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Abstract

Relational entity extraction is key in building
knowledge graphs. A relational entity has a
source, a tail and a type. In this paper, we
consider Arabic text and introduce evidence
enrichment which intuitively informs models
for better predictions. Relational evidence is
an expression in the text that explains how
sources and targets relate. This paper aug-
ments the existing SRED™ relational extrac-
tion dataset with evidence annotation to its
2.9-million Arabic relations. We leverage the
augmented dataset to build AREE;j, a rela-
tion extraction with evidence model from Ara-
bic documents. The evidence augmentation
model we constructed to complete the dataset
achieved .82 Fl-score (.93 precision, .73 re-
call). The target AREEj outperformed SOTA
mREBEL with .72 F1-score (.78 precision, .66
recall).

1 Introduction

We define relational extraction with evidence
(REE) as the task of extracting related entities
(source and target), identifying the relation type
between them, and providing evidence from text to
support the relations. Relation Extracting (RE) is
an important task to build knowledge graphs. En-
riching knowledge graph edges with evidence la-
bels helps in several ways: (i) it supports explain-
able Al tasks potentially by large language mod-
els (Pruthi et al., 2020), and (ii) it improves the
performance of the RE models as evidence plays
the role of a hint for an existing relation.

Evidence is important as it helps understanding
Machine Learning (ML) decisions (Pruthi et al.,
2020) and provides decision-makers with more
confidence in ML model predictions. In turn, de-
tecting evidence boosts the performance of ML
models as it is a step in a chain-of-thought to infer
the relation and its type (Wei et al., 2022).

A relational entity with evidence ree
(8, t, Sne, tne, Tt, €) Where s is the source, ¢ is the
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Figure 1: Knowledge graph with 4 extracted REEs. Ev-
idence shows within parenthesis.

target, s, and r,. are named entity types of the
source and the target, rt is the relation type, and
e is the evidence. The elements s, ¢, and e are ex-
tracted from the text itself, and the rest are prede-
fined categories and classes. One document may
contain multiple REEs and REEs may have ele-
ments in common.

Figure 1 shows a sentence with four relations
where the main entity s; entity is connected as
source with three other entities: ¢; inception date
(2010), t2 headquarters location (Doha), and ¢3
country (Qatar). Doha is also a source so to
connected to t3 indicating it is in Qatar. The evi-
dence shows between brackets explaining why the
the model reported these relations and their types.

Researchers developed systems capable of ex-
tracting relations from Arabic text including a
morphology-based and regular expression based
approach (Jaber and Zaraket, 2017), and a cross-
language learning approach (Taghizadeh et al.,
2018) that leveraged knowledge transfer for the
lack of large Arabic relational datasets.

Research leveraged Wikipedia data to build a
dataset with 19 relation types (Zakria et al., 2019).
Multilingual data from Wikipedia was also uti-
lized to construct a larger dataset, across 14 lan-
guages and with 36 relation types (Seganti et al.,
2021), where at most one relation was assigned per
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text. BERT (Devlin et al., 2019) was used to train
two models:

* A sequence classification that classifies the
type of the relation in the text, and

* An entity extraction that identifies the source
and target entity of the relation.

The claim is that multilingual models achieve
better results than single language models. The
Arabic subset of the data contains 9,000 rows with
9 unique relation types.

Later work presents SRED'™ with 40-Million
relations in 18 different languages to be the largest
RE dataset up to our knowledge. Its Arabic
subset covers 393 out of a total of 400 rela-
tion types with 2.9-Million relations. SRED'™
is extracted from Wikipedia using the cRocoDiLe
tool (Huguet Cabot and Navigli, 2021). The
mREBEL model was trained on SRED™ to per-
form relational extraction (Huguet Cabot et al.,
2023).

This paper presents work that augments the
Arabic subset of SRED'™ with relational evi-
dence, and then to use the resulting dataset to
train AREE], a relational extraction with evidence
model. We perform the augmentation via fine-
tuning an open-source large language model to ex-
tract evidence from the Arabic text given a rela-
tional sequence. The evidence augmentation task
performed well with .82 Fl-score, .93 precision
and .73 recall AREE] extracted relation with evi-
dence with .72 Fl-score, .78 precision and .66 re-
call. We make the annotated dataset available on-
line for the research community.

2 Related Work

RE started as a cascaded task where it first clas-
sifies source and target entities, and then iden-
tifies relation types between them. Recent re-
search approached RE as a sequence-to-sequence
(Seq2Seq) transformation. The raw text consti-
tutes the input sequence, and the relation consti-
tutes the output sequence.

REBEL extracts relational entities from En-
glish text excluding evidence (Huguet Cabot and
Navigli, 2021). It is a seq2seq Bidirectional
and Auto-Regressive Transformers (BART) model
(Lewis et al., 2020) trained on linearized rela-
tions extracted automatically from Wikipedia us-
ing cRocoDiLe.

The mREBEL tool (Huguet Cabot et al., 2023)
is trained and tested on the (SRED'™ ) and

68

(RED"M) multilingual RE datasets extracted from
Wikipedia data. Each relation is specified as a tu-
ple wit source, target, entity types for source and
target, and relation type. The training dataset was
automatically generated, while the testing dataset
was manually revised. mBART (Liu et al., 2020),
which is typically used for translation, was used to
map and normalize the relational types across all
included 18 languages.

The work in (El Khbir et al., 2022) extracts
named entities, relation types, and event triggers
jointly. It covers 7 named entity types, 6 relation
types, and 8 event types. The data is encoded by
concatenating the last and third last BERT embed-
dings and extracting entities and events to identify
the spans.

A rule-based model extracts the source, tar-
get, and relation spans depending on Part-of-
Speech tags (Saber et al., 2022). The Stanford
Arabic Parser (Green and Manning, 2010) and
WordNet (Miller, 1994) were leveraged to extract
triplets, which works well for sentences with sim-
ple structures.

In (Huang et al., 2021), an approach was in-
troduced to extract relations from documents and
use attention to extract evidence. Documents are
multiple sentences and the evidence is several sen-
tences that support a detected relation. This is dif-
ferent from our target evidence as we target fine-
grained relations at the sentence level. We also ex-
tract the relation and the evidence simultaneously.

The work in (Ma et al., 2023) improves on
memory efficiency and lack of annotations. Our
work solves the annotations problem by using
ChatGPT-4 to annotate the data with evidence,
fine-tune an open-source LLM using the generated
data, and then use the fine-tuned LLM to annotate
2.9 million relations with evidence.

To do that we leverage the chain of thought
(CoT) technique in our prompts (Wei et al., 2022)
where requiring intermediate steps in inference
improves the quality of the final result and avoids
inaccuracies and hallucinations.

The work in (Wadhwa et al., 2023) compares
several LLM approaches for RE. This includes
GPT-3 few-shot learning, a fine-tuned Flan-T5,
and improved versions of both with CoT. The re-
sults recommend utilizing LLMs with CoT for RE
tasks.



Task/Relation type — AREE] — mREBEL
Precision Recall Fl-score \ Precision Recall Fl-score

Extraction 78 .66 72 .89 .56 .69
Classification 9 .69 .78 .92 .58 71
Manufacturer 1.00 9 95 .82 .82 .82
Country 73 .96 .83 72 1.00 .84
Country of citizenship 1.00 1.00 1.00 1.00 1.00 1.00
Director 1.00 1.00 1.00 1.00 75 .86
Inception .86 1.00 .92 1.00 1.00 1.00

Table 1: AREEj and mREBEL results for extraction, classification, and selected relation types.
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Figure 2: Building ArSRED flow diagram

3 Relational Data with Evidence

We constructed ArSRED via augmenting the 2.9-
Million relations Arabic subset of SRED™ with
evidence as illustrated in Figure 2. We did this in
several steps.

Construct representative documents and re-
lations subset (RDRS). We selected a subset of
Arabic SRED™ to be augmented with seed evi-
dence annotations. Intuitively, we targeted extrac-
tion of relations from smaller text to boost the GPT
context performance and limit the number of to-
kens used later on with ChatGPT-4. We selected
the documents with length between five and 80
words inclusive. This happened to be around 89%
of the 2.9 million documents.

Then we split the set based on the relation type
and the source and target entity types resulting in
2,526 bins that represent all typology combina-
tions present in the set. Then we selected a rep-
resentative sample (20 relations) from each bin
starting from the smaller bins. We ended up with
68,183 relations selected from their corresponding
13,180 documents. Note that the total number of
relations is higher than 20 * 2, 526 as when we in-
clude a document, we also keep all its relations
and not only the ones from the selecting bin.

Construct Base Evidence Annotations. We
used ChatGPT-4 to find evidence for the RDRS
relations. We optimized ChatGPT-4 performance
with a CoT based prompt which improved its per-
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formance.

We tried several prompts with a variety of ex-
amples. The final prompt consisted of two exam-
ples and four relations. We provided an explana-
tion of the intermediate steps to get the evidence
for each relation. We passed only one document
per explanation. The output is the text of the evi-
dence or “none”.

Documents with plenty of relations resulted in
less evidence elements returned. So we added
the specific number of elements to the prompt.
This partially fixed the problem. This augmented
55,078 RDRS relations with evidence and the re-
maining 13,105 relations with “none’ forming the
base evidence annotations.

We repeated the same process with the whole
Arabic subset of the testing RED'™ and humanly
revised the results for 345 documents, and 864 re-
lations with 32 relation types. We consider this as
our testing set.

Fine-tune LLM for evidence annotations.
We used the base evidence annotations to fine-
tune ArBartEv from the mBART (Liu et al., 2020)
model. ArBartEv transforms an Arabic input text
with a relation tuple, into an evidence of the rela-
tion in a sequence-to-sequence manner.

ArSRED Annotation with evidence. = We
passed the whole 499,638 documents with 2.9 mil-
lion relations Arabic subset of SRED™ to Ar-
BartEv. to obtain ArSRED set augmented with ev-
idence. A small 6% of the predictions came with
a corrupted output sequence structure. We noticed
upon inspection that these are mostly large docu-
ments, and we marked the evidence as “none”.

The following is an example of how ArBartEv
takes a sentence with a relation and produces a
relation with evidence to construct the training
dataset.

Input:



A3 P Lagl Gy mdl ) lis
W‘éﬂmsgcﬁqfﬁﬂ‘y‘#w$

st Y rfél\,location; t: , g—ia> loca-
tion;rt:location
Output:

s:J_P‘Y\ rJ_QJ\,location; t: , g—ia> Jloca-
tion;rt:location; e: J CL"

4 Training ArBartEv and AREE})

ArBartEv requires relations to produce evidence.
ArBartEv takes z = (t,r) composed of text ¢ and
relation 7 and produces y = (r, e) where e is the
evidence.

len(y)

ply=r.ele) = |] pmarr(yily<i, )
=1

(D

This produced dataset ArSRED as discussed in
Section 3. The intuition behind including 7 in both
input and output is that transformers tend to work
better when asked to perform tasks in steps and
with hints.

We trained AREE] based on the mBART seed
model and ArSRED to take an Arabic text ¢ and
produce a relation r with evidence e.

len(y)

ply =relt) = H PmBART (Yi|Y<i» t)
i=1

2

We target only Arabic text so we limited the to-
kenizer to Arabic and kept the named and rela-
tion entity types as special tokens as specified in
REBEL and mREBEL.

Model fine-tuning was executed on 1x NVIDIA
RTX A6000 48 GB VRAM GPU. The hyper-
parameters used are .00005 learning rate, 5000
warm-up steps, 16 batch size, and 156140 max
steps. The rest are the default hyperparameters of
mBART.

70

5 Results and Evaluation

For evidence equivalence for ArBartEv, we com-
puted the number of word-based intersections be-
tween its evidence results and those produced by
ChatGPT-4 on RED™. For entries with no inter-
section, we count that as a miss. For entries with
intersections, we performed a manual check and
a human expert deemed the extracted evidence as
true or not. ArBartEv achieved an F1-score of .82
on evidence extraction (P=.93,R=.73).

For AREEj, we performed a beam search at
the output level and obtained six predictions.
Note that these predictions may have relations
that share relational elements. We noticed that
some extracted relations were correct as evalu-
ated by a human expert, yet the testing set missed
them. AREE]j correctly identifies 72 relations that
mREBEL misses, while mREBEL identifies 47 re-
lations AREEj misses. AREE;j achieves .72 F1-
score (p=.78, r=.66) with correct evidence .86%
of the time as detailed in the Extarction row of
Table 1. AREEj was trained on 2.9-Million rela-
tions with evidence annotations while mREBEL
was trained on 40-Million relations in 18 lan-
guages without evidence annotations. Table 1 also
shows that AREE]j outperforms mREBEL in rela-
tion classification which measures whether any re-
lation (regardless of type) exists between two de-
tected entities.

Fourteen relation types are detected by AREE;
but not by mREBEL. Examples include ’em-
ployer’, "use’, "'member of’, ’industry’, *'main sub-
ject’, and ’date of death’. Four relation types are
detected by mREBEL and not by AREE;j including
“characters’, and 'member of sports team’. Lower
rows of Table 1 compare AREEj and mREBEL on
selected relation types from ArSRED.

6 Conclusion

Adding evidence annotations resulted in extract-
ing more relations and relation types. Re-
call increased significantly and precision suffered
slightly. In future work, we plan to use the ex-
tracted evidence to improve precision via relat-
ing to relation and entity types and reducing the
“none” samples to improve recall.

7 Limitations

The testing dataset contained only 32 relation
types. This is an initial limitation of RED'™. Re-
lations in text exist that are not reported in RED"M



requiring manual checks. Augmenting RED'M
with instances covering the 393 relations should
be considered in future work.
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