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Abstract

The successful analysis of argumentative tech-
niques in user-generated text is central to many
downstream tasks such as political and mar-
ket analysis. Recent argument mining tools
use state-of-the-art deep learning methods to
extract and annotate argumentative techniques
from various online text corpora, but each task
is treated as separate and different bespoke
models are fine-tuned for each dataset. We
show that different argument mining tasks share
common semantic and logical structure by im-
plementing a multi-task approach to argument
mining that meets or exceeds performance from
existing methods for the same problems. Our
model builds a shared representation of the in-
put and exploits similarities between tasks in or-
der to further boost performance via parameter-
sharing. Our results are important for argument
mining as they show that different tasks share
substantial similarities and suggest a holistic ap-
proach to the extraction of argumentative tech-
niques from text.

1 Introduction

Text content generated by online users is a funda-
mental source of information for understanding the
ideas, feelings, and behavior of large populations of
interest for social scientists. Within these texts, it is
important to be able to recognize ideas and world-
views expressed by individuals on a large scale.
To this end, argument mining (AM) has emerged
in recent years as a sub-field of natural language
processing (NLP) focusing on creating language
models capable of detecting and classifying argu-
mentative strategies in online texts.

Within AM, several different sub-tasks have
been proposed. For example, Misra and Walker
(2013) focus on identifying agreement and dis-
agreement in online texts, Oraby et al. (2017) pro-
pose a method to distinguish factual from emo-
tional argumentation techniques, Lawrence et al.

(2017) detect the presence of certain rhetorical fig-
ures in arguments, and Wachsmuth et al. (2017a,b)
produce measures of argument quality. These are
only some examples of the many distinct classifi-
cation tasks that have been identified in AM, not
to mention a wide range of work on span identi-
fication (e.g. Morio et al., 2022). In this paper,
we suggest that all these AM sub-tasks share sub-
stantial similarity and use this idea to formulate
a model that achieves high accuracy in several of
these problems.

More specifically, existing work in AM treats
many of the classification tasks within the field
as separate problems and focuses on fine-tuning
bespoke models for each task (e.g. Abbott et al.,
2011; Stab and Gurevych, 2014, 2017; Sheng et al.,
2020). While this approach has been demonstrated
to work in many settings, it fails to take advantage
of the substantial similarities between AM tasks.

In this paper we propose to take advantage of
the similarities across AM tasks by constructing
a multi-task model (Caruana, 1997; Zhang et al.,
2014; Zhao et al., 2018; Liu et al., 2015), that is
trained on all tasks at once and builds a shared
latent representation of the inputs for each task,
and uses this representation to make more accurate
predictions for each individual task. Our models
also provide evidence that AM sub-tasks do in-
deed share substantial conceptual overlap (Schulz
et al., 2018); the latent representations of differ-
ent tasks output by our model depicted in Figure 1
clearly depict clusters of individual tasks as well as
substantial overlap between these clusters in rep-
resentation space, indicating that the same latent
features are informative for multiple tasks.

The model we propose achieves performance
similar to or greater than existing models on all
tasks for which we had information on previous
metrics, and it also surpasses individual-task mod-
els fine-tuned on similar architectures for these
tasks. In addition, our models allow for substantial
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Figure 1: t-SNE projection of the BERT embedding
included as the first layer in our model. Points are color-
coded according to their task.

computational gains over individual-task models
as they permit training inference for many outputs
at once, instead of training and evaluating an indi-
vidual model for each desired task.

Overall, our results have the important implica-
tion for AM as a field that further research and
model-building should not only focus on taking
advantage of the structure of the specific task of
interest (e.g. Jin et al., 2022), but also on incor-
porating information from similar tasks into the
model for better performance.

2 Related Work

We build on an active research agenda in argument
mining (AM)—the automated extraction of argu-
mentative structure, reasoning, and features from
text (Habernal and Gurevych, 2017). Cabrio and
Villata (2018) identify two stages in AM: identify-
ing arguments within documents and classifying
those arguments on their characteristics, such as
supporting, attacking, or background information.
Our work is situated in the second stage, involv-
ing the identification of features or typologies of
arguments.

Much computational work in AM has investi-
gated argumentation in online interactions (Abbott
et al., 2011; Rosenthal and McKeown, 2015; Swan-
son et al., 2015), due in part to the vast amounts
of available data and the ease of collecting it. But
some scholars have used news articles to construct
corpora of propaganda and fact-checking (e.g.,
Da San Martino et al., 2019; Rashkin et al., 2017).
Still others have leveraged monologues like persua-
sive essays or legal decisions (Stab and Gurevych,
2014; Walker et al., 2019). We incorporate all three

types of data into our models to further show that
tasks with different data-generating processes and
textual characteristics nevertheless exhibit common
semantic structure.

There is evidence that many natural language
tasks share a common core (Radford et al., 2019),
and models trained on one task tend to also perform
well on others. Halder et al. (2020) demonstrate
that multi-task approaches benefit model perfor-
mance in several natural language tasks such as
topic detection and sentiment analysis. Multi-task
approaches have been more rare within AM, but
two existing works suggest the framework may
offer benefits to these unique tasks.

Schulz et al. (2018) apply multi-task learning to
token-level tagging for AM tasks. They consider
six datasets each with different token annotations
and train a recurrent model to learn all of them at
once, providing initial evidence that gains in model
performance can be attained via multi-task learn-
ing in AM. Similar results are echoed in Schiller
et al., who focus on stance detection instead. Morio
et al. (2022) present an end-to-end multi-task ar-
chitecture for identifying argument components
in unstructured text. Our task differs from theirs
in two ways: First, Morio et al.’s model is espe-
cially focused on span identification and relation
classification, wherein the model links, for exam-
ple, premise to claim. Our primary objective in
this paper would more accurately be described as
component classification. Second, the component
classification part of their model is focused on more
traditional AM tasks like classifying texts as claims
for or against. We focus instead on argument char-
acteristics that are more complex or subjective and,
in some cases, can be understood as being nested
within overarching concepts.

Cheng et al. (2020) propose a model trained si-
multaneously on two tasks: argument identification
within texts and argument-rebuttal pair matching
across texts. Again, our approach is focused on ar-
gument classification, not span identification, and
we aim to classify argument types. Moreover, our
use of multi-task learning differs slightly. Whereas
Cheng et al. train a model to perform two com-
plementary but quite distinct tasks, we show that a
single model can perform multiple argument clas-
sification tasks simultaneously. Accordingly, our
proposed architecture differs from both Morio et al.
and Cheng et al.

A prevalent model architecture for multi-task
learning within computer vision involves segre-

47



gating the network into shared and task-specific
components. This conventional structure, termed
a “shared trunk” (Crawshaw, 2020), typically com-
prises a universal feature extractor, constructed of
convolutional layers that are employed by all tasks,
and a distinct output branch for each task (Zhang
et al., 2014; Dai et al., 2016; Zhao et al., 2018; Liu
et al., 2019). Further enhancements on this shared
trunk template have been made by (Zhao et al.,
2018) and (Liu et al., 2019), who incorporated task-
specific modules into the original framework.

This template is not confined to computer vision
but is also prevalent in multi-task learning models
in NLP. Traditional feed-forward architectures, us-
ing the shared trunk template in combination with
task-specific modules, have been utilized for multi-
task NLP by a variety of researchers (Collobert
and Weston, 2008; Collobert et al., 2011; Liu et al.,
2015, 2016). These architectures bear a structural
resemblance to their counterparts in computer vi-
sion, featuring a shared, global feature extractor
followed by task-specific output branches. How-
ever, in the context of NLP, the features in question
are text representations.

3 Data

We draw on three benchmark corpora to create a
dataset with a diverse number of argument char-
acteristics. We take eight tasks from the Internet
Argument Corpus (IAC), a collection of posts ex-
tracted from several online debate and discussion
fora (Abbott et al., 2016; Walker et al., 2012). Each
post is annotated on a variety of characteristics,
such as whether the post expresses disagreement
or uses an emotion- or fact-based argument, with
a value in [−5, 5] on each characteristic. Some
researchers have dichotomized these data by re-
moving observations around the midpoint Oraby
et al. (2015). This practice is not appropriate in
the multi-task setting, however, as it would remove
too much information that the model could use to
build shared representations across tasks. Instead,
we dichotomize the data by simply cutting on the
scale midpoint.

A wide array of studies have used the IAC to
construct unique tasks (Galitsky et al., 2018; Hart-
mann et al., 2019; Misra et al., 2016) and train
single-task models (Lukin et al., 2017; Misra and
Walker, 2013; Oraby et al., 2016). Three tasks have
received notable attention: the classification of dis-
agreement Abbott et al. (2011); Wang and Cardie

(2014), emotional or factual arguments Oraby et al.
(2015), and nasty or nice tone Lukin and Walker
(2013).

The second benchmark corpus we draw on is
IBM-Rank-30k, a corpus of crowd-sourced argu-
ments Gretz et al. (2020). Two quality scoring
functions then translated binary annotations into
a continuous value of argument quality in [0, 1].
We use scores produced by the authors’ weighted
average scoring function because it accounts for
coder reliability, leading to less noisy annotations.
As with the IAC labels, we dichotomize the data
by cutting on the scale midpoint.

The final corpus is introduced by Da San Martino
et al. (2019), who collect articles from both propa-
gandistic and non-propagandistic news sources and
annotate sentences within each article that contain
one or more of eighteen different propaganda tech-
niques, such as loaded language or causal oversim-
plification. We extract all sentences from each arti-
cle, including those that are annotated as containing
no propaganda techniques. Data from all three cor-
pora are combined to create our final dataset. We
use 80% of the data for training and set aside 10%
each for validation and test sets.

Finally, to help guard against overfitting, we con-
duct four types of data augmentation on the training
set (Shorten et al., 2021). In back-translation, we
translate the text into a different language, then
translate it back to the original language. We
choose German as the target language for its high
lexical similarity to English. In contextual word
embedding, we randomly choose thirty percent of
tokens, feed the surrounding words to BERT (De-
vlin et al., 2018), and substitute the predicted word
in for the original. In synonym augmentation, we
randomly choose thirty percent of tokens and sub-
stitute the most similar word from the WordNet
lexical database (Fellbaum, 1998). Finally, in ran-
dom cropping, we randomly delete thirty percent
of tokens. Table 1 shows the total number of ob-
servations in the training set as well as the class
balance for each task.

4 Methodology

Our methodology is based on a multi-task learning
approach which leverages the shared information
across tasks corresponding to different sources of
data, leading to improved performance on each
task. The model architecture and the loss function
are the two key components of our methodology.
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Task Training N Balance
Propaganda 61,909 63/37
Disagree/Agree 66,684 21/79
Emotion/Fact 76,403 41/59
Attacking/Respectful 65,998 66/34
Nasty/Nice 65,829 73/27
Personal/Audience 24,749 25/75
Defeater/Undercutter 24,357 38/62
Negotiate/Attack 26,604 44/56
Questioning/Asserting 29,791 66/34
Argument Quality 96,036 6/94

Table 1: Size and class balance of training data.

Additionally, we make use of several standard train-
ing and optimization techniques, described in this
section, in order to improve performance.

4.1 Model Architecture

Our model architecture shares a key similarity to
network templates comprising a shared trunk feed-
ing task-specific modules, common to multi-task
learning architectures proposed in previous works
(e.g. Zhao et al., 2018; Liu et al., 2015). Morio et al.
(2022) also use an architecture with corpus-specific
branches, but this portion of their architecture is
only used in pre-training; they then fine-tune the
model on each corpus individually. Our model
is fully multi-task, thus showing the benefit of a
multi-branch architecture that needs no fine-tuning.

This architecture aims to utilize shared informa-
tion across tasks through the shared trunk while
learning distinct task features through the task-
specific modules. Following the same principle,
we use a network with double-branching in layers
following the shared trunk, in order to make use
of commonalities across different types of tasks as
well as more fine-grained information about each
individual task.

We therefore use a feed-forward neural network
with four sequential sets of layers: a base text em-
bedding model shared across all tasks, followed
by a shared encoder, which is followed by a dou-
ble branching structure feeding two sets of task-
specific modules. The main results we report use
small BERT as the base embedding model (Devlin
et al., 2018), but any base model can be used, and
we report results across five such models below.

The base embedding model is followed by three
dense layers, each followed by dropout. These lay-
ers help in learning features that are shared across
tasks. The architecture then branches out to learn
task-type and task-specific features. In particular,
the architecture consists of four sets of layers, de-

scribed below, and visualized in Figure 2. Each
dense layer in the network uses a ReLU activa-
tion, with the exception of the final activation layer,
which is a sigmoid for binary classification.

• Shared embedding layers: We use a BERT
model (Devlin et al., 2018) to obtain an em-
bedding of the text input. In order to keep
the model size small and training practical,
we use small BERT (Turc et al., 2019), which
outputs a 128-dimensional embedding. The
embedding model, shared across all tasks, is
fine-tuned through our training.

• Shared encoding layers: In addition to the
base embedding model, all tasks share an en-
coder, consisting of two sequential dense lay-
ers each followed by a dropout layer. This
helps learn a shared representation, used by all
tasks, while allowing for sparsity and reducing
the problem to learning our target features.

• Task-type Layers: The first branching in the
network architecture follows the shared layers
aiming to learn coarse-grained task-specific
features which are expected to share logical
structures across tasks within each type. This
is particularly suitable for multi-task learning
on data consisting of a mixture of datasets,
where the number of labels exceeds the num-
ber of sources in the mixture. Given such
input data, in the first step towards learning
the shared representation, the task-type layers
learn dataset-specific features, while still uti-
lizing commonalities between individual tasks
sharing a dataset. For each task-type branch,
we use two sequential dense layers each fol-
lowed by dropout. Since we have three sets of
target labels each corresponding to their own
dataset, we use three main branches.

• Task-specific Layers: Each main branch fur-
ther branches out into individual task layers.
These layers aim to learn more fine-grained
features from the representations produced
through the main branches, and output a vec-
tor representation for each task. Each task-
specific branch contains two sequential dense
and dropout layers, which feed a sigmoid acti-
vation layer for predicting labels. The number
of these sub-branches equals the number of
individual features in the combined dataset.
In the branch corresponding to propaganda
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techniques, we additionally use a maximum
pooling layer to reduce the eighteen individ-
ual propaganda technique labels to a single
binary propaganda classification, predicting
whether a propaganda technique is used.

Figure 2: Model architecture.

The full architecture is illustrated in Figure 2.
Using this architecture, we obtain a vector repre-
sentation of the size of the fine-grained features
described in the dataset. Note that this need not be
the same as the size of the target output. It is not
in this case, as we apply max-pooling to eighteen
entries of the output corresponding to propaganda
techniques in order to obtain a binary label. The
network outputs a real-valued 10-dimensional vec-
tor which is then mapped to a binary vector of size
10 using individual thresholds for each label. For
the results produced in the main text of this paper,
we use a model with 32536 trainable parameters in
addition to the parameters in small BERT.1

4.2 Loss Function
The loss function plays a crucial role in our multi-
task learning approach, which relies on a mixed
corpora corresponding to different task types. The
custom loss function is designed to handle the data
size imbalance across task types, in addition to
class imbalance. This helps the model capture the
contribution of each prediction to the overall loss,
while task types are randomly shuffled in the input
data. Considering this, given predicted labels ŷ and
true labels y, the total loss L used in our gradient
descent optimization is:

L (ŷ|y) =
∑

k

νkL(ŷ|y,Dk),

1Including bias terms, there are 64 × 32 + 32 learnable
parameters in the shared layer, 32 × 32 + 32 between the
shared layer and each of the task-type branches, 32× 16+ 16
in each task-type branch, 16×16+16 between each task-type
branch and each task-specific branch, and 16× 8 + 8 in each
task-specific branch.

where Dk denotes the set of data point indices cor-
responding to task-type k, and νk ∼ 1/|Dk| are
the task-type weights. The loss for each task type
k, which accounts for the class imbalance across
output labels, is:

L(ŷ|y,Dk) ∼
1

|Tk|
∑

j∈Dk

∑

t∈Tk

∑

c∈Ct
wc
t l(ŷj |yj = c),

where l(.) is the loss function, Tk denotes the set of
tasks within task type k, and Ct is the correspond-
ing set of classes. The class weights wc

t , which
are proportional to the inverse of the enrichment
of class c in task t within dataset k, counter the
impact of class imbalance. We use the binary cross-
entropy loss for the loss function l throughout our
computations. In the implementation, the loss com-
putation is vectorized using masked matrices to
filter entries by task.

4.3 Model Training

For training the parameters in our model, we take
advantage of an array of optimization and train-
ing enhancement techniques. We use an AdamW
optimizer (Loshchilov and Hutter, 2017) for the
stochastic gradient descent with an initial learning
rate of 0.0003. To help avoid overfitting, we em-
ploy a weight decay rate of 0.01 and 40% dropout.
We use 5% of data for warmup, a batch size of
256, and stop training after two epochs without
a decrease in loss. We also incorporate threshold
tuning, maximizing true positive rate while min-
imizing false positive rate, for optimal mapping
of the sigmoid layer’s output to binary labels. All
training hyperparameters are tuned through a stan-
dard grid search over 72 sets of hyperparameters
and selected based on validation F1 score.

5 Empirical Results

We evaluate our multi-task model’s performance
in terms of prediction metrics, computational effi-
ciency, and comparison against existing metrics on
the target labels. We also offer evidence that the
tasks we combine do indeed share important simi-
larities by presenting text embeddings and interme-
diate layer representations, in Figure 1 and Figure
3. We show that our model performs favorably in
comparison to previously published models (Table
2), while being substantially more computationally
efficient than single-task counterparts (Figure 4).
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5.1 Commonalities Across Tasks

Our model was trained on three different corpora,
described in section 3, which we argue possess im-
portant semantic similarities. To provide evidence
of our ten tasks existing within a common represen-
tation space, we present t-SNE projections (Van der
Maaten and Hinton, 2008) of the input text embed-
dings corresponding to each label at three different
locations within the neural network. Figure 1, dis-
cussed in section 1, shows the t-SNE projection
from the output of the BERT model we use as our
base encoder. Points are color-coded according to
their task. If our text data carried mutually exclu-
sive information applicable only to the particular
task for which it was labeled, we would see distinct
clusters of representations in Figure 1.

There is some minor evidence of clustering, par-
ticularly with respect to the propaganda and argu-
ment quality tasks, but even those tasks have ob-
servations spanning the entire representation space,
and they clearly mix with other task representations.
This suggests the fine-tuned BERT model is learn-
ing representations that reflect similar semantic and
logical structures across tasks. We also highlight
that the clustering behavior within tasks observable
in the figure shows that our model’s embeddings
are not completely discarding task-specific struc-
ture. Rather, our model learns task-specific repre-
sentations, and those representations exist within
a common space with other task-specific represen-
tations, thus further lending evidence to the theory
behind our approach.

This pattern is preserved throughout the layers
of our model. Figure 3 presents similar t-SNE pro-
jections of two other intermediate layers: a shared
layer (before any model branching occurs) and the
final task-specific layer before the sigmoid activa-
tion (after the double-branching). Following the
BERT model, each successive layer in the neural
network gradually becomes more task-specific, and
encodes information that is more relevant to dis-
tinguishing among tasks and among labels within
tasks. It is notable, then, that we observe similar
levels of clustering in the t-SNE projections re-
gardless of model layer. Propaganda and argument
quality tasks appear to inhabit more discernible re-
gions of the representation space, but their clusters
are neither well-defined nor tightly constrained.

We take this consistent pattern as evidence that
AM tasks share a common semantic space. En-
abling a model to learn these fine-grained similari-

ties and differences between tasks and across task
types is therefore likely to improve performance
relative to models that rely solely on shared fea-
tures or no sharing at all. We test this conjecture in
the next section.

Figure 3: t-SNE projections of representations from the
shared layers (top) and the task-specific layers (bottom).

5.2 Performance Evaluation
We evaluate the performance of our model primar-
ily in terms of weighted F1 scores, which account
for the class imbalances noted in Table 1. Our
proposed method represents a significant departure
from common approaches to argument classifica-
tion, so we want to be sure our model is performing
favorably relative to other models.In comparison
with previous metrics (Table 2), our model shows
superior performance in predicting all of the tasks
for which we had previous information available.
This indicates that effectively leveraging shared fea-
tures improves performance across multiple tasks.

Table 3 shows a comparison of the predictive
performance (as measured by the class-weighted
F1-score) between baselines, single-task, and multi-
task versions of the same model. The baseline
metrics represent random guessing and the unigram
metrics are produced by a naive Bayes classifier.
As may be expected, baselines underperform all
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Absolute Relative
Task Citation Metric Previous New Gain Gain

Propaganda Da San Martino et al. (2019) F1 60.98 61.74 0.76 1.25
Disagree/Agree Wang and Cardie (2014) F1 63.57 71.38 7.81 12.29
Disagree/Agree Abbott et al. (2011) Acc. 68.20 70.73 2.53 3.71
Emotion/Fact Oraby et al. (2015) F1 46.20 63.93 17.73 38.38
Nasty/Nice Lukin and Walker (2013) F1 69.00 73.69 4.69 6.80

Table 2: Comparison to previously published metrics.

deep-network-based approaches.
Morio et al.’s (2022) multi-task model outper-

forms their single-task benchmarks about 80% of
the time, and we see similar results here. Our multi-
task model outperforms single-task models based
on the same encoder architecture in six of our nine
tasks. Ablating some layers brings that number up
to seven. Again, we take this as evidence that our
multi-task model is capable of exploiting the com-
mon structure between tasks in order to improve
predictions. In Table 6 in the Appendix, we show
that this performance gain is not merely due to
adding additional trainable parameters; multi-task
models of various sizes perform comparably.

We further investigated the impact of changing
the base encoding model from small BERT to small
ELECTRA (Clark et al., 2020) and base ALBERT
(Lan et al., 2019), as well as freezing all BERT
layers to prevent the pre-trained weights from be-
ing fine-tuned. In addition, we examined the effect
of removing the base encoder entirely and using
embeddings from two decoder-only architectures—
Llama 2 (Touvron et al., 2023) and GPT-3 (Brown
et al., 2020)—as input to the model. Table 4 shows
a comparison of performance across these differ-
ent variants of our multi-task model. All models
have the architecture described in Section 4, how-
ever, the base encoder differs each time. Generally,
multi-task models trained on different encoders or
embeddings seem to display similar performance,
indicating that the gain in performance due to the
adoption of our framework is not necessarily due
to the specific architecture of the encoder chosen.
This is further demonstrated by the comparison
of performance for each model variant across in-
dividual tasks, which is offered in Table 5 of the
Appendix.

5.3 Ablation Study
We executed an ablation study to dissect the contri-
butions of each component of our proposed multi-
task architecture to its performance. To this end, we
omit each of the shared, task-type, and task-specific

layers to obtain the ablated neural networks. The
results of this ablation analysis are detailed in Ta-
ble 3, which compares the performances of the full
multi-task model (‘Multi-Task’) against the coun-
terparts with the shared (‘Multi-Task-s’), task-type
(‘Multi-Task-p’), and task-specific (‘Multi-Task-t’)
layers removed.

Removing any part of the model leads to a de-
cline in task performance for a majority of tasks.
Ablating the task-specific layers (‘Multi-Task-t’)
causes the most extreme performance drops, with
decreases of up to 39.99 F1 points compared to the
full model. This points to the significance of the
task-specific branches for learning fine-grained rep-
resentations. No ablated model surpasses the com-
plete multi-task architecture on more than 2 tasks,
suggesting that each element of the model structure
enables gains in generalization. The results in Ta-
ble 3 further show that ablation of the task-type and
task-specific layers could lead to marginal improve-
ment on two tasks at the cost of significant decline
in performance on a few other tasks. This suggests
that while the ablated model could better fit a mi-
nority of the tasks, different components of the full
model facilitate simultaneous learning of all tasks
toward consistently strong performance. Moreover,
the model with shared layers ablated does not sur-
pass the full model on any task, reinforcing the
importance of the shared representations contained
in those layers. Overall, these findings affirm the hi-
erarchical design of our multi-task learning frame-
work, where each layer contributes uniquely to the
model’s overall success.

5.4 Computational Efficiency
A key consideration, particularly when adding
more trainable parameters as our model does, is
whether the performance gain comes at the cost
of more costly computation. We evaluate the peak
GPU RAM usage and time to train our multi-task
model and compare them to the same metrics from
training the full set of single-task models. We
conduct this evaluation by randomly sampling 5%,
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Task Baseline Unigrams Single-Task Multi-Task Multi-Task-s Multi-Task-p Multi-Task-t
Propaganda 55.47 38.46 63.07 61.74 23.21 47.35 21.75
Disagree/Agree 47.29 7.49 71.15 71.38 44.88 52.68 65.17
Emotion/Fact 45.80 21.91 68.11 63.93 59.78 62.10 64.00
Attacking/Respectful 56.47 51.16 67.46 68.07 55.42 56.20 53.37
Nasty/Nice 59.35 61.03 66.90 73.69 55.54 53.16 50.01
Personal/Audience 39.90 9.23 63.25 65.69 61.13 58.54 58.67
Defeater/Undercutter 53.4 45.21 45.97 55.65 50.23 56.13 41.68
Negotiate/Attack 36.93 55.31 64.76 64.81 62.13 61.33 61.68
Questioning/Asserting 50.57 57.47 59.61 63.23 55.36 62.71 60.75
Argument Quality 76.54 0.76 80.93 79.17 75.91 79.52 84.14

Table 3: Weighted F1 scores comparing baselines, single-task, and multi-task models, as well as multi-task model
with ablated layers. Baseline metrics are produced by random guessing and unigram metrics by a naive Bayes
classifier. The single-task and multi-task models fine-tune a small-BERT encoder as their embedding layer. “Multi-
Task-s/p/t" refer to the multi-task model without the shared/task-type/task-specific layers.

Model Prec. Rec. F1
Baselines

Baseline 62.26 52.43 52.17
Unigrams 33.65 44.55 34.80

Multi-Task Models
BERT 69.37 65.76 66.73
BERT (frozen) 57.54 45.98 43.64
ELECTRA 69.19 63.98 65.16
ALBERT 58.65 63.10 58.34
Llama 2 64.55 55.57 56.72
GPT 3 64.56 62.13 60.23

Table 4: Class-weighted metrics, averaged across tasks,
for various base encoders and embedding models.
10%, 20%, and 40% of the training data to assess
how computational load increases with data size.
All models for this analysis were trained on one
NVIDIA A100 GPU for one epoch. Figure 4 dis-
plays the results.

Figure 4: Computational efficiency of the multi-task model
(green) compared against the single-task model (blue) in terms
of elapsed training time (left) and peak GPU RAM usage
(right) as the data usage increases. Both models were run on
one NVIDIA A100 GPU for one epoch.

Our multi-task model achieves better perfor-
mance using substantially lower computational re-
sources overall, proving the branched task-specific
modules in our model architecture to be an ef-
fective, yet practical, strategy for learning fine-
grained features for label prediction. Comparing
our model’s performance with single-task classi-
fication on individual tasks (Table 3), we observe
that it achieves comparable performance while de-
creasing the computation time by at least 31%.

Put together, these observations indicate that this

multi-task learning approach simultaneously has
a performance and computational efficiency ad-
vantage over single-task models. Computational
efficiency plots for different multi-task model sizes
are included in the Appendix for comparison.

6 Conclusion

Natural language tasks share substantial semantic
and structural similarities, and deep learning mod-
els have been shown to be able to take advantage
of these similarities in order to achieve better per-
formance (Radford et al., 2019). In this paper, we
further extend this result to the field of argument
mining. We show that AM tasks do indeed share
a substantial amount of features, and that these
shared features can be used to boost model per-
formance across previously unrelated tasks. We
combine three data sources and propose models
that outperform existing models on several of these
tasks. Our models are also more computationally
efficient and have better overall predictive accu-
racy than single-task models with comparable ar-
chitectures. Aside from the practical usefulness
of our models, our results are important for argu-
ment mining as a field, as they suggest that further
research and model building should focus on ex-
ploiting commonalities between different tasks to
boost performance.

In future work, we propose to extend our analysis
to several other AM tasks that share commonalities
with those studied here (e.g. Jin et al., 2022), as
well as other language tasks such as topic modeling.
We also propose devising improved model archi-
tectures for our multi-task setting. In particular,
we propose to take advantage of frameworks such
as contrastive learning (e.g. Chen et al., 2020) to
encode known similarities between tasks within the
representations learned by the model.
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7 Limitations

As with all proposed models, ours carries important
limitations. Although we show in the Appendix
that the choice of base encoder does not have a
drastic effect on performance, we suspect that the
performance of our models is largely dependent
on the ability to fine-tune a base encoder. Indeed,
baseline models using unigram features performed
quite poorly. Fine-tuning large base encoders—not
to mention training one from scratch—can be com-
putationally expensive. However, transfer learning
may be able to help. Common semantic and logical
structures across tasks point to opportunities for
using transfer learning or pre-trained models from
warm start to re-train on new tasks.

Multi-task models also depend on data quality
and sufficient semantic overlap across tasks. This
is especially challenging in AM, as argument an-
notation is often highly subjective (e.g. Walker
et al., 2012), which can lead to noisy training
data. Combining one low-quality dataset with other
higher-quality ones may have a detrimental effect
on model performance, as the model is unable to
learn a shared representation space from noisy an-
notations, thus degrading performance on all tasks.
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A Additional Results

In this appendix, we compare the performance of
our multi-task model with alternative designs and
configurations for multi-task learning, in terms of
model architecture, network size, and the base en-
coder.

A.1 Model Architecture
Table 5 compares the performance of our multi-
task model—which incorporates branched task-
type and task-specific modules—with a standard
“shared-trunk” alternative, which consists of only
a small BERT encoder followed by a sigmoid ac-
tivation layer. This comparison shows the utility
of our model architecture. Our multi-task model
outperforms the shared-trunk model on all but two
tasks, where the F1 metric is within 1 percentage
point of that of the shared-trunk model. This per-
formance gain comes at a negligible memory cost
and a small increase in computation time (Figure
5).

Figure 5: Computational efficiency for the single-task model
as well as multi-task models with three different sizes of lay-
ers following the small BERT embedding. The small model
contains 17024, medium 272384, and large 438784 trainable
parameters in addition to the base encoder.

A.2 Network Size
We also compare the performance of the small
multi-task model we presented in the main text
with alternative networks that preserve the same
architectural design but increase the sizes of the lay-
ers, from 17024 to 272384 and 438784 trainable
parameters, following the base encoder. This com-
parison shows that the superiority in performance,
due to the task-type and task-specific modules, is
consistent across various network sizes and is not

simply due to adding more trainable parameters on
top of the shared trunk (Table 5). Moreover, Fig-
ure 5 further confirms that the layers following the
BERT encoder are responsible only for a negligible
increase in usage of computational resources, as
multiplying the combined size of those layers by 16
(Multi-Task, Medium) and 32 (Multi-Task, Large)
does not result in a substantial increase in elapsed
time for training or peak GPU memory usage.

A.3 Alternative Embedding Models
In addition to comparing our model with other
multi-task models, we also compare it to other base
encoders. In particular, we deploy base ALBERT
(Lan et al., 2019) and small ELECTRA (Clark et al.,
2020), replacing the small BERT encoder with
each of these other base encoders in our multi-task
model. Although small BERT achieves the best
average performance across different tasks, as the
results in Table 6 suggest, using ELECTRA yields
an average F1 score within 2 percentage points of
that of small BERT, while ALBERT shows more
variability across tasks with a lower average F1
score.
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Shared Trunk Multi-Task Multi-Task Multi-Task
Task (BERT) (17,024) (272,384) (438,784)
Propaganda 45.16 61.74 62.62 61.64
Disagree/Agree 37.96 71.38 62.07 66.74
Emotion/Fact 55.00 63.93 64.46 66.61
Attacking/Respectful 52.52 68.07 68.37 68.83
Nasty/Nice 55.62 73.69 73.04 73.38
Personal/Audience 66.51 65.69 70.17 65.24
Defeater/Undercutter 54.50 55.65 51.61 54.14
Negotiate/Attack 58.71 64.81 63.78 64.72
Questioning/Asserting 61.69 63.23 60.12 60.55
Argument Quality 79.34 79.17 68.36 81.28
Average 56.70 66.73 64.46 66.33

Table 5: Weighted F1 scores across shared layer sizes (with small BERT as base encoder). Number of trainable
parameters in parentheses, not including base encoder.

Task BERT BERT ELECTRA ALBERT Llama 2 GPT 3
(frozen)

Propaganda 61.74 49.32 62.8 53.3 50.5 51.7
Disagree/Agree 71.38 62.1 59.4 69.2 65.8 68.9
Emotion/Fact 63.93 64.54 65.4 21.9 63.7 66.6
Attacking/Respectful 68.07 53.58 67.4 58.6 57.9 63.7
Nasty/Nice 73.69 52.28 71.5 61.1 59.4 66.4
Personal/Audience 65.69 10.36 68.5 64.1 59.4 65.8
Defeater/Undercutter 55.65 38.13 53.1 49.8 31.9 44.3
Negotiate/Attack 64.81 62.77 63.8 56.7 59.0 66.0
Questioning/Asserting 63.23 42.52 58.5 58.7 57.1 57.5
Argument Quality 79.17 0.76 81.2 90.0 62.5 51.4
Average 66.73 43.64 65.16 58.34 56.72 60.23

Table 6: Weighted multi-task F1 scores across base encoders and embedding models.
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