_depth": [5,10,20,30,None],
"max_features": [1,"sqrt"], \
"min_samples_leaf": [1,2,4], \
"min_samples_split": [2,5,10]}),

}

Table 8: Regressor hyperparameter grids, for use with Scikit-learn.
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Model Selected Cohen’s κ mean (SE)

CAN 3 epochs 0.475 (0.001)
CAS MP 0.653 (0.026)
CAX RF 0.717 (0.026)

CBN 7 epochs 0.491 (0.007)
CBS RF 0.324 (0.043)
CBX MP 0.622 (0.033)

Table 9: 5-fold cross-validation results for classifiers,
with Cohen’s κ as metric. Higher values are better.

Model Selected MSE mean (SE)

RAN MP 0.332 (0.046)
RAS RF 0.250 (0.035)
RAX RF 0.245 (0.042)

RBN LR 0.242 (0.015)
RBS MP 0.387 (0.017)
RBX LR 0.236 (0.012)

RDN BR 0.251 (0.044)
RDS MP 0.233 (0.034)
RDX BR 0.219 (0.034)

Table 10: 5-fold cross-validation results for regressors,
with mean squared error (MSE) as metric. Lower values
are better.
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