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Abstract

Despite advancements in neural machine translation, word sense disambiguation remains challenging, partic-
ularly with limited textual context. Multimodal Machine Translation enhances text-only models by integrat-
ing visual information, but its impact varies across translations. This study focuses on ambiguous sentences
to investigate the effectiveness of utilizing visual information. By prioritizing these sentences, which benefit
from visual cues, we aim to enhance hybrid multimodal and text-only translation approaches. We utilize
Latent Semantic Analysis and Sentence-BERT to extract context vectors from the British National Corpus,
enabling the assessment of semantic diversity. Our approach enhances translation quality for English-German
and English-French on Multi30k, assessed through metrics including BLEU, chrF2, and TER.

1 Introduction

Neural Machine Translation (NMT) has sig-
nificantly improved translation quality with
transformer-based models (Cho et al., 2014;
Vaswani et al., 2018), integrating cross-attention
for better semantic understanding (Vaswani et al.,
2017). Despite focusing on the broader context in
the text-only translation model, resolving word am-
biguity persists as a challenge. In natural language,
lexical ambiguity (Gonzales et al., 2017) refers to
the occurrence where a single word possesses multi-
ple meanings or interpretations, thereby complicat-
ing comprehension of the text. For example, in the
domain of finance and economy, the word ”bank”
almost always refers to a financial institution rather
than the side of a river.

Multimodal Machine Translation (MMT), a
subset of NMT, incorporates visual information to
enhance translations. Recent studies highlight the

potential of leveraging both textual and visual data
to improve accuracy and contextuality (Yao and
Wan, 2020; Zhao et al., 2022; Wang and Xiong,
2021; Hatami et al., 2023). MMT utilises visual
cues to disambiguate input words and select appro-
priate translations, particularly beneficial for am-
biguous sentences or when visual context provides
crucial details not explicit in the text. Despite the
benefits of integrating visual information into MMT,
this can sometimes result in degraded translation
quality, particularly when there is insufficient data,
including parallel visual and textual data, to ade-
quately train the model. For sentences with unam-
biguous interpretations, textual context alone might
suffice for accurate translation. Unlike NMT, MMT
can be susceptible to noise or irrelevant information
in the visual data, which may introduce errors or dis-
tractions, leading to inaccurate translations.

This paper aims to explore the correlation be-
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tween sentence ambiguity and translation quality,
focusing on effectively integrating visual cues into
the translation process to enhance overall qual-
ity. We assess sentence ambiguity using seman-
tic diversity in Latent Semantic Analysis (LSA)
and Sentence-BERT (S-BERT) vector embedding
spaces, investigating the impact of visual informa-
tion across varying levels of ambiguity. By experi-
menting with different ambiguity scores, we deter-
mine the optimal value where visual cues enhance
translation quality, comparing outcomes with text-
only and multimodal models. For sentences with
low ambiguity, we employ a text-only approach,
while for those with higher ambiguity, we utilize a
multimodal approach.

2 Related Work

Lexical ambiguity presents a major hurdle in ma-
chine translation, making it challenging to discern
the correct word meaning and translation due to
multiple senses and contextual variations. While
Multimodal Machine Translation (MMT) leverages
visual cues to aid disambiguation, the efficacy of vi-
sual features varies, particularly when textual con-
text is sufficient. Despite the potential of visual
cues to improve accuracy, their impact may be con-
strained when textual information is already rich.
This underscores the importance of seamlessly in-
tegrating visual and textual data for optimal transla-
tion outcomes (Caglayan et al., 2016, 2019).

Various methodologies have been proposed to
enhance the quality of the visual modality in MMT.
For example, Yao and Wan (2020) introduced a mul-
timodal transformer-based self-attention mechanism
to encode relevant image information. To capture
diverse relationships, Yin et al. (2020) proposed a
graph-based multimodal fusion encoder. Ive et al.
(2019) devised a translate-and-refine mechanism,
employing images in a second-stage decoder to re-
fine text-only NMT models for ambiguous words.
Additionally, Calixto et al. (2019) utilised a latent
variable model to extract multimodal relationships
between images and text. Recent methods aim to
mitigate visual information noise and select relevant
visual features correlated with text. For instance,
Wang and Xiong (2021) employed object-level vi-
sual modeling to mask irrelevant objects and specific
words in the source text, facilitating visual feature
analysis. Similarly, Zhao et al. (2022) integrated ob-

ject detection into the image encoder to extract vi-
sual features of object regions and applied them to a
doubly-attentive decoder model.

The Multimodal Lexical Translation (MLT)
approach aims to accurately translate ambiguous
words within both visual and textual contexts. In-
troduced with the MLT dataset, which includes 4-
tuples of ambiguous words, visual and textual con-
texts, and translations aligned with both, this re-
source facilitates the evaluation of lexical disam-
biguation within Multimodal Machine Translation
(MMT) (Lala and Specia, 2018). The study by
Lala et al. (2018) examines the effectiveness of mul-
timodal re-ranking methods in improving a stan-
dard sequence-to-sequence attention-based Neural
Machine Translation (NMT) system. By integrat-
ing cross-lingual word sense disambiguation and
data augmentation techniques, the authors aim to
enhance translation quality and develop an image-
based, cross-lingual approach for accurately predict-
ing translation candidates for ambiguous words in
the source sentence.

The translate-and-refine approach (Ive et al.,
2019), introduced to improve upon previous MMT
model, employs images in a second-stage decoder
to refine translation drafts by incorporating both
textual and visual contexts. This method achieves
state-of-the-art results, demonstrating superior per-
formance over text-only models, especially in com-
plex linguistic scenarios, by refining translations
only when necessary through deliberation networks.
In their analysis, Tang et al. (2018) examine how
encoder-decoder attention mechanisms in Neural
Machine Translation (NMT) models handle am-
biguous nouns during word sense disambiguation
(WSD). Contrary to expectations, attention tends to
focus more on the ambiguous noun itself rather than
surrounding context tokens, suggesting that contex-
tual information for WSD is primarily encoded in
the encoder’s hidden states. This study sheds light
on the challenges of WSD in NMT models, particu-
larly due to data sparsity, and offers insights into the
learning process of attention mechanisms in Trans-
formers.

In addressing ambiguity in Multimodal Ma-
chine Translation (MMT), Futeral et al. (2023) pro-
pose a novel approach incorporating neural adapters,
guided self-attention mechanisms, and a visually
conditioned masked language modeling objective.
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Figure 1: Histogram showing the distribution of lexical ambiguity scores across words in BNC (left: S-
BERT and right: LSA)

Their study underscores the importance of using
image context to improve translation quality, intro-
ducing the CoMMuTE dataset as a tool to evaluate
and enhance multimodal translation. The dataset
includes 155 English sentences with two possible
translations in French, German, and Czech, facili-
tating assessment of MMT models in leveraging vi-
suals for accurate translations, especially with am-
biguous content. In Bowen et al. (2024), tech-
niques for identifying visually and contextually rel-
evant tokens in Multimodal Machine Translation
(MMT) systems are explored, employing natural
language processing (NLP), object detection, and
deterministic selection strategies. The study, con-
ducted using the GRAM MMT architecture (Vi-
jayan et al., 2024), reveals performance improve-
ments over baseline models by training on syntheti-
cally collated datasets of masked sentences and im-
ages, emphasizing the importance of visual context
in enhancing translation accuracy within MMT sys-
tems. In Hatami et al. (2022), an approach utilizing
WordNet synsets to gauge sentence ambiguity was
proposed to evaluate the effect of incorporating vi-
sual information in translation models, demonstrat-
ing the potential of visual cues to improve transla-
tion accuracy, especially in challenging tasks like
English-German translation, as observed in the anal-
ysis of the Multi30k dataset.

This paper investigates how integrating visual
elements affects translation quality by examining
the relationship between sentence ambiguity and ac-
curacy, using semantic diversity in sentence vec-
tor spaces to quantify ambiguity and assessing the
impact of visual information on translation quality
across different levels of ambiguity scores.

3 Methodology

This section details the methodology for enhancing
translation quality in MMT by utilizing semantic
diversity. It involves computing lexical ambiguity
scores for nouns, extending to sentence-level ambi-
guity, and exploring sentence ambiguity to optimize
translation scores for text-only and MMT models.

3.1 Lexical Ambiguity Score
We computed the lexical ambiguity score for all
words in the British National Corpus (BNC) by to-
kenizing sentences from the Multi30k dataset train-
ing set, resulting in a word list with 10,105 unique
words, including morphological variants to capture
potential differences in ambiguity scores based on
their roles in sentences. Utilizing Latent Seman-
tic Analysis (Landauer and Dumais, 1997) and S-
BERT (Reimers and Gurevych, 2019), we derived
lexical ambiguity scores based on distributional se-
mantics (Harris, 1954), which infer word meanings
from contextual usage, considering that words ap-
pearing in the same context likely share the same
meaning, while differing contexts may lead to var-
ied interpretations.

In adopting LSA based on Hoffman’s
work (Hoffman et al., 2012), we segmented the
BNC corpus into 1,000-word texts to construct a co-
occurrence matrix, applying singular value decom-
position (SVD) to reveal latent semantic structures
and word associations. Concurrently, for S-BERT,
we segmented the BNC into sentences, preprocess
them for quality, and utilized the pre-trained S-
BERT model1 to generate 768-dimensional sentence
embeddings, capturing semantic information com-
prehensively. To compute lexical ambiguity, we as-

1https://www.sbert.net/
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Figure 2: Average Semantic Diversity (SemD) across different bins, displaying the top 5 words in each bin
from BNC (left: S-BERT and right: LSA)

sessed textual similarity through LSA and S-BERT,
leveraging Semantic Diversity (SemD) scores to rep-
resent ambiguity. By measuring cosine similarity
between vectors, we determined ambiguity levels,
with higher similarity indicating lower ambiguity
and vice versa, enabling precise ambiguity scoring
for individual words. To do this, we first calculated
the mean of the similarity of all pairwise combi-
nations of texts or sentences including the word
(w). Then we took the logarithm of this mean and
reversed the sign to obtain the SemD value of the
word (w). The equation for SemD of word w is:

SemDw = −log(

∑
i,j ϵ Vw

cos sim(vi, vj)

n
)

where Vw is the set of all context vectors for
word w, and vi, vj ϵ Vw.

The histograms in Figure 1 compare the dis-
tribution of words across different ambiguity score
ranges for LSA and S-BERT. S-BERT shows a pos-
itively skewed distribution, with most words having
lower ambiguity scores, while LSA displays a nega-
tively skewed distribution, indicating a higher preva-
lence of words with higher ambiguity scores.

Figure 2 illustrates the average SemD across 6
bins, showcasing the lexical ambiguity scores along
with the top 5 words in each bin. These results, de-

rived from the BNC, compare S-BERT and LSA in
assigning SemD to each word.

3.2 Sentence Ambiguity Score

After computing SemD values for all words in the
vocabulary, we utilize these values to derive ambi-
guity scores for sentences in the test set, focusing
solely on nouns, which carry specific semantic con-
tent and are extracted using SpaCy2.

To compute the ambiguity score at the sentence
level, two mathematical functions, the arithmetic
mean (Mean) and the geometric mean (G-Mean),
are utilized. The arithmetic mean aggregates and di-
vides the lexical ambiguity scores of all nouns in a
sentence by the total number of content words, giv-
ing equal weight to each score, while the geomet-
ric mean calculates the n-th root of the product of
lexical ambiguity scores, assigning less weight to
larger values and mitigating the influence of outliers.
These methods enable the quantification of ambigu-
ity within sentences, facilitating comparisons based
on their ambiguity scores.

The histograms in Figure 3 display sentence
ambiguity scores calculated using Mean and G-
Mean for LSA and S-BERT. LSA exhibits a normal
distribution of scores between 1.13 and 2.18, while
S-BERT shows a positively skewed distribution be-

2https://spacy.io/usage/linguistic-features
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(a) S-BERT (G-Mean) (b) LSA (G-Mean)

Figure 3: Histograms showing the distribution of sentence ambiguity scores across sentences in Multi30k

tween 0.55 and 1.00, indicating lower ambiguity.
These ambiguity scores are used to sort sentences
in the test set in ascending order and then apply a
hybrid approach to translate the sentences. In Sec-
tion 3.3, we explain the details of this approach.

3.3 Translation Quality Measure
Despite the benefits of incorporating visual data into
multimodal machine translation (MMT), its use can
sometimes lead to reduced translation quality com-
pared to text-only approaches. This decline may oc-
cur due to the presence of noise or irrelevant visual
information, which could introduce errors or distrac-
tions, ultimately resulting in inaccurate translations
(see Figure 4).

We utilize sentence ambiguity scores based on
SemD to decide between using Text-only or Multi-
modal models for translation. By adopting a hybrid
approach, we determine whether visual information
enhances translation quality, leveraging the ambigu-
ity score to select the most suitable model for sen-
tences in a specific ambiguity range. After comput-
ing ambiguity scores for all sentences in the test set,
we ranked the sentences based on the sentence am-
biguity score calculated using Mean and G-Mean for
both LSA and S-BERT. Then we divided the test set
into 20 sets, each including 50 sentences. The first
set in the sorted sentence list has the lowest ambi-
guity score, and the last set has the highest ambigu-
ity score. The hybrid approach aims to employ the
Text-only MT model for sentence sets with lower
ambiguity and utilize Multimodal models for those
with higher ambiguity. By using a Hybrid model,
we explore the effectiveness of visual information in
translating sentences with higher ambiguity scores,
thereby evaluating translation quality to determine

the optimal range of ambiguity for leveraging visual
information.

Figure 4: Comparing sentence-level BLEU scores of
Text-only and Multimodal MT models for English to
German translation on the Multi30k 2016 test set.

4 Experimental Setup

This section provides insights into the dataset used
in this work, neural architectures involving text-only
and multimodal models, and context vector embed-
ding methods: LSA and S-BERT, and the translation
evaluation metrics BLEU, ChrF2 and TER.

4.1 Dataset
During our experiment, we employed two datasets:
the British National Corpus (BNC) and Multi30k.
The BNC facilitated the extraction of sentence vec-
tors for computing lexical ambiguity, while the
Multi30k dataset served for training and evaluating
our translation models.

4.1.1 British National Corpus (BNC)
The British National Corpus (BNC) (Aston and
Burnard, 1998) is a vast collection comprising 100
million words of both written and spoken British En-
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glish texts, designed to represent the language com-
prehensively. It encompasses diverse sources such
as newspapers, periodicals, academic books, fiction,
letters, and spoken conversations, offering insights
into contemporary British English usage across var-
ious contexts. As a rich repository of language pat-
terns and expressions, the BNC serves as a valuable
resource for linguistic research and language anal-
ysis, facilitating a deeper understanding of British
English in its diverse forms.

4.1.2 Multi30k Dataset
Multi30K (Elliott et al., 2016) is an extension of the
Flickr30K Entities dataset that consists of 29,000
images paired with descriptions in English, along
with translated sentences in German, French, and
Czech (Elliott et al., 2017). The dataset is specifi-
cally designed for evaluating MMT systems, where
both textual and visual information are utilised for
translation tasks. Multi30K provides validation and
test sets, each containing 1,000 images aligned with
the descriptions.

4.2 Semantic Representation Techniques
In this section, we explain two techniques for ex-
tracting semantic representation vectors from given
contexts: Latent Semantic Analysis and S-BERT.
These approaches offer sophisticated methods to
capture the underlying semantic meanings embed-
ded within texts, which can be used to determine the
similarity between them.

4.2.1 Latent Semantic Analysis (LSA)
LSA is a technique that leverages patterns of word
co-occurrence to construct high-dimensional se-
mantic spaces. To implement LSA, the BNC is
divided into text samples, each representing a dif-
ferent context. A co-occurrence matrix is gener-
ated, tracking which words appear in each context.
Each word is represented as a vector, with elements
corresponding to its frequency in a context. Using
singular value decomposition (SVD), LSA extracts
the underlying structure in the co-occurrence matrix,
revealing higher-order relationships between words
based on their co-occurrence patterns. SVD re-
duces the dimensionality of the word vectors (to 300
dimensions), with the similarity structure of these
vectors approximating the original matrix. Conse-
quently, word representations can be interpreted as
points in a high-dimensional space, where proxim-

ity indicates similarity in meaning based on con-
text. Additionally, LSA places individual contexts
in the same semantic space, enabling comparisons
between contexts based on their content similarity.

4.2.2 S-BERT
S-BERT extends the capabilities of the BERT model
by focusing on generating high-quality sentence em-
beddings. Unlike traditional BERT models, which
are primarily trained on word-level tasks like next-
sentence prediction and masked language model-
ing, S-BERT fine-tunes the BERT architecture to
produce embeddings at the sentence level. It was
trained on a combination of two Natural Lan-
guage Inference (NLI) datasets: the Stanford NLI
(SNLI) dataset and the Multi-Genre NLI (MultiNLI)
dataset. S-BERT typically employs Siamese or
triplet network architectures during fine-tuning, en-
abling it to capture contextual information and nu-
ances in meaning. By considering the surround-
ing context, S-BERT generates embeddings that are
suitable for tasks such as semantic textual similarity.
Cosine similarity between associated sentence vec-
tors indicates the similarity between word meanings
in different sentences, with higher similarity indicat-
ing lower ambiguity in word meaning.

4.3 Neural Machine Translation
4.3.1 Text-only Machine Translation
A text-only transformer model serves as the base-
line in our experiment, utilizing solely the textual
captions of images for translation. Trained using
the OpenNMT toolkit (Klein et al., 2018) on the
Multi30k dataset for English to German, French,
and Czech translations, the model comprises a 6-
layer transformer architecture with attention mech-
anisms in both encoder and decoder stages, trained
for 50K steps. Sentencepiece (Kudo and Richard-
son, 2018) is employed to segment words into sub-
word units, offering a language-independent ap-
proach to tokenization without necessitating pre-
processing steps, thus enhancing the model’s adapt-
ability and versatility in handling raw text.

4.3.2 Multimodal Machine Translation
In the MMT model, we adopt the Gated Fusion
MMT model Wu et al. (2021), which fuses visual
and text representations by employing a gate mech-
anism. Gated Fusion is a mechanism used to inte-
grate visual information from images with textual
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En → De Test 2016 Test 2017
LSA S-BERT LSA S-BERT

BLEU ↑ chrF2 ↑ TER ↓ BLEU ↑ chrF2 ↑ TER ↓ BLEU ↑ chrF2 ↑ TER ↓ BLEU ↑ chrF2 ↑ TER ↓
Baseline (MMT) 40.1 64.6 40.6 40.1 64.6 40.6 31.9 59.8 49.6 31.9 59.8 49.6
Hybrid (50) 40.7 65.0 39.9 40.7 65.0 39.8* 32.6 60.6* 48.5* 32.6 60.5* 48.5*
Hybrid (100) 40.8 65.0 39.7* 40.9 65.0 39.7* 32.5 60.4* 48.6* 32.6 60.5* 48.6*
Hybrid (150) 40.8 65.0* 39.9* 40.9 65.0 39.8* 32.4 60.3 48.8* 32.4 60.4* 48.8*
Hybrid (200) 40.6 65.0 40.1 40.7 64.9 39.9 32.4 60.3 48.6* 32.3 60.4* 48.8*
Hybrid (250) 40.6 64.9 40.2 40.5 64.9 40.1 32.2 60.2 48.8* 32.1 60.3 49.0
Hybrid (300) 40.6 65.0 40.2 40.5 64.8 40.1 32.0 60.1 49.0* 32.1 60.1 49.0
Hybrid (350) 40.5 64.8 40.3 40.4 64.7 40.1 32.1 60.1 48.9* 32.0 59.9 49.1
Hybrid (400) 40.5 64.8 40.2 40.5 64.8 40.0 32.3 60.1 48.8* 31.9 59.9 49.1
Hybrid (450) 40.4 64.7 40.3 40.5 64.8 40.0 32.1 59.9 49.0* 32.0 60.0 49.0*
Hybrid (500) 40.4 64.7 40.3 40.5 64.7 40.2 32.2 60.0 49.0* 32.1 60.0 49.0*
Hybrid (550) 40.3 64.7 40.4 40.4 64.8 40.1 32.2 59.9 49.0* 32.0 59.9 49.1*
Hybrid (600) 40.2 64.6 40.5 40.4 64.7 40.1 32.1 59.8 49.2 31.9 59.9 49.2
Hybrid (650) 40.3 64.7 40.4 40.3 64.6 40.1* 32.0 59.8 49.2 32.2 59.9 49.1*
Hybrid (700) 40.3 64.7 40.3 40.2 64.5 40.4 32.2 59.8 49.3 32.1 59.8 49.2*
Hybrid (750) 40.3 64.7 40.3 40.2 64.6 40.3 32.3 59.9 49.3 32.2 59.9 49.3
Hybrid (800) 40.3 64.7 40.4 40.2 64.7 40.3 32.3 59.9 49.3 32.2 59.8 49.4
Hybrid (850) 40.1 64.6 40.4 40.3 64.7 40.2* 32.2 59.9 49.5 32.4* 59.9 49.4
Hybrid (900) 40.1 64.5 40.5 40.3 64.7 40.2* 32.1 59.9 49.6 32.2* 59.9 49.5
Hybrid (950) 40.2 64.7 40.5 40.2 64.7 40.4 31.9 59.8 49.7 32.0 59.8 49.6

En → Fr Test 2016 Test 2017
LSA S-BERT LSA S-BERT

BLEU ↑ chrF2 ↑ TER ↓ BLEU ↑ chrF2 ↑ TER ↓ BLEU ↑ chrF2 ↑ TER ↓ BLEU ↑ chrF2 ↑ TER ↓
Baseline (MMT) 62.3 75.3 25.5 62.3 75.3 25.5 55.6 70.7 30.9 55.6 70.7 30.9
Hybrid (50) 62.1 75.4 25.2 62.2 75.5 25.1 55.9 71.0 30.8 55.9 71.1 30.8
Hybrid (100) 62.0 75.3 25.3 62.2 75.5 25.2 55.9 71.1 30.7 56.0 71.1 30.7
Hybrid (150) 61.8 75.2 25.4 62.1 75.4 25.3 55.9 71.0 30.7 55.8 71.0 30.9
Hybrid (200) 61.7 75.2 25.3 62.0 75.3 25.4 55.9 71.1 30.6 55.9 71.1* 30.7
Hybrid (250) 61.8 75.2 25.4 61.9 75.2 25.4 55.7 70.9 30.7 55.9 71.1* 30.7
Hybrid (300) 61.8 75.2 25.4 61.9 75.2 25.5 55.5 70.9 30.8 55.7 70.9 30.7
Hybrid (350) 61.7* 75.1 25.6 61.7 75.1 25.5 55.5 70.8 30.9 55.8 71.0 30.7
Hybrid (400) 61.7* 75.1 25.6 61.6* 75.0 25.7 55.6 70.8 30.8 55.9 71.1* 30.7
Hybrid (450) 61.7* 75.1 25.6 61.7* 75.0 25.8 55.5 70.8 30.8 55.9 71.0 30.7
Hybrid (500) 61.6* 75.1 25.7 61.7* 75.0 25.7 55.5 70.7 31.0 55.8 70.9 30.7
Hybrid (550) 61.8* 75.1 25.6 61.8* 75.0 25.8 55.3 70.6 31.0 55.7 70.8 30.9
Hybrid (600) 61.9 75.1 25.6 61.9 75.1 25.7 55.3 70.6 31.0 55.5 70.7 31.0
Hybrid (650) 62.0 75.2 25.6 62.0 75.2 25.5 55.5 70.6 31.0 55.5 70.7 31.0
Hybrid (700) 62.1 75.3 25.5 62.1 75.2 25.5 55.4 70.6 31.1 55.5 70.7 31.1
Hybrid (750) 62.0 75.2 25.7 62.0 75.2 25.6 55.5 70.7 31.0 55.4 70.7 31.1
Hybrid (800) 62.0* 75.1* 25.7 62.1 75.2 25.6 55.5 70.6 31.0 55.3 70.6 31.1
Hybrid (850) 62.0* 75.1* 25.6 62.1 75.2 25.6 55.6 70.7 31.0 55.5 70.7 31.1
Hybrid (900) 62.1 75.2 25.6 62.2 75.2 25.6 55.6 70.7 30.9 55.6 70.7 31.0
Hybrid (950) 62.3 75.3 25.5 62.1 75.2* 25.7* 55.6 70.7 31.0 55.6 70.7 31.0

Table 1: BLEU, chrF2, and TER scores for baseline and Hybrid models for English-to-German and English-
to-French translations. Numbers in parentheses show sentences where the model uses visual information
(e.g., Hybrid (50) refers to the top 50 ambiguous sentences using Multimodal, while the remaining 950 use
a text-only model). * indicates a statistically significant result compared to the baseline multimodal at a
significance level of p < 0.05. Bold numbers indicate the best results in each test dataset for each score.

information from source sentences during the trans- lation process. The main idea behind Gated Fu-
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sion is to control the amount of visual information
that is blended into the textual representation us-
ing a gating matrix. The source sentence x is fed
into a vanilla Transformer encoder to obtain a tex-
tual representation Htext of dimension T×d. The
image z is processed using a pre-trained ResNet-
50 CNN which has been trained on the ImageNet
dataset (Russakovsky et al., 2015) to extract a 2048-
dimensional average-pooled visual representation,
denoted as Embedimage(z). The visual represen-
tation Embedimage(z) is projected to the same di-
mension as Htext using a weight matrix Wz . A gat-
ing matrix of dimension T×d is generated to control
the fusion of the textual and visual representations.
The gating matrix is computed as:

Λ = sigmoid(WΛEmbedimage(z) + UΛHtext)

where W and U are model parameters.

4.4 Evaluation Metrics
We use three evaluation metrics: BLEU (Pap-
ineni et al., 2002), ChrF2 (Popović, 2015), and
TER (Snover et al., 2006). BLEU assesses transla-
tion precision by comparing candidate translations
to reference translations based on n-grams. ChrF2
evaluates the similarity between character n-grams
in machine-generated and reference translations,
particularly beneficial for languages with complex
writing systems. TER quantifies the number of edits
needed to align machine translations with human-
generated references. We conduct statistical signifi-
cance testing using the sacrebleu3 toolbox.

5 Results

In this section, we analyze the results of our ex-
periments. We present the findings for both LSA
and S-BERT approaches on the 2016 and 2017
Multi30k test sets for English to German and En-
glish to French translations. Table 1 provides a com-
prehensive comparison of different models’ perfor-
mance in terms of BLEU, chrF2, and TER metrics,
offering insights into the effectiveness of integrating
sentence ambiguity scores with a multimodal setting
in English to German and French translations. We
report translation scores for the baseline multimodal

and the Hybrid models for LSA and S-BERT using
G-Mean4.

Table 1 presents the translation performance of
baseline and Hybrid models for English-to-German
(En → De) and English-to-French (En → Fr) across
different test datasets and Hybrid configurations.
The table highlights metrics including BLEU score
(higher is better), chrF2 score (higher is better), and
TER score (lower is better). Each Hybrid model
variant is indicated by the number of sentences (in
parentheses) where visual information aids transla-
tion, with the remainder utilizing a text-only model5.
Statistically significant improvements over the base-
line multimodal model at p<0.05 are marked with *,
while the best-performing scores in each dataset are
indicated in bold.

The results indicate that the sentence ambigu-
ity score plays an important role in determining the
importance of using visual information in English-
to-German translation compared with English-to-
French translation. In English-to-German transla-
tion for Test 2016, the baseline multimodal model
achieves a performance with a BLEU score of 40.1,
a chrF2 score of 64.6, and a TER of 40.6 using LSA
and S-BERT. In contrast, the Hybrid models show
improvements over the baseline. In LSA, Hybrid
(50) achieves a BLEU score of 40.7, a chrF2 score
of 65.0, and a TER of 39.9. Hybrid (100) and Hybrid
(150) continue to outperform the baseline across all
metrics. In S-BERT, similar to LSA, Hybrid (100)
and Hybrid (150) achieved a BLEU score of 40.9, a
chrF2 score of 65.0, and notably reduced the TER
to 39.7. For both LSA and S-BERT, Hybrid (50)
to Hybrid (150) achieve statistically significant im-
provements in chrF2 and TER in some configura-
tions. By increasing the number of sentences that
the Hybrid model uses visual information for, the
results get close to the baseline multimodal model
(see Hybrid (950)). For Test 2017, the performance
of the Hybrid models remains consistent with Test
2016, indicating stability in the proposed approach
for English-to-German translation. For this test set,
Hybrid (50) maintains improvements over the base-
line with a BLEU score of 32.6, a chrF2 score of
60.6, and a TER of 48.5, representing a statisti-

3https://github.com/mjpost/sacrebleu
4Based on our experiments, G-Mean shows better results compared with Mean. Therefore, due to limited space, we reported the

results for G-Mean.
5The total number of sentences in the test sets is 1,000.
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(a) En → De, Test 2016 (b) En → De, Test 2017

(c) En → Fr, Test 2016 (d) En → Fr, Test 2017

Figure 5: The charts display BLEU scores across various Hybrid models in English to German and French
for the 2016 and 2017 test sets. Solid lines represent BLEU scores for S-BERT and LSA, while dashed lines
indicate the overall performance for multimodal MT models.

cally significant improvement over the baseline. Hy-
brid (100) and Hybrid (150) consistently outperform
the baseline, with results showing statistical signifi-
cance.

In English-to-French translation, the Hybrid
models show slight improvement over the baseline
multimodal model. In Test 2016, the baseline model
has a higher BLEU score compared with the Hybrid
models. The Hybrid model of 50 slightly improves
the chrF2 and TER scores, but they are not statis-
tically significant. Similar to Test 2016, Test 2017
does not represent notable improvements regarding
BLEU, chrF2, and TER scores. This indicates that
the idea of using ambiguity scores to evaluate the
importance of using visual information is less effec-
tive for English-to-French translation.

To better analyze the role of a sentence ambigu-
ity score in the proposed Hybrid models, the BLEU
scores for LSA and S-BERT for G-Mean are pre-
sented in Figure 5. In each subgraph, the red dashed

line shows the overall BLEU scores for the base-
line multimodal model for each language pair in the
2016 and 2017 test sets. The orange and blue lines
show the BLEU scores in different Hybrid models.
For both language combinations, LSA and S-BERT
follow the same pattern. In English-to-German
translation, by increasing the number of sentences
in the Hybrid model, the BLEU scores started from
40.9 and 32.6 for Test 2016 and Test 2017, respec-
tively, and reached the baseline multimodal mod-
els. This indicates that visual information is use-
ful in translating around 150 sentences with higher
ambiguity scores. However, using visual informa-
tion for the remaining sentences with lower ambigu-
ity ranking sharply drops translation performance.
In contrast, for English-to-French translation, we do
not see the same pattern. In Test 2016, all Hybrid
models have BLEU scores lower than the baseline
multimodal model, showing the effectiveness of us-
ing visual information in most sentences. In Test
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Figure 6: Examples from Multi30k illustrate the effectiveness of using images based on the ambiguity level
of the source sentence. The top image shows a source sentence with a low ambiguity score (1.46), which
was translated more accurately using the Text-only model. The bottom image shows a source sentence with
a high ambiguity score (1.81), where the Multimodal model provided a better translation.

2017, there are consistent fluctuations by changing
the number of sentences, but it remains above the
baseline model except in a few cases.

Figure 6 shows examples from the Multi30k
dataset to illustrate the impact of sentence ambiguity
on the effectiveness of translation models. The top
image presents a source sentence with a low ambi-
guity score of 1.46, where the Text-only model out-
performed the Multimodal model according to auto-
matic evaluation metrics like the BLEU score. How-
ever, interestingly, human analysis revealed that the
translation provided by the Multimodal model not
only better explained the image but was also more
readable than even the reference sentence. Con-
versely, the bottom image presents a source sentence
with a higher ambiguity score of 1.81, where the
Multimodal model produced a superior translation
compared to the Text-only model. While various
factors can influence the performance of multimodal
translation models, these findings suggest that the
sentence ambiguity score can serve as a valuable pa-
rameter in determining when visual information en-
hances translation quality.

6 Conclusion

This study contributes to the ongoing discussion on
the effective utilisation of visual cues in translation
tasks and provides insights into optimizing multi-
modal translation systems. In this paper, we inves-
tigate the impact of integrating visual elements into
the translation process on overall translation quality.

Through an analysis of the relationship between sen-
tence ambiguity and translation quality, we aimed
to determine the circumstances under which visual
information enhances translation quality. By estab-
lishing ambiguity scores for individual sentences us-
ing semantic diversity within sentence vector em-
bedding spaces, we investigated how visual infor-
mation influences translation quality across differ-
ent ranges of sentence ambiguity scores. Our re-
search highlights the importance of discerning the
contextual relevance of visual information in multi-
modal tasks, suggesting semantic diversity as a valu-
able metric for determining the significance of vi-
sual cues in multimodal machine translation models.
We plan to look at clustering approaches to cluster
meanings or usages of words based on their seman-
tic similarities. This can be used to assign ambiguity
scores to each word based on the number of clusters.
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