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Abstract

Current vision-language models leveraging
contrastive learning often face limitations in
developing fine-grained conceptual understand-
ing. This is due to random negative samples
during pretraining, causing almost exclusively
very dissimilar concepts to be compared in the
loss function. Consequently, the models strug-
gle with fine-grained semantic differences. To
address this problem, we introduce a novel pre-
training method incorporating synthetic hard
negative text examples. The hard negatives re-
place terms corresponding to visual concepts,
leading to a more fine-grained visual and tex-
tual concept alignment. Further, we introduce
InpaintCOCO, a new challenging dataset for
assessing the fine-grained alignment of colors,
objects, and sizes in vision-language models.
We created the dataset using generative inpaint-
ing from COCO images by changing the visual
concepts so that the images no longer match
their original captions. Our results show sig-
nificant improvements in fine-grained concept
understanding across various vision-language
datasets, including our InpaintCOCO dataset.

1 Introduction

Recent advancements in vision-language (VL)
modeling have demonstrated the effectiveness of
contrastive learning in various multimodal tasks
(Radford et al., 2021; Jia et al., 2021; Yao et al.,
2021). However, this training method does not pro-
vide sufficient training signals for several important
visual concepts (Zhao et al., 2023). We attributed
it to the objective function’s use of random and,
therefore, too dissimilar negative samples, which
prevents the model from learning fine-grained se-
mantic representations of the concepts.

Therefore, we propose a novel approach to ad-
dress the issue of poorly represented concepts in
contrastive learning. We introduce a mechanism

to incorporate hard negative samples into the con-
trastive learning loss. Specifically, we generate
synthetic hard negative samples by substituting
keywords in the captions of original image-text
pairs, disrupting the alignment between the image
content and its description.

This paper presents three key contributions:

(i) We present a novel method for using hard
negative samples in the contrastive learning objec-
tive, allowing the model to focus on refining its
understanding of concepts.

(ii) By introducing hard negative samples in
the language component, we compel the model
to learn proper visual and language alignment. Our
approach improves multimodal performance, al-
though it operates exclusively on the language side
of the model.

(iii) To evaluate the model from the visual per-
spective, we create a challenge set with over 1,260
adversarial examples by using generative image
inpainting. This dataset serves as a comprehensive
benchmark, allowing us to assess the model’s abil-
ity to validate its conceptual understanding. This
is because the image was created in a standardized
setting in which only a small part was changed.

In this work, we conduct extensive evaluations
of four basic concepts — color, object, location, and
size. These concepts were selected as examples
to demonstrate the effectiveness and robustness of
our proposed approach in capturing nuanced se-
mantic relations, but it is important to note that the
choice of concepts is flexible and can be tailored
to specific applications. Furthermore, our method-
ology is easy to construct, requiring only minimal
domain expertise and the simple usage of regular
expressions. This study shows that simple tweaks
in contrastive learning can significantly enhance
multimodal understanding and model performance.
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Figure 1: Classical contrastive learning approaches use (11, 77°%) as positive pairs in combination with negative
samples like 7,"“Y and 75"“Y to learn an image-text alignment. A bag of words (e.g., nouns) is often sufficient to
extract the correct text that matches a given image, resulting in only broad concepts learned. We also use hard
negatives like 77" so that fine-grained semantic concepts are learned for visual and textual alignment.
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Figure 2: Hard negative contrastive learning: Keyword substitution produces hard negative text samples, which are
then randomly injected for each image u;, replacing a simple negative sample in InfoNCE loss.

2 Vision-Language Representation
Learning

Contrastive Learning. The objective of con-
trastive representation learning is to learn repre-
sentations that are close to each other for similar
samples and distant from each other for dissim-
ilar samples. While many objectives originally
addressed a single modality (Chopra et al., 2005;
Schroff et al., 2015; Sohn, 2016; Oord et al., 2018),
the idea can also be extended to multimodal train-
ing as well.

A successful example of multimodal learning is
CLIP (Radford et al., 2021). CLIP is a Transformer-
based model that consists of an image encoder and
a text encoder, which are trained simultaneously.
The objective is to maximize the cosine similarity

of the image and text embeddings from the correct
image-text pairs and to minimize the similarity be-
tween the incorrect pairs. A batch of NV training
samples (i.e., matching image-text pairs) results in
a similarity matrix for each image-text combina-
tion. The main diagonal indicates the correct pair
matches; the remaining entries correspond to neg-
ative entries. The symmetric cross-entropy loss is
applied on N x N similarity scores.

This heuristical construction of negative sam-
ples has several issues. Negative captions can still
match the given image in some cases, especially
if the text is short and lacks details. Additionally,
the negative pairs are often very dissimilar, which
causes the model to decide only on coarse-grained
features.

We illustrate this in Figure 1 with text-image
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pair I; and 77", The original learning process
only uses negative text samples, such as 7, and
159, Here, it is sufficient that the model can as-
sign or negate objects from texts (i.e., nouns) to
the objects in the image. The fact that no “person”
and no “door” are present in image I; is sufficient
for the model to discard these image descriptions.
As aresult, fine-grained concepts like object-color
alignment, size, or spatial details (“‘cat under um-
brella”) are not necessary for reaching low loss.
In this example, the model can rely solely on the
presence and absence of specific objects. In this
scenario, the caption can be seen as a bag of words
without linguistic structure.

We address this problem by creating new hard
negative data samples to learn more fine-grained
concepts. See § 3 for details.

Related work. Several approaches incorporate
hard negative samples in multimodal learning.

Radenovic et al. (2023) use importance sampling
(based on Robinson et al., 2021), which up-samples
hard negative samples and down-samples or ig-
nores simple negatives. Yet, they reweight the sim-
ple negative samples per batch only but do not cre-
ate new, challenging samples requiring fine-grained
understanding.

Rosch and Libovicky (2022) propose keyword
permutation to create hard negative samples to
learn spatial concepts. They added a spatial un-
derstanding classifier as an auxiliary pretraining
objective and evaluated the models on visual ques-
tion answering (VQA). Their model is based on
LXMERT (Tan and Bansal, 2019) and not on a
contrastive learning approach like CLIP.

Doveh et al. (2023) generate hard negatives us-
ing a rule-based procedure where they replace key-
words. Moreover, they implement an approach
where they randomly parse parts of speech and fill
the mask using a BERT encoder with a plausible
but wrong word. Unlike us, they do not incorporate
hard negatives into the similarity matrix but use an
auxiliary loss summed with the original contrastive
loss. They use four distinct loss functions in total,
introducing an additional layer of complexity to the
overall procedure. In contrast, our approach uses
the original loss function, with minimal modifica-
tions limited to the text inputs.

3 Contrastive Learning with Hard
Negatives

We present a novel contrastive learning approach
using sampled negative pairs and artificially gener-
ated textual hard negatives.

Instead of training with one positive sample and
several weak negative samples, we create a scenario
where models also minimize the similarity to hard
negative textual samples. This forces the model to
learn fine-grained concepts during training.

We use keyword substitutions for different con-
cepts to break the correct meaning of an image
caption. See Figure 1 for an example of the con-
cept color. As a result, the new caption still lists,
e.g., correct objects (e.g., “cat” and “umbrella”)
and actions (e.g., “cat sits”’) from the image but is
no longer correct. We call this a “hard negative
sample”. Using these samples during training, we
ensure that fine-grained concepts are learned. The
idea to inject hard negative samples in contrastive
learning is highlighted in Figure 2.

3.1 Creating Hard Negative Text Samples

For various concepts, we replace specific keywords
using a regex-based tool. For example, we replace
“white cat” with “brown cat” or “cat” with “dog”.
We create substitution heuristics for four different
concepts, namely colors, objects, size, location:

* For color, any of the 9 most occurring color
names in COCO can be replaced by any other
color name.

* For objects, any of 80 object names can be
replaced by any other. The 80 words originate
from COCO object categories.

* For location keywords we use 12 one-to-one
substitution relations.

* For size keywords we use 11 one-to-one sub-
stitution relations.

The full list of heuristics is shown in Table 3 in
the Appendix. The created samples are used for
training and evaluation in § 5.1 and § 5.3.

The keywords were selected based on dataset
statistics. For specific applications, a domain expert
may have to select other terms (e.g. specific colors
in the fashion industry).

3.2 Training Details

In our experiments, we use CLIP’s image and text
encoder from the ViT-B/32 model,! which has
87 million and 63 million parameters respectively.

"https://huggingface.co/openai/clip-vit-base-patch32
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Figure 3: Create hard negative image samples using open vocabulary segmentation for the masking prompt and
text-to-image generation for the inpainting prompt. Additionally, a new correct caption is created manually. The
InpaintCOCO dataset was created for concepts object, color, and size.

And hence, is a relatively small model compared
with current multimodal GenAl models. Our code
is modular, and any image and text encoder from
transformers (Wolf et al., 2020) can be used in
the framework.

We train all models using a batch size of 64.
For concepts with multiple negative examples (i.e.,
color, object), we train models with 1, 2, and 3
hard negatives. This results in a proportion of hard
negatives of 1.5%, 3%, and 4.5%, respectively. We
only use one hard negative for the other concepts.

In all experiments, we use Adam optimizer
(Kingma and Ba, 2014) with a weight decay of
0.1. We run evaluations with different learning
rates (5 x 1077, 1 x 1075, 5 x 107%, 1 x 107°,
5 x 107%) and finally use 5 x 1075, since it leads to
the best trade-off results for evaluation displayed in
Figure 4. We do not use a learning rate scheduler
since weights are already aligned. (This is not the
case if encoders that were not trained simultane-
ously are used.) Checkpoints are saved every 10%
of the data, and we train for 3 epochs.

The training time for all models was less than
two hours on an Nvidia V100. Utilizing FP16
training, the GPU memory consumption remained
below 12 GB.

3.3 Training Data

CLIP is pretrained on 400 million image-text pairs
from web sources, and we continue the model
pretraining. We use the COCO image captioning
dataset (Lin et al., 2015), which has 591 thousand
image-text pairs (2017 train version). For each
concept, we filtered out samples where at least one
keyword was present so that a keyword substitution
could be applied. For evaluation, we use the vali-
dation set of COCO 2017. The respective dataset
sizes are shown in the Appendix in Table 5.

4 InpaintCOCO: Challenge Set from the
Visual Perspective

Many multimodal tasks, such as VL Retrieval
and Visual Question Answering, present results
in terms of overall performance. Unfortunately,
this approach overlooks more nuanced concepts,
leaving us unaware of which specific concepts con-
tribute to the success of current models and which
are ignored. More recent benchmarks attempt to
assess particular aspects of vision-language mod-
els in response to this limitation. Some existing
datasets focus on linguistic concepts utilizing one
image paired with multiple captions; others adopt
a visual or cross-modal perspective. In this study,
we are particularly interested in fine-grained vi-
sual concept understanding, which we believe is
not covered in existing benchmarks in sufficient
isolation. Therefore, we create the InpaintCOCO
dataset with image pairs with minimum differences
that lead to changes in the captions.

Related Work. Benchmarks such as ARO (Yuk-
sekgonul et al., 2023) or VL-CheckList (Zhao et al.,
2022) evaluate models from the language perspec-
tive. ARO examines understanding of attributes
and relations without using specific concepts such
as color or size. VL-CheckList? is a dataset that in-
vestigates concrete concepts such as location, size,
material, color, and relations.

On the other side, SVO (Hendricks and Ne-
matzadeh, 2021) is a dataset that allows analy-
sis from the visual perspective (2 images with 1
caption). Here, relations that deal with verbs are
examined. To our knowledge, the only dataset
that deals with fine-grained comprehension from
a cross-model perspective is Winoground (Thrush
et al., 2022). The dataset consists of two image-

“Parts of the dataset are not available anymore.
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text pairs that are very similar to each other. This
benchmark probes object relations that do not re-
fer to specific concepts. The images show similar
concepts but are very dissimilar in overall appear-
ance. For samples of the two latter datasets, see
Figure 5 in the Appendix. Both datasets contain
real-world images that are in some ways similar in
terms of objects, but the scenes still differ signifi-
cantly. Therefore, it is difficult to tell which image
differences cause the model predictions.

We overcome this limitation by creating Inpaint-
COCO, the first dataset with only minor changes
in the visual components, so that concept compre-
hension can be analyzed in a more standardized
setting.

Dataset Creation. The dataset creation process
can be viewed a complement to textual hard-
negative samples (§ 3) in the visual domain. Unlike
keyword substitutions, this cannot be done automat-
ically with sufficient accuracy. Even though image
segmentation and generative inpainting tools reach
impressive results, they still require human super-
vision to produce high-quality images. Creating a
high-quality test set, therefore, requires annotation
work.

To generate hard negative image samples, we
need to change individual details in the image so
that the textual image description no longer fits.
The procedure is illustrated in Figure 3.

The annotation proceeds as follows: The anno-
tators are provided with an image and decide if
they want to edit it. If yes, they input the prompt
for the object that should be replaced. Using the
open vocabulary segmentation model CLIPSeg?
(Liiddecke and Ecker, 2022) we obtain a mask for
our object of interest (i.e., “fire hydrant”). Then,
the annotator inputs a prompt for Stable Diffusion
v2 Inpainting* (Rombach et al., 2022) (e.g. with
the prompt “yellow fire hydrant”), which shows
three candidate images. The annotators can try new
prompts or skip the current image if the result is
insufficient. Finally, the annotator enters a new
caption that matches the edited image. See Ap-
pendix A for all details. The images and captions
come from the COCO 2017 validation data. We
only use images that contain the desired concept
and where licenses allow adaptations.

We provide 452 images for the concept object,

3https://huggingface.co/CIDAS/clipseg-rd64-refined
“https://huggingface.co/stabilityai/stable-diffusion-2-
inpainting

465 for color, and 343 for size. In contrast to
the training process, objects in images are only
replaced with objects from the same COCO super
category, i.e., “‘cat” with another animal or “chair”
for another piece of furniture. Since location would
require erasing at one spot and implanting objects
at another in a nontrivial way (especially regarding
depth), we discard this one concept in the newly
created dataset. The dataset will be available upon
publishing via the HuggingFace hub.

S Experiments

We run several experiments to evaluate the pro-
posed method. We compare the original OpenAl
model (Orig.), with continued pretraining CLIP
model using the classical contrastive learning ap-
proach (Clas.) and our method with 1 up to 3 hard
negative values per batch (HN1, HN2, HN3). We
measure both how well concepts are learned and
whether the general image retrieval capability of
the model changes on the COCO dataset (§ 5.1).
Additionally, we evaluate the method using our In-
paintCOCO challenge set (§ 5.2), and several other
datasets (§ 5.3).

5.1 Fine-grained vs. Coarse Understanding

Fine-grained Concept Understanding. Here,
we are interested in whether models have learned
detailed concept knowledge. We pose the evalua-
tion as a ranking problem with one image on one
side and n different texts on the other side. Besides
the correct text (containing the correct keyword),
we generate all possible n — 1 negative examples
using the same procedure as in § 3.1 and rank the
texts with the model. We evaluate the ranking using
the top-1 accuracy. See Table 4 in the Appendix
for some examples.

General Image Retrieval. We evaluate the gen-
eral capabilities of our models using the COCO
dataset. We want the general retrieval capability to
remain high even though we train our models with
a focus on one concept. We report text-to-image
retrieval Recall@5 on the whole COCO validation
set.

Results. Results are shown in Figure 4 (and exact
results per epoch are displayed in Table 7 in the
Appendix). The performance of the original Ope-
nAI CLIP is shown with a black dot and constantly
reaches the worst results. Continued pretraining
on COCO massively increases the general retrieval
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Figure 4: Fine-grained Concept Understanding vs. General Image Retrieval: Results for four different concepts
trained on corresponding dataset subsets. Checkpoints are evaluated after every 10% of the data (circles); checkpoints
at epoch ends are marked with the respective numbers. The results are also in a table form in Table 7 in the Appendix.

performance for all concepts, showing the success-
ful domain adaptation regarding this dataset. It
also improves the concept understanding for all
concepts except for location. We are especially
interested in the trade-off between general retrieval
and concept understanding for the different types
of further pretrained models. The following values
are based on model checkpoints at the end of the
epoch.

For objects, we observe a performance increase
regarding the fine-grained comprehension from
0.56 for the original OpenAl CLIP models to 0.76
when further pretraining on COCO. Using the hard
negatives approach, performance increases by 7
to 10 percentage points, depending on the hard
negative proportion and training duration. Here,
the general retrieval performance only drops by 1
to 2 percentage points in relation to the classical
approach.

We observe a similar pattern can be seen for the
concept color. Understanding of the concept im-

proved by 11 to 15 percentage points compared to
the original training process. On the other hand, the
general comprehension pattern loses 3 to 4 percent-
age points with HN1 and slightly more with hard
negative values. In this case, one hard example
seems sufficient to learn concepts.

A single hard negative sample per batch is
enough to enhance spatial understanding (loca-
tion). Here, concept comprehension improves by
29 or 30 percentage points (depending on the dura-
tion of training) to around 90%. Both the original
CLIP model and the further pretrained model only
achieved around 60%. The general understanding
decreases by 1 percentage point only or by 2 per-
centage points with long training. A substantial im-
provement in location comprehension is achieved
with negligible loss in overall understanding

We observe a similar pattern for the size con-
cept. Further pretraining on COCO improves con-
cept understanding by 5 to 8 percentage points
to around 75%. On the other hand, if the new
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Epoch | Orig. Clas. HN1 HN2 HN3
1 0.85 0.88 0.88 0.88
2 0.84 0.86 0.88 0.88
3 0.87 0.88 0.89 0.90
(a) Object
Epoch | Orig. Clas. HN1 HN2 HN3
1 0.83 0.89 0.89 0.89
2 0.83 0.90 0.90 0.91
3 0.83 0.90 0.91 0.92
(b) Color
Epoch | Orig.  Clas.  HNI
1 0.55
2 0.28 0.57
3 0.30 0.60
(c) Size

Table 1: Accuracy for fine-grained understanding from
the visual perspective following Equation (1) for In-
paintCOCO dataset.

learning concept is used, the result is 90%, which
corresponds to an additional improvement of 15
percentage points. Depending on training time, the
general image retrieval capabilities lose no or only
3 percentage points. As with location, an almost
continuous improvement can be observed.

Across all concepts, hard negative contrastive
learning can significantly increase concept under-
standing. This also applies to settings with just
one hard example. It is shown that with a small
adjustment in the objective, the models can learn a
much more complex understanding of image and
text. Meanwhile, the general ability to represent
images and texts is hardly affected.

5.2 Challenge Set Results

The ranking-based evaluation in the previous sec-
tion only assessed the model capabilities from the
language perspective in a very similar setup to how
the model was trained. This section assesses the
model from the vision perspective using our In-
paintCOCO challenge set.

We consider an image pair from the Inpaint-
COCO dataset correctly classified if the correct
images would be more likely to be retrieved based
on the original caption and the newly created cap-
tion. This leads to the formula,

sim(icoco, tcoco) > sim(Zinp, tcoco) A n
sim(inp, tinp) > sim(icoco tinp)

with image ¢ and text ¢, originating from the orig-

inal COCO and InpaintCOCO dataset. The corre-

sponding results for each concept are displayed in

Table 1.

The results show that continued pretraining im-
proves understanding of all three concepts (object,
color, size). The improvements between the origi-
nal OpenAl CLIP model and the further pretrained
model are 6 to 9 percentage points for the object
and 21 for the color concept. The improvements are
less distinct for size, with a 1 to 4 percentage point
gain, which aligns with the textual comprehension
results displayed in Figure 4d.

For the object concept, hard negative training
brought a 7 to 10 percentage point improvement
for the textual viewpoint (see Table 7). For the eval-
uation from the visual perspective, improvements
are 2 to 4 percentage points. This relatively smaller
improvement is likely because each object could
be replaced with the 79 other object names during
training. Still in this evaluation, a replacement was
only executed within the COCO super-category
(5 to 10 object names per super-category). The
differences in performance between the three mod-
els using hard negative training is < 2 percentage
points.

The evaluation of the color concept shows an
improvement of 6 to 9 percentage points for the
visual perspective. From the textual perspective
(Table 7), the improvement was at over 11 percent-
age points. As before, using more hard negative
samples during training does not further improve
the performance systematically (< 2 percentage
point).

For the size concept, we see a big improvement
for both perspectives when using hard negative
models. From the visual perspective, there is an im-
provement of over 28 percentage points (Table 1c),
and from the textual perspective, 13 to 16 percent-
age points.

The results show that training for just one epoch
is sufficient for learning the concepts object, color,
and size, and further training does not continue
improving the results systematically. Additionally,
using a single hard negative is sufficient to improve
understanding of the concepts.
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Dataset Concept Count | Orig. Clas. HNI HN2 HN3
Flickr30k object 30,926 | .48 .66 75 77 .79
color 45,003 .50 .64 72 73 74
location 20,097 .62 .64 .89
size 14,853 75 .79 .92
SBU object 200,310 [ .33 41 A48 49 .50
color 162,652 | .51 .54 .61 .62 .62
location 159,673 | .61 .60 .79
size 47,069 .63 .65 73
Fashion200K object 3,628 .35 .38 .39
color 141,413 | .68 .68 .69 .69 .70
NASA Earth Instagram  color 132 s 48 .55 .55 .58
Old Book Illustrations  object 124 |27 .35 .38 35 31
location 95 .61 a7
size 82 .63 .79

Table 2: Fine-grained concept understanding results (accuracy) for a diverse selection of datasets where the sample
size is larger 50. Evaluated on dataset subsets where corresponding keywords are present.

5.3 Evaluations on other Datasets

We further investigate the performance of our
model using more VL datasets. First, we evalu-
ate the models using general VL datasets. The
investigated concepts occur with different frequen-
cies, and for high-quality results, it is important
that these concepts are understood to increase the
overall performance. Therefore, we further inves-
tigate fine-grained concept understanding on the
Flickr30k (Young et al., 2014) and SBU Captioned
Photo (Ordonez et al., 2011) datasets.

Fine-grained concept understanding is also im-
portant in specific domains. For example, in fash-
ion, a correct assignment of garments and colors is
important, not the mere presence of colors in the
image. For this analysis, we evaluated our models
on the very specific datasets Fashion200K (Han
et al., 2017), NASA Earth Instagram,> and Old
Book Illustrations.® These datasets are very hetero-
geneous in their appearance.

All models achieve good results except the color
concept on the Fashion200k dataset and object con-
cept on Old Book Illustrations. For the former, this
is because images usually show garments with a
distinct color. Yet, there is little background noise
or noise from irrelevant items, which can confuse
the color alignment of the model in this dataset.
The latter shows old-fashioned drawings with ob-
jects very dissimilar to those in the COCO dataset.
Our approach to learn concepts works very well for
the remaining evaluations.

Shttps://huggingface.co/datasets/nkasmanoff/nasa_earth_
instagram
®https://huggingface.co/datasets/gigant/oldbookillustrations

6 Conclusion

We introduce a robust method for enhancing fine-
grained concept understanding with minimal im-
pact on general retrieval capabilities using hard
negative sampling in contrastive learning. We show
that various concepts can be learned efficiently with
minor text input adjustments. Moreover, improve-
ments in concept understanding are observable af-
ter continued pretraining on only 10% of our data.
Furthermore, one hard negative sample per image
in a batch of 64 proves sufficient to incorporate the
concept of interest into the model.

We comprehensively evaluate our method on sev-
eral datasets, including our new challenge set. Our
method outperforms classical contrastive learning
on all investigated concepts. Existing datasets often
focus on linguistic perturbations or use dissimilar
images, precluding a structured evaluation of per-
muted visual concepts in isolation. To address this
gap, InpaintCOCO represents the first dataset ad-
justing minor image parts in a controlled setting,
facilitating cross-model fine-grained understanding.
This ensures that the model’s output is influenced
only by one object and not the rest of the scene.

The results show that fine-grained concept un-
derstanding also generalizes to images of differ-
ent styles when using InpaintCOCO and domain-
specific datasets. Our method is data-efficient and
requires only a little domain knowledge to design
the hard negatives. This makes it particularly suit-
able for domain adaptation in image retrieval, as
well as for developing new CLIP-based models,
e.g., for object detection (Minderer et al., 2023).
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Limitations and Risks

Our research introduces a novel method for training
CLIP aimed at incorporating concepts and represen-
tations that are challenging to learn using current
approaches. In our experiments, we only used one
specific CLIP model; however, we believe there
is no reason why the method should not work or
work systematically differently for smaller or larger
CLIP models.

We conducted training with the well-studied
COCO captioning dataset, which is standard in
multimodal research. The proposed method is ex-
pected to show consistent performance also using
other multimodal training datasets. Notably, evalu-
ations on out-of-domain datasets, where the model
was not trained, emphasize the robustness of our ap-
proach. One essential prerequisite for our method-
ology to work is the presence of keywords of inter-
est in the training corpus and language and domain
knowledge to decide how the keywords should be
replaced. The keyword substitution will be more
difficult in languages with more complex morphol-
ogy than in English. Experiments involved using
four concepts with a carefully chosen set of key-
words. Depending on domain-specific tasks, other
keywords might be of interest (e.g., a large list of
garments for the fashion domain).

COCO is a dataset with image-text pairs where
the captions are proper sentences, displaying a spe-
cific level of detail, and are carefully created by
annotators. The images in the COCO dataset come
from Flickr from 2014; therefore, they reflect the
Flickr user structure at that time, i.e., the images
mostly show the Western world and/or other coun-
tries from the Western perspective. The captions
are in English. Thus, the model we developed
does not generalize well beyond the Western world.
However, we believe that is the limitation of the
dataset, and the presented method itself is dataset
agnostic.

The primary application goal of the models we
worked with is to make image collections better
accessible. Similar to other work on this VL mod-
eling that enables better image understanding at

scale, there is a risk of using technology based on
the models for activities such as large-scale video
surveillance.
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A Appendix

Creating Hard Negative Samples In Table 3,
we specify all used substitution keywords for the
concepts object, color, location, and size.

Table 4 lists text samples for the fine-grained
concept understanding task, which is used in § 5.1
for each concept.

Concept  Keywords

object [person, bicycle, car, motorbike, aeroplane,
bus, train, truck, boat, traffic light, fire hydrant,
stop sign, parking meter, bench, bird, cat, dog,
horse, sheep, cow, elephant, bear, zebra, gi-
raffe, backpack, umbrella, handbag, tie, suit-
case, frisbee, skis, snowboard, sports ball, kite,
baseball bat, baseball glove, skateboard, surf-
board, tennis racket, bottle, wine glass, cup,
fork, knife, spoon, bowl, banana, apple, sand-
wich, orange, broccoli, carrot, hot dog, pizza,
donut, cake, chair, sofa, potted plant, bed, din-
ing table, toilet, tv monitor, laptop, mouse, re-
mote, keyboard, cell phone, microwave, oven,
toaster, sink, refrigerator, book, clock, vase,
scissors, teddy bear, hair drier, toothbrush]
[blue, red, green, yellow, black, white, brown,
gray, orange]
left <> right, above <+ below, under <> over,
foreground <+ background, in front of <> be-
hind, back < front
size large <+ small, little <+ big, tall <> short, long
— short, thin < fat, huge < tiny, giant —
tiny

color

location

Table 3: All keywords that can be replaced for the four
concepts. That are 80 for object, 9 for color, 12 for
location and 11 for size. In lists, each word can be
replaced by any other word. “&” and “—” denote
words that can be replaced in both and one direction,
respectively.

COCO training and evaluation data. Table 5
shows the size of the training datasets and fine-
grained concept understanding evaluation datasets.
The images predominantly depict scenes from the
USA and Western countries, and all captions are
exclusively in English.

There are many large-scale VL datasets available
to pretrain or further pretrain models (e.g., Concep-
tual Caption (Sharma et al., 2018) or LAION-5B
(Schuhmann et al., 2022) with 3.3 million and 5
billion image-text pairs respectively). Yet, results
in Figure 4 indicate that training on a small-sized
COCO dataset (even for just one epoch) is suffi-
cient to learn the concepts of interest.

Fine-grained VL Benchmarks. In Table 6, we
list different benchmark datasets for fine-grained
understanding in VL. Some image-text samples for

A small yellow person on a branch of a tree.
A small yellow bicycle on a branch of a tree.

A small yellow bird on a branch of a tree.
A small yellow cat on a branch of a tree.

X X < X X X

(a) Object (for all 80 object names)

a blue cat sits under a black open umbrella.

a red cat sits under a black open umbrella.

a green cat sits under a black open umbrella.
a yellow cat sits under a black open umbrella.
a black cat sits under a black open umbrella.
a white cat sits under a black open umbrella.
a brown cat sits under a black open umbrella.
a gray cat sits under a black open umbrella.

a orange cat sits under a black open umbrella.

XX X XX XXX

(b) Color

a white cat sits under a black open umbrella.
a white cat sits over a black open umbrella.

> <

(c) Location

A small yellow bird on a branch of a tree.
A large yellow bird on a branch of a tree.

> <

(d) Size

Table 4: Exemplary image descriptions that are used as
text samples in the fine-grained concept understanding
task (see § 5.1) for the example images displayed in
Figure 1 or Figure 3.

Concept  Further pretraining  Evaluation

dataset size  dataset size
object 305,056 12,907
color 92,006 3,907
location 58,156 2,527
size 60,626 2,601

Table 5: COCO dataset size for all concepts used for
further pretraining CLIP and evaluation.

ARO and Winoground are displayed in Figure 5
since these datasets provide two images per sample
— similar to InpaintCOCO. However, unlike Inpaint-
COCO, the visual representations are very different
regarding the scenes presented in these datasets.

Challenge Set Creation. Undergraduate student
workers created the challenge set. They were pro-
vided with an interactive Python environment with
which they interacted via various prompts and in-
puts. The description of the task and the problem of
the research question was made available to them
(see Figure 6). In addition to a detailed written
explanation of how the tool works, they were also
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Dataset Size Perspective Samples Tasks

ARO 77k Linguistic 1 image <+ 2 texts  Attributes, Relations, Order understanding
VL-CheckList 410k  Linguistic 1 image <> 2 texts  Attributes, Relations, Object understanding
SVO-Probs 48k Visual 2 images <+ 1 text  Relations (Verb Understanding)

Cross-modal
Cross-modal

Winoground 400
InpaintCOCO 1,260

2 images <+ 2 texts
2 images <+ 2 texts

Relations
Attributes, Object understanding

Table 6: Datasets for fine-grained understanding in VL.

A boat can moor while
at sea.

(a) SVO-Probes

a small cat is next to a
big dog

a big cat is next to a
small dog

the  businessperson’s
down fall

the businessperson’s fall
down

(b) Winoground

Figure 5: Samples from visual and cross-model datasets.

given “best practices,” which were created by one
student and reviewed by the authors.

For color, any other color and for size, the oppo-
site statement can be chosen. Yet, within objects,
the students were asked to replace with objects
from the same COCO super-category (to ensure
that no “plain” needs to be inpainted in an indoor
scene). There are 12 super categories for the 80
object names: person, vehicle, outdoor, animal, ac-
cessory, sports, kitchen, food, furniture, electronic,

appliance, and indoor.

The workflow comprises these steps:

1. A random COCO (2017 validation) image is
shown with all its captions containing a con-
cept keyword.

2. The annotator enters a masking prompt for
the segmentation task based on the object of
interest (e.g., “fire hydrant” in Figure 3). They
can also enlarge the mask within the z and y
dimensions by passing additional parameters.
This is useful if a larger object is to be inserted
into the image. Several attempts can be made
until the mask meets the requirements. Only
then the next step is carried out.

3. Then, the annotator enters an inpainting
prompt (the image generation takes roughly 1
minute). They are provided with three differ-
ent inpainted images. They proceed if at least
one high-quality image has been generated.

4. The best image is chosen from the three pro-
posals.

5. Based on the selection before, they rate the
pictures as “very good” or “okay”.

6. Finally, a new, correct caption is added based
on one of the original COCO captions.

A subset of students had pre-existing roles
within the university, while others were purpose-
fully recruited for the designated task. The com-
pensation for student assistants adhered to the
legally stipulated wages in their respective coun-
tries, amounting to CZK 300.00 per hour in the
Czech Republic and EUR 12.00 per hour in Ger-
many.

Challenge Set Details. Our InpaintCOCO chal-
lenge set is based on the famous COCO
dataset. All captions follow “Creative Com-
mons Attribution 4.0 License” and hence can
be changed. Images originate from Flickr,
and have diverse licenses (“Attribution Li-
cense”’, “Attribution-NonCommercial-ShareAlike
License”, “Attribution-NonCommercial License”,
“Attribution-ShareAlike License”) which all allow
scientific usage and modification (like inpaining).
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COCO Inpainting Tool

Idea

Replace things in images, so that the image description does not fit anymore. Replace only "color” names, only “size"
names or only "object" names according to the task.

Workflow

Bronsting C.Best D. Grade E.new
Promet _ image 1d qualty capton A smal
B B B . blue bird
A na
Ll s,
Enter Enter " Enter*y” ofa
Asmall bird (very ree.
yellow bird good)
on a branch
ofa
tree.
Details:

« We have a dataset with images and image descriptions.

« For specific keywords (either "color”, “object” or "size" names), we want to change the appearance of the image so that
the image description does not match the initial description anymore.

For the "color” task: We have the caption A woman in a red jacket skiing down a slope for the following image:

0 100 200 300 400 500 600

The "color" keyword is red , S0 we want to change the color of the corresponding object, which is jacket

Our object
the detected region

model detects the regi , here jacket so that a new object can be inserted into

Now we want to insert the same object but with another color. For example, we can use the inpaint prompt yellow

Jacket .

As last step we add a new caption which correctly describe the image based on the original sentence A wonan
in a yellow jacket skiing down a slope . You have to use the original sentence as a basis.

What to do first (and only once)?

« Download data according to: htips: X

2017#usage
« Setyourinitals in USER_INITALS
« Adjust PATH_TO_TMAGE_FOLDER environment variable. Path to coco2017 data, e.g. */home/XXXXXX/Data/coco2017"

« Set KEWORD_TYPE environment variable to "color”, "object", or "size" according to your task

What to do?

« Run interactive() and follow the instructions
« Enter masking resp. inpainting prompts, or shortcuts to reach setting [A}, [B], [C], or [D].
« Enter [OK] (or shortcut [O] or [K])if results are fine and if you want to proceed.

« Restart the kernel if you switch between keyword tasks.

Best practices

For the example "An old yellow plane is flying in the sky." you want to replace the color of the plane

D |

« Inpaint prompt : If you get bad results try to be more precise!
Give context: Better "old green plane in the sky" or even "old green single-motor plane in the sky” than "green
plane”
Enforce change details: Better "completely green plane" or "completely green painted plane” instead of "green
plane”.
‘Sometimes short, sometimes long descriptions work better!

« New caption : Try to stick as close as possible to one of the original captions.

More best practices see here.

Figure 6: Instructions of inpainting tool provided to
student workers.

Individual licenses are listed in each sample of the
dataset.

Experiment Results. For numeric results from
Figure 4 see Table 7. In this Table fine-grained con-
cept understanding results (Accuracy) and COCO
text-to-image retrieval results (T2I R@5) are pre-
sented. “Orig.”, “Clas.”, “HN1”, “HN2”, and
“HN3” indicate the original OpenAl CLIP model,
the classical further pretrained model, and models
trained with 1, 2, or 3 hard negative samples.

A bird is standing
on top of a car.

A cat is standing on
top of a car.

(a) Object

A couple of black
bathroom sinks sit-
ting next to a toilet.

A couple of white
bathroom sinks sit-
ting next to a toilet.

(b) Color

d ~ (€]
A living room with
white furniture and
a small wooden ta-

A living room with
white furniture and
a huge wooden ta-
ble. ble.

(c) Size

Figure 7: InpaintCOCO samples for all concepts.

114



Accuracy T2l R@5
Concept Epoch | Orig. Clas. HNI1 HN2 HN3 | Orig. Clas. HN1 HN2 HN3
object 1 76 .83 .84 .86 .68 .67 .67 .66
2 .76 .84 .85 .85 .68 .67 .67 .67
3 76 .83 .85 .86 .69 .68 .68 .68
color 1 .69 .81 .82 .83 .64 .61 .60 .59
2 1 .82 .83 .84 .64 .61 .61 .59
3 .69 .82 .83 .84 .64 .60 .59 57
location 1 .89 .65 .64
2 .90 .65 .64
3 91 .65 .63
size 1 .90 .64 .64
2 .90 .65 .63
3 .90 .65 .62

Table 7: Accuracy of fine-grained concept understanding (evaluated on dataset subsets) and COCO text-to-image
Recall@5 for general image retrieval (evaluated on whole dataset) for models trained on respectively concepts.
Checkpoints for epochs 1 to 3.
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