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Abstract

Dialogical Argument Mining (DialAM) is an
important branch of Argument Mining (AM).
DialAM-2024 is a shared task focusing on di-
alogical argument mining, which requires us
to identify argumentative relations and illocu-
tionary relations among proposition nodes and
locution nodes. To accomplish this, we pro-
pose a two-stage pipeline1, which includes the
Two-Step S-Node Prediction Model in Stage
1 and the YA-Node Prediction Model in Stage
2. We also augment the training data in both
stages and introduce context in Stage 2. We
successfully completed the task and achieved
good results. Our team KNOWCOMP POKE-
MON ranked 1st in the ARI Focused score and
4th in the Global Focused score.

1 Introduction

Dialogues contain a wealth of information about
arguments and their relationships, but the struc-
ture and content of dialogues are casual, which
poses challenges for extracting argument structures.
To handle it, Budzynska et al. (2014) provides a
method for analyzing dialogue and argument struc-
tures, as well as the relations between them, us-
ing Inference Anchoring Theory (IAT) (Budzynska
and Reed, 2011). In dialogues, the content of the
discussions serves as locution nodes, while their
propositional content serves as proposition nodes.
Among these nodes, three types of relation nodes
are used for connection: argumentative relations be-
tween propositions, illocutionary relations between
locutions and propositions, and transitional rela-
tions between locutions. This method helps extract
argument structures from dialogues, enabling fur-
ther argument mining and analysis. By employing
this approach, Hautli-Janisz et al. (2022) has in-
troduced QT30, an English corpus of meticulously
analyzed dialogical argumentation. This corpus

1Codes are avilable at https://github.com/HKUST-
KnowComp/KnowComp-DialAM2024-ACL2024

encompasses the argumentative structure derived
from 30 debates from the BBC television program
Question Time.

The DialAM task in ACL2024 (Ruiz-Dolz et al.,
2024) is the first shared task focused on dialogical
argument mining. It consists of two tasks. The
first task is to identify Propositional Relations, aim-
ing to detect argumentative relations between the
identified and segmented propositions in the argu-
mentative dialogue. The second task is the Identi-
fication of Illocutionary Relations, which aims to
detect the illocutionary relations between the locu-
tions uttered in the dialogue and the argumentative
propositions associated with them.

To address the two tasks proposed by DialAM-
2024, we introduce a two-stage pipeline. Based
on initial locutions and propositional contents, we
utilize data augmentation by adding data that does
not fit any relation in the relation set to increase
the gap between data within and outside the rela-
tion set. Thus, we can predict the relationships
between propositional contents using our proposed
two-step S-node prediction model to address the
first task. Building upon this, we further tackle the
task of identifying illocutionary relations by bring-
ing context to prediction and employing a multi-
classification YA-node prediction model. Adopting
this method, our team Pokemon ranked 1st in the
ARI Focused score and 4th in the Global Focused
score.

Our paper is structured as follows: Section 2
presents related work on argument mining. Section
3 describes the details of our proposed method, a
two-stage pipeline. Section 4 outlines the exper-
iments we conducted, including the models and
methods used in each stage, as well as the overall
pipeline experiments. Section 5 makes a conclu-
sion and provides further discussion.
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Figure 1: The 2-stage Pipeline.

2 Related Work

Argument Mining: Argument Mining involves
the automatic extraction and analysis of arguments
from various sources, such as texts, debates, and so-
cial media discussions (Stab and Gurevych, 2014;
Habernal and Gurevych, 2017; Carlile et al., 2018;
Lawrence and Reed, 2019). Some recent works
study the stance and persuasiveness of the argu-
ments in multi-modal data like tweets on Twit-
ter (Liu et al., 2022; Zong et al., 2023b). Other
works focus on dialogical argumentation, explor-
ing how arguments are put forward, supported, and
attacked through dialogue (Haddadan et al., 2019;
Visser et al., 2020). QT30 corpus (Hautli-Janisz
et al., 2022), which is built on Inference Anchor-
ing Theory (IAT) (Budzynska and Reed, 2011), a
prominent framework in manual argument analysis,
is the largest dialogical argumentation corpus in
English.

3 Method

We have developed a pipeline (Fig. 1) to address
the challenge of dialogical argument mining. This
pipeline consists of two stages designed to address
the task of identifying propositional relations and
illocutionary relations, respectively.

3.1 Two-Step S-node Prediction Model
Our primary objective in the first stage is to de-
tect argumentative relations between propositions
(I-node). According to QT30 (Hautli-Janisz et al.,
2022), This kind of relation (S-node) consists of
Inference (RA-node), Rephrase (MA-node), and
Conflict (CA-node). However, it is worth noting
that not all I-node pairs have relations. Conse-
quently, an initial determination should be made
regarding the presence of a relation between two
given I-nodes, followed by a secondary prediction
of the specific scheme of the relation. This binary
step-wise approach forms the foundation of our
two-step prediction model.

Inspired by the approach proposed by Parikh
et al. (2016), we adopt a similar representation
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using pairs to denote our problems. Specifically,
for any two distinct I-nodes denoted as h and t,
wherein h represents the head node and t the tail
node, the task is to predict the relation r between
h and t given the tuple (h, t) and subsequently
deriving the final triple (h, r, t).

The first step of determining relation existence
is framed as a binary classification task, given the
pair (h, t), with the relation set R = {true, false}.
The principle of cross-entropy loss shapes the loss
function of the model.

Similarly, the second step of ascertaining the
specific relation between the I-nodes is structured
as a ternary classification task, with the relation set
R = {RA,CA,MA}.

3.2 YA-node Prediction Model
The illocutionary relations (YA-node) include (11
distinct types in total): 1) Asserting, Challenging,
Pure Questioning, Assertive Questioning, Rhetori-
cal Questioning between I-nodes and L-nodes, 2)
Arguing, Disagreeing, Default Illocuting, Restating
between TA-nodes and S-nodes, and 3) Agreeing,
Challenging, Disagreeing between TA-nodes and
I-nodes (Hautli-Janisz et al., 2022). The relation-
ship between L-node and I-node is relatively direct,
indicating an illocutionary relation between locu-
tions and their propositional content. However,
for the occasion where YA-nodes are connected to
TA-nodes or S-nodes, since TA-nodes and S-nodes
themselves do not have much meaning when con-
sidered alone, we take the context into account,
that is, considering two L-nodes connected by TA-
nodes and two or more I-nodes connected by S-
nodes.

Our task still remains to predict the relation r
between the given head node h and tail node t. Ad-
ditionally, the head and tail nodes may be followed
by their respective contexts h′ and t′.

This is also a multi-classification task to predict
the illocutionary relation r given (h, h′, t, t′). The
relation set R = {r0, r1, r2, ..., r11}, where r0 in-
dicates there’s no illocutionary relation between
the node pairs. The model’s loss function is cross-
entropy loss.

3.3 Data Augmentation
While we have discussed the pipeline of our frame-
work in the above two sections (i.e., Section 3.1 and
Section 3.2), we also introduced data augmentation
techniques to further improve the performance of
fine-tuned models in our framework.

Within the training dataset of the first step of
the first stage, I-node pairs already connected by
S-nodes are categorized as r = true. It becomes
imperative to introduce r = false data manually.
To this end, a set number of I-node pairs with-
out S-node connections are randomly selected to
represent the training data for r = false. Specif-
ically, in each nodeset within our training set, we
randomly select some node pairs from all possi-
ble I-node pairs. These selected I-node pairs must
satisfy the condition that there is no S-node con-
necting them. We think that there are no significant
argumentative relations between these selected I-
node pairs. Meanwhile, the training dataset for
the second step is solely comprised of I-node pairs
with established S-node connections, but the con-
nections are further categorized into RA, MA, and
CA.

In the training set of the YA-node prediction
model of the second stage, in addition to the tu-
ples (h, h′, r1−11, t, t

′) that already have YA-node
connections as training data, a certain number of tu-
ples (h, h′, r0, t, t′) need to be extracted from node
pairs that do not have YA node connections, arti-
ficially created as training data with r = r0, i.e.,
r = None.

4 Experiments

4.1 Setup

The baseline models we employed include
DeBERTa-base (He et al., 2021), DeBERTa-large,
DeBERTa-MNLI, RoBERTa-MNLI (Liu et al.,
2019). We also tried LLaMa-3-8B (AI@Meta,
2024) with LoRa (Hu et al., 2022).

The learning rate during training is 1e-5, the
weight decay is 0.01, and fp16 is enabled during
the training process. When utilizing Lora, the pa-
rameter r is set to 64, and alpha is set to 16. Due to
time constraints, the testing of other LoRa parame-
ters was not completed.

Our dataset comprises a total of 1,478 nodesets.
We randomly selected 78 nodesets as the evaluation
set, leaving the remaining 1,400 nodesets for the
training set. A more detailed data description is in
appendix D.

4.2 Experimental Results of S-node Prediction

First, we artificially generated a certain amount
of r = false data in this step and evaluated the
impact of this additional data volume. Therefore,
we performed experiments by controlling the ratio
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Model General Metrics Focused Metrics
precision recall f1 precision recall f1

RoBERTa-MNLI 0.114 0.369 0.046 0.494 0.533 0.488
DeBERTa-large 0.099 0.376 0.050 0.511 0.548 0.503

LLaMa-3-8B-LoRa 0.100 0.289 0.018 0.261 0.432 0.315
DeBERTa-large 0.351 0.443 0.322 0.351 0.266 0.282

RoBERTa-MNLI 0.317 0.470 0.306 0.449 0.334 0.355

Table 1: Experiments on different methods of the first stage of S-node prediction. The two models in the lower part
of the table are the 2nd-step models, while the four models in the upper part are four-label classification models.

Model General Metrics Focused Metrics
precision recall f1 precision recall f1

DeBERTa-large 0.746 0.862 0.784 0.757 0.760 0.753
RoBERTa-MNLI 0.650 0.772 0.691 0.834 0.842 0.834
DeBERTa-MNLI 0.627 0.744 0.667 0.823 0.830 0.823

Table 2: Experiments on the second stage of YA-node prediction.

Type General Metrics Focused Metrics
precision recall f1 precision recall f1

ARI 0.463 0.324 0.359 0.320 0.466 0.306
ILO 0.542 0.499 0.514 0.564 0.646 0.594

Table 3: The result of our submitted system

of the amount of r = false data to the amount of
r = true data to observe the results.

Moreover, we experimented with a four-label
direct classification model and compared the results
with those of the two-step model we ultimately
employed.

The results of the first experiment are shown
in the appendix A. Based on the experimental re-
sults, the 1:1 data ratio produced the best outcome.
We believe that the 1st-step model only needs to
determine whether a relationship exists without
considering factors such as the distribution of var-
ious relationships that the 2nd-step model should
concern. Therefore, the 1:1 data ratio makes it
easier for the model to distinguish the differences
between r = true and r = false data.

The results of the second experiment are shown
in Table 1. Our two-step model framework uses
the DeBERTa-base-1 model, which had the best
performance in the first experiment, as the 1st-step
model. It can be observed that the models trained
directly for four-class classification achieve higher
focused scores but have very low general scores.
On the other hand, our two-step model achieves a
significant improvement in general scores at the ex-
pense of sacrificing some focused scores. Overall,

the two-step method yields better results.

4.3 Experimental Results of Y-node
Prediction

We tested the performance of different models in
Stage 2. In the experiments of this stage, we trained
12-label classification models. In addition to the
training data for the 11 labels extracted from the
nodesets, inspired by the experiments in the pre-
vious stage, we also included an equal amount of
r = None data in training.

The experimental results are shown in Table 2.
Most of the models had higher Focused scores
than General scores. Among them, DeBERTa-
large received the highest General score, whereas
RoBERTa-MNLI achieved the highest Focused
score.

4.4 Experimental Results of the Pipelines

The composition of the pipeline submitted by us
in DialAM-2024 is as follows: DeBERTa-base
+ RoBERTa-MNLI as the first stage model, and
DeBERTa-large as the second stage model. The re-
sult is shown in Table 3. Our pipeline achieved first
place in the ARI Focused score and fourth place in
the Global Focused score.
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We also modified the models in stage 1 and stage
2 and tested these different pipelines on the test
dataset, which was finally released by DialAM-
2024. The results are presented in appendix C,
and we found that we have achieved a much higher
score, with the ILO-focused scores surpassing 0.87.

5 Conclusion

We propose a two-stage pipeline that predicts ar-
gumentative relations and illocutionary relations
based on the initial locutions and propositions.
This method utilizes data augmentation to opti-
mize the training data and employs a two-step
model to predict the relations, incorporating con-
textual information during prediction. Ultimately,
our method achieves good performance in the Di-
alAM24 shared task.

However, due to time constraints and limited
computational resources, there are still many as-
pects of our method that have not been fully opti-
mized. For example, we could appropriately incor-
porate additional information in locutions to assist
the prediction process. It is also worth exploring
the possibility of first determining the correspon-
dence between locutions and propositions before
predicting the remaining relations. These areas can
be further explored and researched.

Limitations

In this paper, we design a pipeline that utilizes
knowledge of language models, like T5 and De-
BERTa, to solve this argument mining problem.
For LLMs, we only tested Llama3 (8B) (AI@Meta,
2024) by fine-tuning a small fraction of parame-
ters. For future works, we can try more LLMs, like
Llama2 (Touvron et al., 2023) and Mistral (Jiang
et al., 2023) with more sizes (e.g., 13B, 70B).
Meanwhile, we can augment our argument-mining
pipeline with various external knowledge, includ-
ing commonsense knowledge (Sap et al., 2019; Do
et al., 2024; Deng et al., 2023; Wang et al., 2024a;
Wu et al., 2023) event-centric knowledge (Wang
et al., 2022, 2023; Fang et al., 2024; Wang et al.,
2024c,b; Fan et al., 2023) and factual knowl-
edge (Choi et al., 2023). More importantly, we
can also add more modalities like images for rela-
tion detection in dialogical argument mining (Zong
et al., 2023a; Shen et al., 2024).
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A Experiments on different data ratios

We conducted experiments using DeBERTa mod-
els, with the numbers following the model name
indicating the data ratio, i.e., the ratio between the
amounts of r = false and r = true data. The
results are showin in Table 4.

B Full Experiments of Y-node Prediction

The results are showin in Table 5. Except for
the LLaMa-3-8B model trained with LoRa, which
performed significantly worse, the other models
achieved high scores. We speculate that LLaMa-
3-8B model may not be well-suited for this multi-
classification task compared to these smaller mod-
els specifically designed for this. Most of the mod-
els had higher Focused scores than General scores.
Among them, DeBERTa-large received the highest
General score, whereas RoBERTa-MNLI achieved
the highest Focused score.

C Experiments of the pipelines

We modified the model in the second step of stage
1, as well as the model in stage 2, and tested the per-
formance of these different pipelines. The results
are shown in the Table 6.

To our surprise, the second pipeline, DeBERTa-
base + RoBERTa-MNLI + RoBERTa-MNLI, which
performed slightly worse on the evaluation set, ob-
tained the highest score in the test set. Its ILO
score was significantly higher than the score of the
pipeline we submitted.

We speculate that this might be because our eval-
uation set consisted of only 78 randomly selected
nodesets from the training dataset, which could
have significant differences in data distribution and
relationship distribution compared to the final test
set. As a result, the pipeline that performed best on
the validation set may have had poorer performance
on the test set, while some pipelines that performed
slightly worse on the validation set happened to
achieve better scores on the test set.

D Additional Data Description

Our dataset comprises a total of 1,478 nodesets.
We randomly selected 78 nodesets as the evaluation
set, leaving the remaining 1,400 nodesets for the
training set.

The training set contains 5,365 RA data samples,
1,181 CA data samples, 5,596 MA data samples,
and 32,626 YA data samples. In the evaluation

set, there are 268 RA data samples, 59 CA data
samples, 279 MA data samples, and 1,631 YA data
samples.

The selected 78 nodesets are: ’nodeset18321’,
’nodeset21402’, ’nodeset21463’, ’nodeset23939’,
’nodeset18455’, ’nodeset19912’, ’nodeset23828’,
’nodeset21575’, ’nodeset17918’, ’nodeset23771’,
’nodeset21041’, ’nodeset18846’, ’nodeset18850’,
’nodeset23887’, ’nodeset18775’, ’nodeset21044’,
’nodeset18877’, ’nodeset23794’, ’nodeset23512’,
’nodeset25524’, ’nodeset21390’, ’nodeset23605’,
’nodeset23769’, ’nodeset23526’, ’nodeset17938’,
’nodeset19911’, ’nodeset20342’, ’nodeset21438’,
’nodeset18311’, ’nodeset19159’, ’nodeset19742’,
’nodeset23547’, ’nodeset18764’, ’nodeset21384’,
’nodeset21294’, ’nodeset19153’, ’nodeset20755’,
’nodeset23869’, ’nodeset17923’, ’nodeset20303’,
’nodeset23894’, ’nodeset23715’, ’nodeset23484’,
’nodeset20332’, ’nodeset23505’, ’nodeset21577’,
’nodeset21595’, ’nodeset19341’, ’nodeset21023’,
’nodeset23746’, ’nodeset20871’, ’nodeset25400’,
’nodeset18271’, ’nodeset20343’, ’nodeset21473’,
’nodeset21571’, ’nodeset25691’, ’nodeset21452’,
’nodeset18848’, ’nodeset23721’, ’nodeset18794’,
’nodeset25522’, ’nodeset25499’, ’nodeset21393’,
’nodeset17940’, ’nodeset23876’, ’nodeset23927’,
’nodeset23498’, ’nodeset23900’, ’nodeset19095’,
’nodeset20981’, ’nodeset21603’, ’nodeset21451’,
’nodeset18266’, ’nodeset25754’, ’nodeset19091’,
’nodeset23859’, ’nodeset23834’
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Model General Metrics Focused Metrics
precision recall f1 precision recall f1

DeBERTa-base-2 0.548 0.674 0.530 0.539 0.324 0.389
DeBERTa-base-1.5 0.550 0.672 0.536 0.506 0.290 0.358
DeBERTa-base-1 0.541 0.671 0.507 0.526 0.332 0.397

Table 4: Experiments on three different data ratios.

Model General Metrics Focused Metrics
precision recall f1 precision recall f1

DeBERTa-large 0.746 0.862 0.784 0.757 0.760 0.753
LLaMa-3-8B-LoRa 0.252 0.213 0.105 0.491 0.517 0.502

XLM-RoBERTa-large 0.557 0.855 0.622 0.799 0.808 0.799
DeBERTa-base 0.549 0.795 0.607 0.791 0.802 0.792

RoBERTa-MNLI 0.650 0.772 0.691 0.834 0.842 0.834
DeBERTa-MNLI 0.627 0.744 0.667 0.823 0.830 0.823

Table 5: Full Experiments on the second stage of YA-node prediction.

Model Type General Metrics Focused Metrics
precision recall f1 precision recall f1

DeBERTa-base + RoBERTa-MNLI ARI 0.463 0.324 0.359 0.320 0.466 0.306
+ DeBERTa-large (submitted) ILO 0.542 0.499 0.514 0.564 0.646 0.594

DeBERTa-base + RoBERTa-MNLI ARI 0.463 0.324 0.359 0.320 0.466 0.306
+ RoBERTa-MNLI ILO 0.660 0.796 0.705 0.873 0.902 0.883

DeBERTa-base + DeBERTa-large ARI 0.366 0.469 0.331 0.393 0.261 0.285
+ DeBERTa-large ILO 0.676 0.763 0.703 0.662 0.648 0.652

Table 6: Experiments of different pipelines.
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