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Abstract

The challenge of visual grounding and masking in multimodal machine translation (MMT) systems has en-
couraged varying approaches to the detection and selection of visually-grounded text tokens for masking. We
introduce new methods for the detection of visually and contextually relevant (concrete) tokens from source
sentences, including detection with natural language processing (NLP), detection with object detection, and
a joint detection-verification technique. We also introduce new methods for selection of detected tokens,
including shortest n tokens, longest n tokens, and all detected concrete tokens. We utilize the GRAM MMT
architecture to train models against synthetically collated multimodal datasets of source images with masked
sentences, showing performance improvements and improved usage of visual context during translation tasks
over the baseline model.

1 Introduction

The challenge of multimodal machine translation
(MMT) is to design a system that automatically
translates text from one language to another while
utilizing other modalities (e.g., image, video, au-
dio) as inputs to assist in translation (Caglayan et al.,
2016).

Prior work has shown that translation ambigui-
ties and missing textual information can be supplied
by contextually-relevant images, aiding in multilin-
gual translation (Lala and Specia, 2018; Caglayan
et al., 2019; Wu et al., 2021). For example, the noun
“bank” is ambiguous and contextually dependent
in English (“financial institution” or “river edge”)
but unambiguous in French (“banque” or “rive”)
(Futeral et al., 2023). The hypothesis for MMT re-
search is that these translation ambiguities can be
resolved with the inclusion of image context.

In practice, not every sentence has semantic
ambiguities, missing information, or relevant visual
context; it is therefore beneficial to ensure that am-
biguous text is visually and contextually relevant to
an associated image (Zhou et al., 2018).

To enforce reliance on image context for trans-
lation tasks, some MMT models mask tokens from
text inputs (Caglayan et al., 2019; Sato et al., 2023).
While most early masking iterations randomly se-
lected tokens for masking, more recent efforts have
sought to mask tokens based on contextual relevance
to a given image (Tan and Bansal, 2020), increasing
the usefulness of the image in resolving ambiguity.
Still, those methods tend to ignore deterministic se-
lection of relevant tokens, opting to randomly select
from a pool of viable tokens.

While these approaches have displayed per-
formance improvements over text-only and random
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masking models, these methods generally do not
take into account the relevance of a masked token.
Therefore, we hypothesize that more intentional se-
lection and masking of concrete (i.e., visually and
contextually relevant) text tokens will improve vi-
sual grounding and increase model usage of multi-
modal context.

In order to select visually and contextually rel-
evant tokens, we explore a combination of natural
language processing (NLP) techniques and object
detection models and examine deterministic meth-
ods for token selection from the set of available de-
tections.

Using these techniques, we collate multimodal
datasets based on the Multi30k dataset (Elliott et al.,
2016); the resulting datasets are triplets of source
sentences with masked concrete tokens, unmasked
target sentences, and associated images.

When masking concrete text tokens from
source sentences, we find improvements in both us-
age of visual information in translation and in per-
formance on evaluation challenges, including CoM-
MuTE scores of up to 0.67 and BLEU scores of up
to 46.2.

2 Related Works

2.1 Masking for Visual Grounding
In a text-only modality, Devlin et al. (2019) ran-
domly masked text tokens during pre-training of
a bidirectional transformer encoder-decoder and
found performance improvements against other text-
only models.

Zhou et al. (2018) utilized jointly-encoded un-
masked text and image embeddings to visually
ground entire source sentences to images. Using a
visual-text attention mechanism on the embeddings,
they extracted words that shared semantic context
with the images.

Ive et al. (2019) combined these approaches,
randomly and manually masking ambiguous and
gender-neutral words from source texts to force their
MMT model to utilize visual information on evalu-
ation tasks. This work showed that the model was
able to use image context to recover from missing,
inaccurate, or ambiguous textual context.

Caglayan et al. (2019) used image descriptions
from the Flicker30k-Entities dataset (Plummer et al.,
2015) to dynamically mask “visually depictable en-
tities” and color descriptors from source sentences,

but noted a degradation in performance on the
Multi30k test sets (Elliott et al., 2016). In contrast,
Wang and Xiong (2021) found that masking irrele-
vant objects improved performance on MMT eval-
uation tasks, suggesting that state-of-the-art MMT
models are ineffectively utilizing visual information.

A meta-analysis by Wu et al. (2021) found
that many reported improvements in MMT perfor-
mance are the result of regularization effects, not
model interpolation of multimodal features; simi-
larly, Zhuang et al. (2023) found that while visual
grounding can improve performance in word learn-
ing, these improvements are only marginal. How-
ever, they also found that training sets with less tex-
tual information and fewer direct co-occurrences of
visual words more effectively utilize visual informa-
tion, suggesting that the relationship between text
and image context is still viable.

2.2 Token Selection for Visual Grounding

In practice, many sentences have more than one vi-
sually grounded token; in these cases, available to-
kens must be dynamically selected for masking. The
standard method is to randomly select viable to-
kens (Devlin et al., 2019); however, recent work in
masked language modeling (MLM) has shown that
informed selection of masked tokens may improve
performance (Sato et al., 2023).

Other work has given consideration to the
length of source segments in text masking (Xiao
et al., 2023) and to the number of tokens selected
(Joshi et al., 2020), but little work has been done
to select tokens deterministically (e.g., by token
length).

3 Approach

We perform improved visual grounding by detect-
ing concrete tokens in source sentences. We explore
three detection techniques to identify concrete text
tokens (Section 3.1) and four selection techniques
to appropriately select the identified concrete text to-
kens (Section 3.2.1). We then collate permutations
of synthetic MMT datasets by masking the selected
concrete tokens from source sentences and aligning
each sentence with its original dataset image pair.
We then train an MMT model (Section 3.3) on these
datasets, expanding on work by Vijayan et al. (2024)
and Caglayan et al. (2019).

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers



SRC: A girl in sunglasses walks by a red car.

DT1: girl, red car, sunglasses, girl

DT2: sunglasses, A girl

DT3: girl, red car, sunglasses, girl

MSK: A girl in <unk> walks by a red car.

SRC: A construction worker fits metal pipes together.

DT1: construction worker, worker, pipes

DT2: construction worker, worker, construction, pipes

DT3: construction worker, worker, pipes

MSK: A <unk> <unk> fits metal pipes together.

SRC: Young boy kicks a red and white soccer ball on a grassy field.

DT1: field, young boy, ball, young, white soccer ball, boy, grassy field

DT2: soccer, field, young boy, grassy field, young, boy, white soccer ball, ball

DT3: field, young boy, ball, young, white soccer ball, boy, grassy field

MSK: Young boy kicks a red and <unk> <unk> <unk> on a grassy field.

Figure 1: Multi30k source pairs (image, SRC) with results from each detection technique (DT) and an exam-
ple masked source text (MSK). DT1 represents the NLTK technique; DT2 represents the MDETR Detection
technique; DT3 represents the Joint Detection technique. The masked sentence MSK represents a possible
masked sentence based on the bold tokens in the DT3 detections.

3.1 Detection of Concrete Tokens

As Caglayan et al. (2019) found, masking visu-
ally relevant objects from a source text can force
the model to utilize image context to fill in the
artificially-created gap in lexical/semantic under-
standing. We hypothesize that for a given text-image
pair, the masking of text tokens that are directly rel-
evant to the image (i.e., “concrete” tokens), will im-
prove visual grounding, increasing model correla-
tion of image inputs during downstream translation
tasks.

We present three techniques for detection of
concrete tokens: NLP with NLTK (Section 3.1.1),
object detection with MDETR (Section 3.1.2), and
joint NLTK/MDETR detection and grounding (Sec-
tion 3.1.3). While techniques one and two respec-
tively use text and image context, method three
uses contextual information from both modalities
to make decisions about which text tokens are con-
crete.

3.1.1 Detection with NLTK
The first concrete token detection approach is to
parse sentences for nouns and noun phrases that are
likely to represent visual context. By masking to-

kens that are critical to comprehension and transla-
tion of the text, we can encourage the model to learn
with visual context.

The Natural Language Toolkit (NLTK) (Loper
and Bird, 2002) includes the WordNet corpus (Fell-
baum and Miller, 1998), an English-language lex-
ical database that provides structured relationships
between cognitive synonyms (“synsets”) for nouns,
verbs, adjectives, and adverbs. Specifically, Word-
Net defines a directed acyclic graph (DAG) for each
of these parts of speech (POS), containing syn-
onyms, troponyms, antonyms, and meronyms (Fig-
ure 2). Critically, these relational graphs estab-
lish affiliations between English words, their defi-
nitions, and their related parent categories (i.e., “hy-
pernyms”).

Starting with specific synonyms and troponyms
(e.g., “sedan”, “hatchback”, “SUV”) and traversing
the DAG upwards, WordNet collapses definitions
and synsets into their associated hypernym classes
(e.g., “car”, “vehicle”) until it reaches a root hy-
pernym (e.g., “physical entity”, “entity”). Us-
ing recursive graph traversal, we can select any node
in the DAG and parse its hypernyms upward until
we reach either a root hypernym or a parent hy-
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pernym on which we can base an estimate of the
root hypernym (e.g., “object” generally maps to
“physical entity”).

sedan

car
vehicle

litter

artifact

whole

object

physical entity

entity

conveyance

instrumentality

motor vehicle

self-propelled vehicle

wheeled vehicle

container

1

Figure 2: An example hypernym graph. The orig-
inal token, sedan, its three synset entries (labeled
in blue), and its associated concrete hypernyms (la-
beled in red).

Concrete Hypernyms Abstract Hypernyms

physical entity abstract entity

physical object abstraction

stuff

object

person

unit

whole

Table 1: Labeled WordNet (Fellbaum and Miller,
1998) hypernyms. A token is classified as concrete
or abstract if any of the above hypernyms are in its
DAG.

Given that there exists only a small cluster of
root and high-level parent hypernyms for nouns in
WordNet, we can classify the hypernym DAG of any
noun or noun phrase as “concrete” or “abstract”
based on these high-level hypernyms (Table 1).

While this method provides a simple con-
crete/abstract classifier for text tokens, it introduces
additional complications. Although most DAG
nodes have multiple child hyponyms (e.g., “car”
may have “sedan” and “hatchback”), some have
multiple cognitive synonyms, as English words of-
ten have multiple equally likely definitions. For a

given node, each of its “definitions” will appear as
an entry into its synset; for example, the English
noun “link” has nine values in its WordNet synset,
ranging from “URL” to “channel for communica-
tion” to “element of a chain.” These varied defini-
tions may branch to different root hypernyms, im-
pacting the classification based on which definition
is chosen (Table 1).

To compensate, we consider each entry in a
word’s synset and extract a ratio of concrete/abstract
definitions, which more comprehensively projects a
token’s likelihood of being concrete. We perform re-
cursive graph traversal for each entry and retain the
percent of concrete entries as a “concreteness score.”
To then classify the original word as abstract or con-
crete, we establish a threshold of 33% likelihood and
only accept words above that concreteness score.

3.1.2 Detection with MDETR
While the NLTK approach can quickly and effi-
ciently select concrete tokens from a sentence, it in-
correctly assumes that every concrete token in the
sentence is relevant to its associated image. Contex-
tually linking an irrelevant concrete token to a given
image could negatively impact model performance,
especially if the token has high commonality in a
dataset. As a second approach to concrete token de-
tection, we utilize an object detection model to se-
lect concrete tokens. Rather than relying solely on
the text processing for detection, we inspect the im-
age itself for object classes relevant to the text.

For this approach, we use MDETR (Kamath
et al., 2021), an end-to-end object detection model.
Rather than relying exclusively on pre-defined ob-
ject classes, MDETR uses NLP techniques along-
side a pre-trained detection model (Carion et al.,
2020) to perform object detection and image clas-
sification based on the input tokens. Given a text-
image pair (Figure 3), the model assigns each text
token an object classification, confidence score, and
bounding box. To maximize the number of de-
tectable tokens, we pass an entire Multi30k sen-
tence into the MDETR model and filter out detec-
tions with low confidence scores, retaining only the
tokens with a high confidence of correlation to the
image. While Kamath et al. (2021) filter all outputs
with confidence less than 0.7, we filter at 0.85; af-
ter analyzing performance at threshold increments
between 0.5 and 0.95, we found that this threshold
ensured the most balanced object confidence.
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SRC: Cooking hot peppers in the cold winter!

DT2: “cooking hot peppers in the cold winter”

DT3: “pepper”

Figure 3: Multi30k source pair (image, SRC) with
results from the MDETR (DT2, top image) and
Joint (DT3, bottom image) detection techniques.
MDETR query strings, bounding boxes, and confi-
dence scores are shown. In this example, supply-
ing the entire source sentence as text input to the
MDETR object detection model incorrectly identi-
fies the peppers being cooked, while querying only
the word “pepper” increases the model’s confidence
and more closely identifies the region containing the
query.

3.1.3 Detection with Joint Visual Grounding
While the MDETR technique is less likely than the
NLTK technique to improperly select text tokens as
visually-grounded, the pre-trained MDETR model
will always attempt to assign a bounding box to
some text token, often resulting in outputs with high
confidence but incorrect alignment. In practice, pro-
viding extended textual context (i.e., entire captions

or sentences) further exacerbates this problem (Fig-
ure 3).

Therefore, we are left with two techniques
with contrasting weaknesses: NLTK ignores image
context, and MDETR misinterprets textual context.
To mitigate these issues, we present a conjoined
detection technique that “verifies” the presence of
NLTK-detected concrete tokens within an image us-
ing MDETR, ensuring that concrete tokens are visu-
ally grounded in the image.

Like the MDETR technique, the joint tech-
nique parses text-image pairs (unlike the NLTK
technique, which is image-agnostic). The source
sentence is first processed by the NLTK technique,
which returns the noun and noun phrase tokens that
met or surpassed the concrete threshold. Each of
those tokens is paired with a copy of the source im-
age and passed into the MDETR technique, which
performs object detection and filters out all tokens
whose resulting confidence is below the confidence
threshold. This simultaneously reduces the prob-
ability of incorrect alignment by the object detec-
tion model and ensures that text tokens are visually
grounded, resulting in a set of linguistically concrete
and visually-grounded text tokens with high prob-
ability of relevance to the source image. Masking
these explicitly-relevant tokens will force model re-
liance on image context.

3.2 Synthetic Dataset Collation
Because most current work in MMT focuses on the
Multi30k dataset (Elliott et al., 2016), an image-
caption dataset consisting of 30,014 images with
English sentences and corresponding multilingual
translations, we collate synthetic datasets of masked
sentence-image pairs from Multi30k.

We use each detection technique (Section
3.1) to detect concrete tokens and align them to
their original dataset image. From these masked
sentence-image pairs, we collate a series of MMT
datasets in which a maximum of two concrete to-
kens are masked from each sentence and associated
with the relevant image from the original dataset, re-
sulting in training and validation sets that are at most
twice as large as the original Multi30k sets.

3.2.1 Token Selection Techniques
During the dataset collation process, a single sen-
tence may have n > 2 available concrete tokens;
in this case, additional consideration must be given
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to which tokens are selected for inclusion in the
dataset. The standard method has generally been to
randomly select from the available tokens (Devlin
et al., 2019), but recent work in masked language
modeling (MLM) has shown that more informed se-
lection of masked tokens may actually improve per-
formance (Sato et al., 2023).

To examine this, we implement two deter-
ministic token selection techniques, selecting the n
longest and shortest tokens (by number of charac-
ters) respectively for each sentence. We compare
these techniques to a random selection of n tokens
and an unrestricted selection which ignores the n=2
normalization and accepts all available concrete to-
kens.

3.3 GRAM Model

As the basis for our multimodal translation ar-
chitecture, we utilize the GRAM architecture
(Vijayan et al., 2024). GRAM modifies the
FAIR WMT19 (Ng et al., 2019) text-only model,
an encoder/decoder-based transformer architecture
(Vaswani et al., 2017), by adding additional multi-
modal components to create an MMT model.

To process text input, GRAM uses the same
byte-pair encoding (BPE) and vocabulary dictio-
nary as the FAIR WMT19 model (Ng et al., 2019).
Masked sentences are BPE-encoded and fed as stan-
dard text inputs to the MMT model. We mask by
replacing each token with an <unk> token, as that
token is the closest to a mask token available in the
FAIR WMT19 model (Ng et al., 2019). Our method
expands on prior work by Tang et al. (2022) and Wu
et al. (2021) while increasing the requirements for a
token to be visually grounded to an image.

To process image input, the GRAM model
uses CLIP, a pre-trained text-only translation model
alongside a pre-trained vision encoder, a perceiver
resampler, and vision-text cross-attention layers
(Radford et al., 2021). While the original GRAM
paper utilizes the ViT-L/14@336px CLIP model, we
noted better results within our evaluation framework
when using the RN50x4 CLIP model; we present
those results below (Section 4.2). This vision en-
coder converts input images into image embeddings,
enabling the perceiver resampler to convert those
embeddings into a fixed number of vision tokens.
Vision tokens and corresponding text embeddings
are interleaved into vision-text cross-attention lay-

ers within the transformer encoder, creating map-
pings from both the text and the image embeddings
onto a sequence of joint representations. Finally, the
transformer decoder ingests this sequence and out-
puts probabilities for the next output text token in
the target sequence.

The number of parameters in the original text-
only Transformer is 269,746,176; the number of
parameters in the RN50x4 CLIP vision encoder is
101,520,396, for a total of 371,266,572 parameters
in our GRAM model. Additionally, our GRAM per-
ceiver resampler contains 87,137,080 parameters.

4 Results and Discussion

4.1 Experimental Framework

We train the GRAM models on unique permu-
tations of synthetically collated datasets repre-
senting each combination of detection (NLTK,
MDETR, Joint) (Section 3.1) and selection
(unrestricted, restricted-long, restricted-short,
restricted-random) (Section 3.2.1) techniques. We
compare the resulting trained versions to the GRAM
model trained on a unmasked dataset of original sen-
tences.

Most current work in MMT focuses on the
Multi30k dataset; because of its prevalence in other
MMT works, we utilize the Multi30k dataset for col-
lation of our training datasets. We then evaluate the
GRAM models on the Multi30k 2016, 2017, and
COCO test sets using BLEU4 scores.

We also evaluate the GRAM model with an
additional metric, Contrastive Multilingual Multi-
modal Translation Evaluation (CoMMuTE). Futeral
et al. (2023) proposed the CoMMuTE dataset to
evaluate both performance on translation tasks and
usage of visual information by MMT models. In the
ensemble CoMMuTE evaluation, the model is given
two images, a lexically or semantically ambiguous
English sentence, and a target language translation
that resolves the ambiguity according to one of the
two images. The task involves determining which of
the two images the sentence pairs best match. The
evaluation is made using the perplexity of the model
output, and the resulting CoMMuTE score is calcu-
lated using the model’s determination of accuracy
across 100 text-image pairs.
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Detection Selection Score

CoMMuTE Multi30k BLEU4 (en-de)

2016 2017 COCO

Futeral et al. (2023) 0.59 43.3 38.3 35.7
Vijayan et al. (2024) 0.61 46.5 43.6 39.1

Unmasked 0.5 45.0 42.0 38.2

NLTK Unrestricted 0.55 45.7 41.9 39.2
NLTK Restricted-Longest 0.62 46.0 42.5 37.8
NLTK Restricted-Shortest 0.63 46.0 42.0 37.9
NLTK Restricted-Random 0.67 46.2 41.4 37.8

MDETR Unrestricted 0.56 46.0 42.4 38.4
MDETR Restricted-Longest 0.63 45.7 41.7 38.0
MDETR Restricted-Shortest 0.63 45.0 41.2 36.9
MDETR Restricted-Random 0.63 45.6 42.2 37.6

Joint Unrestricted 0.52 45.5 42.4 38.9
Joint Restricted-Longest 0.63 45.8 42.6 38.8
Joint Restricted-Shortest 0.61 45.4 42.0 37.9
Joint Restricted-Random 0.61 45.5 42.4 37.5

Table 2: Selected performance results of our model against the CoMMuTE and Multi30k test sets. The best
result by column is indicated in bold; the best result for each detection technique is underlined. Results as
reported by GRAM (Vijayan et al., 2024) and VGAMT (Futeral et al., 2023) are included for reference.

Detection Concrete % Unique Detections

NLTK 99.51 5,393
MDETR 99.92 6,674
Joint 99.49 4,761

Table 3: Unique concrete token detections and per-
cent of Multi30k sentences with detected tokens by
detection technique.

4.2 Results

We review the performance of the model variants
trained using the synthetic Multi30k datasets (Sec-
tion 3.2) on the above evaluation metrics. We train
13 variants, consisting of one unmasked baseline
and 12 models representing each combination of de-
tection (Section 3.1) and selection (Section 3.2.1)
techniques.

4.3 Detection Results

We introduced three distinct methods for detection
of concrete text tokens: the NLTK technique (Sec-
tion 3.1.1), which parses nouns and noun phrases
from sentences, the MDETR technique (Section

3.1.2), which inputs sentences as queries to an object
detection model, and the Joint technique (Section
3.1.3). Each technique generates the same output
structure: multimodal datasets of sentences masked
concrete tokens and matching images. We hypoth-
esize that masking concrete tokens with these tech-
niques will improve performance on evaluation met-
rics. We further hypothesize that the Joint technique
will be more selective with its detections than its
component NLTK and MDETR techniques, and will
thus utilize image context more efficiently and criti-
cally.

We found that all three techniques consistently
extracted relevant tokens from the text: each tech-
nique extracted concrete tokens from over 99% of
Multi30k sentences (Table 3). The MDETR de-
tection technique was the most successful, extract-
ing 23.8% and 40.2% more unique concrete tokens
than the NLTK and Joint techniques, respectively.
This resulted in the MDETR technique masking
the highest concentration of original Multi30k sen-
tences (114 and 120 sentences more than NLTK and
Joint, respectively).
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Increased rates of detection did not correlate
with better performance, though. All tested mod-
els outperformed the unmasked (baseline) dataset
in CoMMuTE and BLEU scores, but in contrast to
our hypothesis the NLTK technique outperformed
both the MDETR and Joint techniques both in CoM-
MuTE and BLEU score (Table 2). The Joint tech-
nique, which we hypothesized would improve on
its component techniques, consistently underper-
formed against the others. This is especially true
in the Joint Unrestricted model, which only im-
proved its CoMMuTE score by 0.02 and its BLEU
score 0.5 over the baseline. We suggest that the Joint
technique was actually hindered by its strict selec-
tion process, leading to a much smaller pool of ob-
jects to mask from. Conversely, the MDETR tech-
nique tended to over-select longer, rarely-used, or ir-
relevant tokens (Figure 3), contributing to the larger
masking percentages but the lower overall perfor-
mance. The success of the NLTK technique over
the others was its “middle ground” approach, clas-
sifying concrete tokens more liberally than the Joint
technique but more consistently than the MDETR
technique.

23% of tested models underperformed the orig-
inal GRAM model (Vijayan et al., 2024) on CoM-
MuTE metrics, 15.4% performed identically, and
the remaining 53.8% outperformed. All tested mod-
els underperformed the original GRAM model in
Multi30k 2016/2017 BLEU metrics. One model
(NLTK Unrestricted) outperformed the original
GRAM model in the Multi30k COCO metric, but
the improvement is well within a margin for nor-
malization effects. We suggest that the perfor-
mance disparity between models in these Multi30k
BLEU metrics is due to dataset size: the original
GRAM model was pre-trained trained on the Con-
ceptual Captions dataset (Sharma et al., 2018) of
2, 878, 999 text-image pairs, resulting in synthetic
datasets nearly 100 times larger than those used
here. Despite this, the majority of models outper-
formed GRAM in CoMMuTE metrics, achieving
scores of up to 0.67.

In general, we also note an inverse relation-
ship between CoMMuTE and BLEU performance:
that is, when CoMMuTE scores increase, BLEU
scores tend to decrease. For example, the MDETR
Unrestricted model notched the highest average
BLEU score across all three Multi30k metrics, but

had the second-lowest CoMMuTE score.

4.4 Selection Results

Critical to the synthetic dataset collation system is
the process of selecting concrete tokens for mask-
ing. Prior efforts have generally selected tokens at
random (Ive et al., 2019); we introduced three addi-
tional techniques (Section 3.2.1), longest-token se-
lection, shortest-token selection, and unrestricted se-
lection, and test each against a baseline of randomly-
selected concrete tokens. We hypothesize that the
presented token selection techniques will outper-
form the baseline of random selection; specifically,
we hypothesize that longest-token and unrestricted
selection will encourage additional usage of visual
context and thus improve CoMMuTE score, and that
shortest-token selection will minimize the number
of token predictions required by the model (Section
3.3) and thus improve BLEU score.

We found that while all tested selection tech-
niques (Section 3.2.1) outperformed the unmasked
baseline, comparative performance between tech-
niques are less conclusive. When paired with the
NLTK detection technique, the random selection
technique outperformed the others in CoMMuTE
and Multi30k 2016 BLEU scores. When paired with
the MDETR metric, none of the restricted selection
techniques had any impact on CoMMuTE score.
When paired with the Joint detection technique, the
longest-token selection technique improved CoM-
MuTE and Multi30k 2016/2017 BLEU scores.

Contrary to our hypothesis, the deterministic
token selection techniques did not consistently out-
perform the random selection technique. The most
consistent results were with the unrestricted selec-
tion technique, which significantly degraded CoM-
MuTE performance but tended to improve BLEU
performance (especially in the COCO BLEU met-
ric, where it outperformed all other tested models).
Shortest-token selection also tended to follow these
patterns of performance degradation, but not as sub-
stantially: its NLTK and Joint detection variants per-
formed identically on the Multi30k 2017 and COCO
BLEU metrics and performed near the bottom of re-
sults for the CoMMuTE and 2016 BLEU metrics
across all three detection techniques.

Each of these findings runs counter to our hy-
potheses in this area, suggesting that token selec-
tion at this scale has less impact on model perfor-
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mance than we expected; in fact, random or pseudo-
random token selection of the identified concrete to-
kens may actually improve performance over deter-
ministic methods.

4.5 Future Work

Given the high percentage of visually-grounded to-
kens in the Multi30k training set, future work should
consider the techniques against both larger MMT
datasets and MMT datasets with lower concentra-
tions of visually-grounded tokens (e.g., Concep-
tual Captions). Similarly, future work should con-
sider synthetically collated datasets that combine el-
ements of multiple multimodal datasets (e.g., im-
ages from Conceptual Captions, sentences from
Multi30k), including synthetic datasets created from
text-only datasets.

Additionally, future work should compare
baseline scores for tokens selected completely at
random to more accurately gauge the efficacy of ob-
ject token selection.

Finally, future work should consider a more
deterministic way to classify the concreteness of a
token with NLP, including selection of definitions
based on contextual awareness.

5 Conclusion

The continued challenge of visual grounding and
masking in MMT systems has encouraged vary-
ing approaches to the detection and selection
of visually-grounded text tokens for masking
(Caglayan et al., 2019; Wu et al., 2021).

We introduced three new techniques for detec-
tion of concrete tokens from source sentences: de-
tection with natural language processing (NLP), de-
tection with object detection, and joint NLP/object
detection. We also introduced deterministic meth-
ods for the selection of detected tokens, including
longest and shortest n tokens.

Finally, we utilized the GRAM MMT architec-
ture (Vijayan et al., 2024) to train models against
synthetically collated datasets of masked sentences
and associated images. We showed performance im-
provement over the baseline models and elevated us-
age of visual context during translation tasks.
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