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Abstract

Modular vision-language models (Vision-
LLMs) align pretrained image encoders with
(frozen) large language models (LLMs) and
post-hoc condition LLMs to ‘understand’ the
image input. With the abundance of readily
available high-quality English image-text data
as well as strong monolingual English LLMs,
the research focus has been on English-only
Vision-LLMs. Multilingual vision-language
models are still predominantly obtained via
expensive end-to-end pretraining, resulting in
comparatively smaller models, trained on lim-
ited multilingual image data supplemented with
text-only multilingual corpora. We present
mBLIP, the first Vision-LLM leveraging mul-
tilingual LLMs, which we obtain in a compu-
tationally efficient manner on consumer-level
hardware. To this end, we re-align an image
encoder previously tuned to an English LLM
to a new, multilingual LLM using only a few
million multilingual training examples derived
from a mix of vision-and-language tasks, which
we obtain by machine-translating high-quality
English data to 95 languages. On the IGLUE
benchmark and XM3600, mBLIP yields re-
sults competitive with state-of-the-art mod-
els and it greatly outperforms strong English-
only Vision-LLMs like Llava 1.5. We release
our model, code, and train data at https:
//github.com/gregor-ge/mBLIP.

1 Introduction

The success of model and data scaling in NLP
from BERT (Devlin et al., 2019) to more recent
Large Language Models (LLMs) (Brown et al.,
2020; Zhang et al., 2022; Touvron et al., 2023, in-
ter alia) has prompted similar endeavors in vision-
language pretraining from ‘small’ BERT-size mod-
els (Chen et al., 2020; Li et al., 2020, 2021, 2022)
trained on a few million image-text pairs to billion-
parameter models trained with billions of examples

∗Work done during an internship at WüNLP

(Wang et al., 2021; Yu et al., 2022; Wang et al.,
2022; Chen et al., 2022, 2023). The prohibitive
cost of such end-to-end (pre)training, however, has
resulted in increased interest in efficient modular
methods that leverage existing large language mod-
els (LLMs). These align the output of a pretrained
image encoder to the LLM’s input representation
space (Tsimpoukelli et al., 2021; Alayrac et al.,
2022; Li et al., 2023a), resulting in a Vision-LLM.

Pretraining vision-language models from scratch
requires a massive amount of high-quality image-
text data, which is only available in English. Be-
cause of this, multilingual pretraining of vision-
language models (Ni et al., 2021; Zhou et al., 2021;
Zeng et al., 2023; Shan et al., 2022; Li et al., 2023c)
commonly supplements limited-size multilingual
image-text data with multilingual text-only data
(the amount of which often surpasses that of image-
text data) to achieve strong results, despite initial-
ization with weights of multilingual text encoders
such as XLM-R (Conneau et al., 2020).

In this work, we recognize modular Vision-LLM
methods as a potential solution to this problem, ob-
serving that: (1) once an image encoder is aligned
to one LLM, it requires significantly less data to
re-align it to another LLM (Zhang et al., 2023; Zhu
et al., 2023) and (2) since image encoding is, in
principle, language-agnostic, it may be possible to
successfully re-align the image encoder to a strong
multilingual LLM, even if it was initially aligned
only with English image-text data. Based on these
observations, we present mBLIP, the first massively
multilingual modular Vision-LLM, which we ob-
tain by (re-)aligning an image encoder to a mul-
tilingual LLM. Putting together a range of recent
advances in multimodal representation learning,
we efficiently bootstrap a massively multilingual
Vision-LLM using only ∼2.5 million images (and
without any additional multilingual text-only data),
training only 124 million parameters on consumer-
grade hardware. We achieve this efficiency by: 1)
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bootstrapping our model from a) an “English” im-
age encoder (Li et al., 2023a), previously aligned
to a monolingual English LLM and b) a strong
instruction-tuned multilingual LLM (Xue et al.,
2021; Scao et al., 2022; Muennighoff et al., 2022);
2) leveraging recent advances in massively mul-
tilingual machine translation (Costa-jussà et al.,
2022), which we use to translate high-quality En-
glish data—both classic captions as well as task
instructions (Dai et al., 2023)—to 95 languages;
and finally 3) coupling parameter-efficient training
methods (Hu et al., 2022) together with quantiza-
tion (Dettmers et al., 2022, 2023) to enable training
on consumer-grade hardware.

We extensively evaluate mBLIP on different
multilingual vision-language tasks to confirm the
efficacy of our approach: for multilingual im-
age captioning, mBLIP (with mT0-XL) surpasses
(zero-shot) PaLI-X (a model with 55B param-
eters, trained with billions of examples) (Chen
et al., 2023) on the XM3600 (Thapliyal et al.,
2022). On the visual reasoning and QA tasks of
the IGLUE benchmark (Bugliarello et al., 2022),
mBLIP matches or surpasses the performance of
state-of-the-art models, despite training far fewer
parameters on far less pretraining data. We consis-
tently outperform state-of-the-art English Vision-
LLMs outside of English, highlighting the multilin-
gual prowess of our model.

2 Related Work

2.1 LLMs and Images

The success of scaling up training data and model
parameters has resulted in large vision-language
models with billions of parameters (Wang et al.,
2021; Yu et al., 2022; Wang et al., 2022). However,
with the number of parameters in single-digit bil-
lions, these are still an order of magnitude smaller
than text-only models (Brown et al., 2020); the
compute necessary to pretrain comparably large
vision-language models, however, is available only
to select few (Chen et al., 2022, 2023).

Instead, much of the vision-language research
turned to approaches that can leverage the power of
existing LLMs by training an image encoder to map
an image into a sequence of tokens in the LLM em-
bedding space (Tsimpoukelli et al., 2021; Alayrac
et al., 2022; Li et al., 2023a), while the LLM is kept
as-is or is only partially tuned (Alayrac et al., 2022).
Most recently, the release of strong publicly avail-
able LLMs such as Llama (Touvron et al., 2023)

and the success of conversational instruction tun-
ing (Ouyang et al., 2022; Taori et al., 2023; Chiang
et al., 2023; Xu et al., 2023), has led to a body of
work (Zhu et al., 2023; Liu et al., 2023b; Ye et al.,
2023; Dai et al., 2023; Gao et al., 2023; Liu et al.,
2023a; Bai et al., 2023) that tries to replicate the
vision-language skills of GPT-4 (OpenAI, 2023).
The vast majority of research focused on English,
where both an abundance of high-quality image-
text data and strong LLMs exist. To the best of our
knowledge, we are the first to extend a massively
multilingual LLM with “vision capabilities”.

2.2 Multilingual Vision-Language Models

While the majority of research on vision-language
models targets English only, a number of multi-
lingual models have been proposed too. M3P (Ni
et al., 2021), the first transformer-based (Vaswani
et al., 2017) multilingual vision-language model,
adopts the architecture and pretraining objectives
of English counterparts (Chen et al., 2020; Li et al.,
2020). but trains on (i) the code-switched image-
text data in which words in English image cap-
tions are replaced with translations from various
languages as well as (ii) additional text-only mul-
tilingual corpora. UC2 (Zhou et al., 2021) uses a
similar architecture and a mix of training objectives
but instead of code-switching, it machine translates
the 3M captions of CC3M (Sharma et al., 2018) to 5
languages (German, French, Czech, Japanese, and
Chinese). Li et al. (2023c) and CCLM (Zeng et al.,
2023), which adopt the ALBEF architecture (Li
et al., 2021) that incorporates additional contrastive
learning objectives, use the same translated CC3M
data but they additionally supplement 19M parallel
sentences (pairing English with all of the languages
spanned by their respective downstream evaluation
tasks). ERNIE-UniX2 (Shan et al., 2022), with an
encoder-decoder architecture, adopts the same pre-
training objectives but scales up the data to more
translated captions and more text-only data (both
aligned and monolingual). Finally, PaLI (Chen
et al., 2022) (17B parameters) and PaLI-X (Chen
et al., 2023) (55B parameters) represent two huge
encoder-decoder models trained using a mixture
of vision-and-language tasks, with billions of web-
crawled multilingual captions, machine translated
data, automatically extracted data (e.g., OCR and
object detection), and generated visual QA (VQA)
examples. With the exception of the PaLI models
and ERNIE-UniX2 – both of which are not publicly
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available – all other multilingual vision-language
models represent encoder-only architectures, which
cannot perform image captioning out of the box.

3 mBLIP

We first briefly describe the modular BLIP-2 archi-
tecture (Li et al., 2023a) which we adopt in this
work, followed by the description of training tasks
and data, which we translate to 95 languages.

3.1 Architecture

We follow the modular BLIP-2 architecture (Li
et al., 2023a) depicted in Figure 1: A Query-
Former (Q-Former) is an encoder-only transformer
(Vaswani et al., 2017) with 32 learned query tokens
as input: it contextualizes the query tokens – via
the cross-attention mechanism – with the represen-
tations of the image patches encoded by a large
(frozen) Vision Transformer (ViT) (Dosovitskiy
et al., 2020). The visual tokens that are the output
of the Q-Former are then projected into the LLM
embedding space with a single linear projection
matrix WP ∈ Rhv×hl , with hv and hl as hidden
dimensions (i.e., embedding dimensionality) of the
Q-Former and LLM, respectively.

During training, only the the Q-Former (includ-
ing the 32 query tokens) and the linear projection
WP are updated; all ViT and LLM parameters are
kept frozen. Although the Q-Former and projec-
tion have initially been aligned to a monolingual
English LLM, they only produce visual tokens: we
believe that as such they are not overly tailored to
English and can therefore be effectively re-aligned
to a different, multilingual LLM.

Because the LLM is frozen in the BLIP-2 train-
ing, its parameters cannot adapt to task-specific
idiosyncrasies, e.g., in fine-tuning for VQA or for
instruction-following (Dai et al., 2023). Instead,
task-specific fine-tuning of BLIP-2 requires that
the text input is not just fed into the LLM but also
into the Q-Former in order to enable encoding of
task-specific visual information from the input. The
Q-Former, however, is based on the English BERT
(Devlin et al., 2019), preventing the application
of this same approach in the multilingual setting
(i.e., we cannot feed the text in other languages
into the Q-Former nor efficiently make it massively
multilingual, i.e., without a large multilingual pre-
training effort). Because of this, we opt for a dif-
ferent approach: instead of feeding the text of the
image-text instance (e.g., in VQA) to the Q-Former,

we partially update the LLM with the parameter-
efficient LoRA (Hu et al., 2022), which trains low-
rank reparametrization of the LLM matrices.

3.2 Training Tasks and Data

We create a small but high-quality mix of tasks for
our re-alignment training. We start from existing
high-quality English data and machine-translate
it to 95 languages in order to obtain multilingual
training data for re-alignment of the Q-Former to
the multilingual LLM.1 We hypothesized that the
re-alignment to a new LLM can be done with sig-
nificantly less data than what is needed to train
the original Q-Former (Zhu et al., 2023; Zhang
et al., 2023). Accordingly, we create a small,
high-quality English datasets and make it multi-
lingual via MT rather than training with large-
scale but very noisy multilingual image-caption
datasets like LAION5B (Schuhmann et al., 2022).
In addition, in line with findings from language-
only instruction-tuning (Sanh et al., 2022; Muen-
nighoff et al., 2022; Chung et al., 2022) and vision-
language training (Dai et al., 2023; Liu et al.,
2023b,a; Bai et al., 2023), we expect the training
on a mixture of vision-and-language tasks (as op-
posed to training only for image captioning), with
different task instructions, to result in better gen-
eralization abilities of the model and improve its
(zero-shot) downstream performance and usability.
Task Mix: We select below the tasks and datasets
used to create our training mix for re-alignment
(naturally, we ensure that the data does not overlap
with our downstream evaluation data; see §4.1).
For every task, we create a set of instruction tem-
plates with which we generate the training exam-
ples (we provide the templates in §D.1 in the Ap-
pendix, along with additional details about the train-
ing data). In total, across all tasks, we use 5.1M
examples encompassing 2.7M unique images.
1. Image Captioning: We use MSCOCO (Lin
et al., 2014) along with 2.3 million examples sam-
pled from the synthetic CapFilt dataset (Li et al.,
2022) with the noun phrase method by Liu et al.
(2023b) to ensure concept diversity. Additionally,
we use LLaVA-Instruct-Detail (Liu et al., 2023b),
which contains longer and more detailed captions.
2. Visual Question Answering and Generation:
For VQA and the inverse task of question genera-
tion (given the answer, the model is supposed to

1Training with only English data, even without LoRA,
results in the LLM producing only English output.
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Figure 1: The mBLIP architecture: A Q-Former encodes the image in learned query tokens which are projected to
the LLM space. We initialize the Q-Former from a BLIP-2 model and re-align it to the multilingual LLM with a
multilingual task mix. The image encoder and LLM (aside from LoRA weights) are frozen during training.

produce the question), we use VQAv2 (Goyal et al.,
2017). Additionally, we split the conversations
from LLaVA-Instruct-Conversation into separate
VQA pairs. We use A-OKVQA (Schwenk et al.,
2022), a knowledge-intensive VQA dataset with
rationales behind the answers, to create data for
two additional task variants: 1) given the question,
generate the answer and the rationale behind it, 2)
given the question and the answer, generate the ra-
tionale. Finally, we use ImageNet (Deng et al.,
2009) with the multilingual labels from Babel-
ImageNet (Geigle et al., 2023) framed as an open-
ended QA task (with questions like “What is in the
image?” and no predefined answer choices).
3. Matching: Inspired by image-text matching
(Lu et al., 2019), where an encoder has to classify
if caption and image match, we propose a yes/no
matching task so that the model learns what is and
what is not in the image to reduce hallucinations
when interrogating for image content (Li et al.,
2023b). For this, we use the Web CapFilt captions
for “standard” caption matching with hard nega-
tives. We also use the ImageNet examples with
multilingual class labels, where the model has to
predict if a given class is in the image or not.
Machine Translation: We translate the above En-
glish data with NLLB (Costa-jussà et al., 2022)
(nllb-200-distilled-1.3B), a recent massively mul-
tilingual MT model that exhibits strong perfor-
mance also for low(er)-resource languages. To
extend the utility of mBLIP to languages beyond
what is covered by existing multilingual evalua-
tion benchmarks, we translate the English data to
all languages from the mC4 corpora (Xue et al.,
2021),2 excluding only a handful of languages not

2tensorflow.org/datasets/catalog/c4#c4multilingual

supported by NLLB.3 Our final training dataset
thus covers 96 languages (English and 95 transla-
tion languages). Translating all English training
instances to every target language would result in a
96 times larger dataset (w.r.t. the original English
data) and, consequently, prohibitively expensive
re-alignment training. We thus translate English
instances to target languages in proportion to the
languages’ representation in mC4 (e.g., we trans-
late 6% of English instances to German, because
German represents 6% of the mC4 corpus). We do
not translate the short answers in A-OKVQA nor
most VQAv2 examples4 because translating them
without context is overly error-prone.
Output Language: Essential for multilingual mod-
els is control over the output language and mini-
mizing language hallucinations (,i.e., output in an
unwanted language) (Xue et al., 2021; Vu et al.,
2022; Pfeiffer et al., 2023; Li and Murray, 2023).
We achieve this by combining English prompts that
explicitly specify the target language (e.g., “An-
swer in French.”) and translating the instructions
for image captioning and LLaVA (Liu et al., 2023b)
to the target languages (other templates contain
placeholders that make translation difficult).

4 Experiments

4.1 Evaluation Tasks and Setup

We evaluate our model on a range of languages
on (1) classification-style VQA and image under-
standing tasks, where the model generates a short
answer in response to a question or premise and
(2) image captioning tasks, where the model de-

3Excluded are (ISO-1/3 codes): fy, haw, hmn, la, and co.
4See §D.1 for details. In short, we limit to the top-1500

answers and use consistency with back-translations to filter
incorrect translation. We also still use English half the time.
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scribes an image. For VQA and image captioning,
we ensured that no evaluation instances were used
in re-alignment training. In contrast to VQA and
image captioning, the model was not exposed to im-
age understanding during re-alignment: these tasks
thus test the model’s cross-task generalization abil-
ities. To generate outputs, we use beam search
with the beam width of 5 and a length penalty of
−1 for classification-style tasks to encourage short
answers. We provide the exact instruction-tuning
templates for each task/dataset in §D.2.
Image Captioning: XM3600 (Thapliyal et al.,
2022) is a captioning dataset covering 36 languages,
3600 images, and ∼2 captions per image and lan-
guage. xFlickrCo (Bugliarello et al., 2022) com-
bines the 1000 Flickr30k (Plummer et al., 2015)
test images with 1000 images from the MSCOCO
(Lin et al., 2014) test split5 and provides one new
caption for each image in 8 languages. For the
English xFlickrCo results, we use the standard
Flickr30k test split (i.e., without MSCOCO images
and with 5 reference captions per image). We use
CIDEr (Vedantam et al., 2015) as the evaluation
metric6 For Chinese, Japanese, and Thai, which do
not use white space for tokenization, we use the
default spaCy 3.5.3 segmenter for the respective
languages; our results on those languages are thus
not directly comparable to previous work – which,
unfortunately, does not disclose the used tokenizer
(Thapliyal et al., 2022; Chen et al., 2022, 2023).
VQA: we leverage xGQA (Pfeiffer et al., 2022)
and MaXM (Changpinyo et al., 2022), two VQA
datasets with 8 and 7 languages, respectively.
While answers in xGQA are in English (as only
the original GQA (Hudson and Manning, 2019)
questions were translated), answers in MaXM are
in the language of the question. We evaluate our
model in zero-shot inference (i.e., without any ad-
ditional fine-tuning other than the VQA training
included in the re-alignment mix) on both datasets.
For xGQA, we additionally fine-tune the model
on the training portion of the English GQA and
perform cross-lingual zero-shot transfer.7 We use
exact match accuracy with open generation, that is,
we do not constrain the generation to a fixed set of

5These captions were created from scratch and not by trans-
lating existing MSCOCO captions so this does not constitute
leakage from the MSCOCO data of the training mix.

6Implementation: pycocoeval
7Note that by zero-shot cross-lingual transfer here we refer

to the fact that the model has been fine-tuned only on the
English GQA data; in re-alignment training, however, it has
been exposed to VQA from other datasets.

labels like, e.g., Zeng et al. (2023). For MaXM, an
exact match to any one of the answer candidates is
correct, as proposed by Changpinyo et al. (2022).
Image Understanding: XVNLI (Bugliarello et al.,
2022; Xie et al., 2019) is a visual entailment task
that covers 5 languages: given an image and a
statement, the model has to decide if the image
entails, contradicts or is neutral to the statement.
MaRVL (Liu et al., 2021) is based on NLVR2 (Suhr
et al., 2019) with new images and concepts span-
ning different cultures in 6 languages: given two
images, the model has to decide if a statement is
true or false. We separately encode the two im-
ages with the Q-Former and then concatenate their
visual tokens together as input for the LLM. Like
for xGQA, we evaluate the models on XVNLI and
MaRVL with (1) zero-shot inference (i.e., no fine-
tuning for XVNLI and MaRVL) and (2) supervised
cross-lingual transfer: we fine-tune the re-aligned
model on the English training portions (of XVNLI
and NLVR2, respectively) and evaluate its perfor-
mance on the test portions of target languages. We
report the results in terms of exact match accuracy.

4.2 Implementation Details
Architecture: We initialize the mBLIP’s ViT (EVA
CLIP ViT-g/14 (Fang et al., 2022)) and Q-Former
with the BLIP-2 Flan-T5-XL checkpoint. For the
multilingual LLM, we experiment with mT0-XL
and BLOOMZ-7B (Muennighoff et al., 2022), the
instruction-tuned versions of mT5-XL (Xue et al.,
2021) and BLOOM-7B (Scao et al., 2022). We use
8/4-bit quantization (Dettmers et al., 2022, 2023).
Warmup: Similar to Zhang et al. (2023); Liu et al.
(2023b), we first train only the linear projection be-
tween the Q-Former and LLM. with 1M captions.
Re-Alignment Training: We train on the re-
alignment task mixture for 80k steps (2 epochs),
which takes 4 days (mT0) and 6 days (BLOOMZ)
with 4 consumer-grade NVIDIA RTX 3090 cards.
Fine-tuning: We train 3 runs—reporting their
average—and select the optimal checkpoint based
only on the English validation data for true zero-
shot cross-lingual transfer (Schmidt et al., 2022).

Full hyperparameters are listed in Appendix A.

4.3 Results
Baselines. We compare with various multilin-
gual baselines: PaLI (Chen et al., 2022), PaLI-
X (Chen et al., 2023), Thapliyal et al. (2022),
LMCap (Ramos et al., 2023), UC2 (Zhou et al.,
2021), Li et al. (2023c), CCLM (Zeng et al.,
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XM3600
Model Train P. Total P. en 35-avg

Thapliyal et al. (2022) † 0.8B 0.8B 57.60 28.90
PaLI-3B † 3B 3B 92.80 47.00
PaLI-17B † 17B 17B 98.10 53.60
PaLI-X † 55B 55B 94.20 53.10

PaLI-X 0-shot 55B 55B 48.80 22.70
LMCap (Ramos et al., 2023) 0 3B 45.20 17.60

InstructBLIP Flan-T5-XL 107M 4.1B 85.22 1.10
Llava 1.5 7B 7B 7.3B 55.87 9.78

mBLIP mT0-XL 124M 4.9B 80.17 26.77
mBLIP BLOOMZ-7B 124M 8.3B 76.40 21.87

(a) mBLIP outperforms all models except those fine-tuned
on MSCOCO translated to all 36 languages (†). Different
tokenizers for zh, ja, th make results not perfectly comparable.

xFlickrCo
Model Train P. Total P. en 7-avg

InstructBLIP Flan-T5-XL 107M 4.1B 84.71 1.46
Llava 1.5 7B 7B 7.3B 64.47 22.23

mBLIP mT0-XL 124M 4.9B 77.00 44.39
mBLIP BLOOMZ-7B 124M 8.3B 76.75 42.11

(b) No multilingual baseline on xFlickrCo exists at the time
of writing but mBLIP is competitive with English models.

Table 1: Captioning results (CIDEr) on XM3600 and
xFlickrCo for English and other languages.

2023), Ernie-UniX2 (Shan et al., 2022), Chang-
pinyo et al. (2022); and also evaluate two strong En-
glish Vision-LLMs (InstructBLIP (Dai et al., 2023)
and Llava 1.5 (Liu et al., 2023a) (LLM is Vicuna
1.5 (Touvron et al., 2023; Chiang et al., 2023))).

Image Captioning. Table 1 summarizes our im-
age captioning results. On XM3600 (Table 1a),
mBLIP mT0 outperforms the (training-free) cap-
tioning pipeline LMCap (Ramos et al., 2023) as
well as PaLI-X (in zero-shot inference): these re-
sults are very encouraging, considering that PaLI-X
trains orders of magnitude more parameters (55B
vs. 124M for mBLIP), on billions of multilingual
vision-and-language examples. mBLIP, however,
substantially trails the performance of the PaLI
models fine-tuned on MSCOCO with full trans-
lations to all 35 languages (yielding 3× more
training examples than we do from our entire re-
alignment task mix). While mBLIP is also trained
on MSCOCO with translated captions, PaLI mod-
els consume orders of magnitude more data in
most languages, especially the low-resource ones.
With proportionally less mBLIP training for lower-
resource languages (according to the language-
specific corpus portions in mC4), this yields espe-
cially large gains for PaLI models for low-resource
languages; mBLIP is more competitive for high-
resource languages like Spanish or German.

The English models show strong English results

(as expected) but fail for other languages as they ei-
ther do not generate captions in the target language
or, for high-resource languages like German where
captioning works, still underperform mBLIP.

We additionally evaluate on xFlickrCo (Ta-
ble 1b). While we are the first to use it for mul-
tilingual captioning (in Bugliarello et al. (2022),
it is used for image-text retrieval), on the English
Flickr30k captions, mBLIP achieves performance
that is comparable to that of the English LLMs
while outclassing them for other languages.

Finally, between the two mBLIP models, the
mT0 variant beats the BLOOMZ variant. We be-
lieve this is due to the fact that mT5 (the base LLM
from which mT0 was derived) was trained on al-
most 3 times more text (1 trillion tokens vs. 366
billion) and in nearly twice as many languages as
BLOOM (the LLM of BLOOMZ). On a handful
of languages like Indonesian or Hindi, however,
BLOOMZ outperforms mT0, suggesting that the
choice of the mBLIP variant is language-specific.

VQA and Image Understanding. Table 2 sum-
marizes the results on VQA and image understand-
ing tasks. On xGQA, mBLIP (zero-shot) outper-
forms the UC2 model that has been fine-tuned
on the GQA data (Zhou et al., 2021; Bugliarello
et al., 2022) for all target languages. When fine-
tuned, our mBLIP variants are only outperformed
by CCLM (large) (Zeng et al., 2023); CCLM (large)
trains nearly nine-times more parameters and lever-
ages more multilingual pretraining data8. Crucially,
however, CCLM resorts to constrained generation
w.r.t. the available answers, which is an easier yet
computationally much more demanding evaluation
protocol than our open generation. mBLIP exhibits
relatively poor zero-shot XVNLI performance, as
it fails to predict the neutral class. After fine-tuning
for XVNLI, however, mBLIP mT0 yields multilin-
gual performance (over 4 languages) comparable to
that of CCLM (large). The MaRVL zero-shot per-
formance of mBLIP variants is surprisingly good,
considering that they were never trained for any
task involving multiple images as input; Zero-shot
performance of mBLIP mT0 on MaRVL is compa-
rable to that of multiple fine-tuned baselines. When
also fine-tuned, mBLIP achieves state-of-the-art
MaRVL results, on par with CCLM (large).

8CCLM is also initialized with the English X2-VLM (Zeng
et al., 2022a) which is trained on >1B images; the BLIP-2
weights, from which we start the mBLIP training, in contrast,
were trained using only 129M images.

12



XVNLI MaRVL xGQA MaXM
Model Train P. Total P. en 4-avg en 5-avg en 7-avg en 6-avg

Fine-tuned on train split

UC2 (Bugliarello et al., 2022) 270M 270M 76.38 62.05 70.56 57.28 55.19 29.35 — —
Li et al. (2023c) 330M 330M — 69.50 — 62.10 — 42.10 — —
CCLM (4M) † 520M 520M — 73.32 83.22 67.17 — 46.24 — —
CCLM base 420M 420M — 74.78 — 68.49 — 48.12 — —
CCLM large 970M 970M — 78.95 — 74.83 — 56.25 — —
Ernie-UniX2 910M 910M 87.73 77.42 — — 56.68 45.25 — —

mBLIP mT0-XL 124M 4.9B 82.41 76.41 85.20 75.13 56.54 47.71 — —
mBLIP BLOOMZ-7B 124M 8.3B 75.45 66.96 86.69 73.94 57.89 44.91 — —

Zero-shot

Changpinyo et al. (2022) ‡ 1.5B 1.5B — — — — 41.50 39.44 36.60 42.42
PaLI-17B ‡ 17B 17B — — — — 54.20 50.77 56.40 57.27

InstructBLIP Flan-T5-XL 107M 4.1B 62.09 48.65 — — 48.23 18.63 55.03 1.4
Llava 1.5 7B * 7B 7.3B 56.43 49.33 — — *57.37 *27.53 52.01 16.22

mBLIP mT0-XL 124M 4.9B 60.61 57.65 67.26 66.66 42.55 39.20 47.99 41.04
mBLIP BLOOMZ-7B 124M 8.3B 58.26 55.46 62.26 58.61 43.35 37.73 55.70 27.91

Table 2: VQA and image understanding results for English and averaged over all other languages: The metric
is (exact match) accuracy with open generation for mBLIP & PaLI and constrained generation to a set of labels
for CCLM on xGQA. Bold indicates the best score in each column. †: From (Zeng et al., 2022b) v1 (arXiv). ‡:
Fine-tuned on VQAv2 translated to all MaXM & xGQA languages. *: GQA included in training data.

On MAXM, mBLIP mT0 (zero-shot) performs
comparably to the 1.5B parameter baseline model
of Changpinyo et al. (2022) but falls short of the
performance of the huge PaLI-17B model. mBLIP
BLOOMZ exhibits strong English performance,
but surprisingly poor results for other languages.
We should emphasize here that training on the
translated VQAv2 answers is crucial: without it,
the LLM consistently generate answers in English.
Even though only ∼25% of examples in VQAv2
have non-English answers, this is already suffi-
cient to eliminate language hallucination, where
the model only answers in English regardless of
the instruction language9.

The English Vision-LLMs, like in captioning,
show strong results for English but fall behind
in other languages. This is particular evident in
MAXM, which has non-English answers (unlike
xGQA and XVNLI) that the models fail to consis-
tently generate. For high-resource languages like
German, mBLIP still outperforms them, highlight-
ing its strong multilingual capabilities.

Looking at results for individual languages
on the three IGLUE tasks in Figure 2, we see
that mBLIP with mT0 greatly improves cross-
lingual transfer over prior work, especially for
lower-resource languages: while CCLM and Ernie-

9Training with only English VQAv2 answers during re-
alignment results in an mBLIP mT0 instances that achieves
only 15.5% accuracy for 6-avg, due to the LLM predominantly
generating English answers.

UniX2 exhibit a gap of 20-25% on xGQA between
the best and worst language (German and Ben-
gali), the same gap is only 5% for our fine-tuned
mBLIP. Similarly, on MaRVL, CCLM has a gap
of 11% between Indonesian and Tamil, while the
largest gap for mBLIP amounts to 2%. The same
holds for XVNLI, but to a lesser degree: the largest
gap between languages for mBLIP (mT0) is 4%,
compared to 8% for CCLM/Ernie-UniX2. The
BLOOMZ-based variant, however, exhibits much
weaker transfer ability and has in fact larger gaps
than prior work; this highlights the importance of
deriving mBLIP from a strong multilingual LLM.

5 Ablation

We ablate the various components and design deci-
sions for mBLIP, namely: 1) using our instruction
mix compared to the ‘classic’ setting used for BLIP-
2 with only image-caption data (using the 2M Web
CapFilt examples as training data) and compared
to the instruction mix translated following the mT5
language distribution, 2) using LoRA on (all) LLM
matrices to better align the LLM to the visual input,
and 3) using the warm-start where the projection
between Q-Former and LLM is trained briefly in
a preliminary stage before the full re-alignment
training. We use the zero-shot results on xGQA,
XVNLI, and XM3600 for evaluation. Results are
shown in Table 3. In §C.1, we provide an additional
ablation that investigates the effect of adding the
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Figure 2: Cross-lingual transfer of models fine-tuned on English. The smaller gap of mBLIP mT0 between high-
and low-resource languages suggests better transfer capabilities. (CCLM 4M from (Zeng et al., 2022b) v1 on arXiv.)

matching tasks to re-alignment mix, demonstrating
their effectiveness in reducing hallucinations. In
§C.2, we consider the effect of our design choices
on fine-tuned models (on xGQA).

Design & Training: For zero-shot xGQA and
XVNLI, our complete mBLIP configuration yields
the best performance. Not using LoRA (i.e., pre-
venting any updates to the LLM) as well as training
only on image captioning (compared to the full in-
struction task mix) both lead to substantially worse
performance. Moreover, training (with LoRA) only
for image captioning results in a model that does
not follow instructions but merely generates cap-
tions, making it (zero-shot) useless for other tasks,
barring task-specific fine-tuning. For image cap-
tioning, both the warm-start and LoRA fine-tuning
boost the performance. Unsurprisingly, the re-
alignment on captioning alone yields similar or
slightly better captioning performance compared
to re-alignment based on the full task mix (i.e.,
other tasks in the mix do not contribute to caption-
ing ability of mBLIP). While the task mix brings
additional quality captions from MSCOCO and
LLaVA (in addition to the Web CapFilt examples),
the model also has to learn the other tasks; Im-
portantly, the ablation shows that including other
tasks to re-alignment training does not harm the
captioning abilities of the model.

Language Distribution: Our translation, propor-
tional to the mC4 language distribution, results in
44% examples in English and, e.g., only 0.003%
Lao examples. To test how the language distribu-
tion affects performance, we adopt another distri-
bution: that of the mT5’s pretraining corpus (re-
duces English to 8% and pushes Lao to 0.3%). As
expected, this reduces the performance for higher-
resource languages, and improves it for low(er)-

Task LoRA Warm- xGQA XVNLI XM3600
Mix start en avg en avg en avg

✗ ✗ ✓ 26.92 9.43 34.17 35.26 86.78 22.01
✗ all ✓ 1.51 0.00 33.04 25.72 85.53 24.69
✓ ✗ ✓ 37.33 33.77 52.02 54.26 84.14 21.35
✓ q,v ✓ 39.83 36.50 57.91 55.22 81.45 23.46
✓ all ✗ 40.89 37.88 57.74 54.50 80.68 24.38

mT5 all ✓ 40.91 37.67 58.00 54.96 80.13 25.85
✓ all ✓ 41.98 38.46 58.87 56.28 81.51 25.02

Table 3: Ablations for mBLIP (mT0) w.r.t.: (i) instruc-
tion mix (✓) vs. only captions (✗) (i.e., the 2M Web
CapFilt examples) vs. instruction mix using the mT5
distribution (mT5), (ii) LoRA (no LoRA ✗, standard
LoRA on query&value matrices, LoRA on all matri-
ces), and (iii) using the warm-start where the projection
between Q-Former and LLM is trained alone first. All
model variants are trained (i.e., re-aligned) for 30k steps.

resource languages. However, the changes in per-
formance are relatively small. This would suggest
that it is the language distribution of the (much
larger) multilingual pretraining of the LLM that de-
termines the downstream performance for individ-
ual languages rather than the language distribution
of our (much smaller) re-alignment training.

6 Conclusion

In this work, we presented mBLIP, the first mod-
ular and massively multilingual vision-language
model based on multilingual LLMs. Using a small
task mix from quality English datasets, made mas-
sively multilingual by means of MT, we re-align an
English BLIP-2 model to an instruction-tuned mul-
tilingual LLM. Our approach is highly efficient in
compute and data requirements and – using recent
engineering advances such as 8-bit quantization –
can be trained in a few days on consumer-grade
hardware (e.g., NVIDIA RTX 3090 cards). We
extensively evaluate mBLIP on multilingual vision-
language tasks covering image captioning, visual
QA, and image understanding to confirm the effi-
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cacy of our approach. Results render mBLIP com-
parable or better than state-of-the-art multilingual
vision-language models and strong English Vision-
LLMs, despite the fact that we train only a fraction
of their number of parameters and on far less data.
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A Training and Evaluation Details

Training: We use AdamW (Loshchilov and Hut-
ter, 2019) with weight decay 0.1, learning rate 2e-
4 for LoRA and 1e-5 for other parameters; 1000
warm-up steps before a cosine decay; batch size
128 (accomplished via gradient accumulation and
checkpointing); we limit the max. target sequence
length to 128. For LoRA, which we apply to all
LLM matrices and not just the query and value ma-
trices of self-attention heads, we set r = 8, α = 16
and use dropout with the 0.05 rate.
Warmup: We use 1M captions to train for 8k steps
with a learning rate of 5e-3 (and otherwise the same
hyperparameters).
Fine-tuning: We train 3 runs (seeds)—reporting
their average—for 5/10/20 epochs and batch size
256/128/128 for xGQA/XVNLI/MaRVL, respec-
tively. Other hyperparameters are identical as in
re-alignment training. We merge the LoRA weights
obtained in instruction-based re-alignment training
into the LLM before we execute LoRA fine-tuning
for downstream tasks.

Implementation: We use the HuggingFace
Transformers (Wolf et al., 2020) and PEFT10 li-
braries for model implementation and LoRA, re-
spectively.

B Qualitative Analysis

In addition to the quantitative evaluation on multi-
lingual datasets of previous sections, we perform a
qualitative analysis to better understand the model’s
visual and multilingual capabilities. As shown in
Figure 3, our model can understand instructions
in a wide range of languages and describe diverse
images, perform simple reasoning, and correctly
ground images to world knowledge in those lan-
guages. We also see some limitations. The capabil-
ities decrease notably for lower-resource languages.
The Urdu example is only a short sentence despite
asking for a detailed description. Similarly, the
Azerbaijani caption is completely incorrect (and

10https://github.com/huggingface/peft

POPE CHAIR
random popular adversarial short long
acc yes acc yes acc yes Ci Cs Ci Cs

without matching 71.00 74% 70.40 75% 63.70 81% 3.10 4.50 14.90 54.70
with matching 87.30 48% 83.30 52% 76.10 59% 2.40 3.50 14.10 50.50

Table 4: Effect of decision tasks on object hallucination
evaluated with POPE (Li et al., 2023b) and CHAIR
(Rohrbach et al., 2018) metrics. POPE results improve
because the yes-bias is reduced but CHAIR metrics for
both short and long captions barely decrease (lower is
better).

non-sensical), while the model produces a mean-
ingful caption for that same image in many other
languages. The Romanian example shows the limi-
tations of the model’s world knowledge as the fa-
mous portrait of Vlad III is not recognized (neither
when asked in Romanian nor in English with vari-
ous prompts). Finally, the Croatian example shows
the difficulty with controlling the output language
that we also saw in the quantitative evaluation: de-
spite being asked in Croatian, the model answers
in (related but still distinct) Slovenian.

C Further Ablation Results

C.1 Matching Tasks and Object
Hallucinations

We introduce the matching tasks with the aim of
reducing object hallucinations. We evaluate the ef-
fectiveness of the measure using two hallucination
metrics for English: POPE (Li et al., 2023b) uses
interrogative questions (“Is there X in the image?”)
with random, popular, and adversarial negative ob-
jects (using MSCOCO images and object annota-
tions), reporting accuracy and the portion of ‘yes’
answers due to a yes-bias in most models. CHAIR
(Rohrbach et al., 2018) generates captions from
MSCOCO images (we use 1k images from the val-
idation split) and then counts hallucinated objects
using MSCOCO object annotations. They report
the ratio of hallucinated object instances Ci, that is
of all occurring objects, how many are hallucinated,
and the ratio of sentences with hallucinations Cs.
We generate both short (Prompt: Caption in En-
glish:) and long captions (Prompt: Describe the
image in English with as much detail as possible.).
We train two models for 30k steps with and with-
out the matching tasks and report results in Table
4. The matching tasks greatly improve results for
POPE as they reduce the yes-bias but CHAIR met-
rics decrease only slightly. This seems to indicate
that while matching tasks help for the interrogative
POPE questions, they do not noticeably decrease
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Spanish
Input: ¿Cómo se llama este edificio y dónde 
lo encuentro? 
(What is the name of this building and where 
do I find it?) 
Output: El edificio se llama Sagradia[sic], y 
se encuentra en la ciudad de Barcelona, 
España. 
(The building is called Sagradia, and it is 
located in the city of Barcelona, Spain.)

German
Input: Was ist am Pferd ungewöhnlich? 
(What is unusual about the horse?)
Output: Ein ungewöhnliches Merkmal am Pferd 
ist, dass es mit einem Kostüm gekleidet ist. 
(An unusual feature of the horse is that it is 
dressed in a costume)

Arabic
Input: ؟لكايهلا هذه ىمست اذام  
(What are these structures called?)
Output: اجيج مره ىمست لكايهلا هذه . 
(These structures are called the Giza pyramids)

Farsi
Input: ؟تسا هدش هتفرگ اجک زا ریوصت
(Where is the image taken?) 
Output: تسا هدش هتفرگ یخیرات هقطنم کی زا ریوصت .  
(The image is taken from a historical area.)

Romanian
Input: Cine este prezentat în acest portret? 
(Who is shown in this portrait?)
Output: Acest portret prezintă o imagine a 
unui bărbat cu păr lung, care poartă o 
haină roşie. 
(This portrait shows an image of a man 
with long hair wearing a red coat)

 Vlad III not recognized

Croatian
Input: Opišite sliku što detaljnije. 
(Describe the picture in as much detail as possible.)
Output: Na sliki je čudovit vodni park, ki se razteza preko 
velike reke. Reka je polna vodnih slapov, ki se razlikujejo 
po barvi in velikosti. V okolici se nahajajo številne rastline, 
vključno z drevesi, ki ustvarjajo čudovit ozemlje. 
(The picture shows a beautiful water park stretching 
across a large river. The river is full of water falls that 
vary in color and size. There are many plants in the area, 
including trees, which create a beautiful area.)

 Answer in Slovenian

Azerbaijani
Input:  Şəkil üçün başlıq yazın.  
(Write a caption for the image)
Output: Satranc şəkilləri ilə bir şəhərin 
görüntüsü 
(Image of a city with chess pictures)

Wrong (but only in Azerbaijani)

Urdu
Input: ۔ںیھکل تحاضو یلیصفت   
(Write a detailed description.)
Output: ںوڑاہپ وج ےہ لیھج تروصبوخ کیا ہی 

۔ےہ عقاو ےرانک ےک  
(It is a beautiful lake situated on the edge 
of mountains.) 

 Not detailed

Figure 3: Multilingual examples (with translations from Google Translate in parentheses). While the first row shows
that the model can handle captioning and QA in diverse languages, the second row shows some failure cases. We
use beam search (5 beams) with a repetition penalty of 1.5.

Task LoRA Warm- xGQA (finetune)
Mix start en avg

✗ ✗ ✓ 56.68 46.50
✗ all ✓ 56.55 44.78
✓ ✗ ✓ 55.72 45.36
✓ all ✓ 56.47 46.84

Table 5: Ablations for mBLIP (mT0) w.r.t.: (i) instruc-
tion mix (✓) vs. only captions (✗) (i.e., the 2M Web
CapFilt examples) vs. instruction mix using the mT5
distribution (mT5), (ii) LoRA (no LoRA ✗, standard
LoRA on query&value matrices, LoRA on all matri-
ces), and (iii) using the warm-start where the projection
between Q-Former and LLM is trained alone first. All
model variants are trained (i.e., re-aligned) for 30k steps.

hallucinations when generating captions.

C.2 Fine-tuning

Looking at supervised xGQA fine-tuning, we
observe that all variants exhibit similar perfor-
mance, regardless of the instruction-tuning (i.e.,
re-alignment) design. The variants re-aligned only
via captioning (first two rows of Table 3) yield even
slightly better results than the variants for which
VQA was included in the re-alignment training.
Contradicting the findings of Dai et al. (2023), our
results suggest that more ‘complex’ instruction-

based re-alignment involving a multitude of tasks
brings limited gains (if any) for downstream task
with large fine-tuning data.

D Training and Evaluation Data and
Template Details

D.1 Training
We present our instruction mix in more detail with
Table 6 listing the datasets with additional infor-
mation, and Table 7 listing the templates used to
generate the examples.

D.2 Evaluation
We present the templates used for the different eval-
uation datasets in Table 8. Templates for XVNLI
and MaRVL are selected using English valida-
tion zero-shot performance. XVNLI templates are
based on Muennighoff et al. (2022).

We use the same templates for training and in-
ference.
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Dataset Tasks #Images #Examples Details

Web CapFilt (Li et al., 2022) Image captioning 2.27m 2.27m Subset of the CC3M+CC12M+SBU
Web CapFilt dataset11. Like Liu et al.
(2023b), we use spaCy to extract noun
phrases and then sample from every
phrase with at least 10 occurrences at
most 30 captions for a subset covering
diverse concepts.

Caption Matching 600k 600k Subset of our image captioning data. We
use the CLIP ViT-L/14 by Gadre et al.
(2023) to encode images and text to find
similar examples for hard negatives. We
match every image randomly with the
correct caption (50% of the time) or with
equal probability a random caption or
the 3/10/30/100/300 most similar cap-
tion for a mix of very hard to random
negatives.

MSCOCO (Lin et al., 2014) Image Captioning 83k† 414k Karpathy training split of MSCOCO
(Karpathy and Fei-Fei, 2017) with 5 cap-
tions per image.

VQAv2 (Goyal et al., 2017) VQA, VQG 83k† 2×443k Question-answer pairs with ∼5 ques-
tions per image. For VQA and VQG,
each example is translated to a different
language to increase language diversity.
We use Google Translate to translate the
most common 1500 answers to the 95
languages. We then back-translate them
to English and keep only the translations
where the back-translation is the orig-
inal answer; this is to ensure that the
answer is (likely) translated correctly.
We randomly use either the translated
or English answer when generating ex-
amples. 83k of the 443k examples have
non-English answers.

A-OKVQA (Schwenk et al., 2022) Rational generation,
VQA with rational

11k† 2×33k Knowledge-intense VQA questions with
additional answer rationals. We generate
examples for all three given rationales.
We only use the subset of the training
split overlapping with the MSCOCO
training split. A-OKVQA examples are
not translated to any language.

LLaVA (Liu et al., 2023b) detail Image captioning 23k† 23k Subset of LLaVA instructions with de-
tailed multi-sentence image captions.

LLaVA (Liu et al., 2023b) conversations VQA 56k† 219k Subset of LLaVA instructions with
multi-turn dialog; we split the dialogs
into independent pairs and keep all pairs
with an answer length of max. 3 sen-
tences.

ImageNet (Deng et al., 2009) and Babel-
ImageNet (Geigle et al., 2023)

VQA 300k 300k Image classification framed as open-
ended VQA tasks (i.e., no answer
options are given). Babel-ImageNet
provides partial translations of the
ImageNet classes to the 95 lan-
guages. We select one image for every
class+language combination (that is, we
do not use the full training set).

Matching 300k 300k The model has to decide if a given Im-
ageNet class is correctly in the image.
We use the correct label or a random la-
bel with equal probability. This uses the
same images as the VQA examples but
shuffles the image-language pairs.

Total 2.65m 5.1m

Table 6: Detailed information about the datasets used for training. †: Dataset uses MSCOCO images.

22



Task Templates

Image Captioning Caption the image in $LANGUAGE.
Short $LANGUAGE image caption:
Image caption (in $LANGUAGE):
Briefly describe the image in $LANGUAGE.
Write a short $LANGUAGE image description.
Summarize the image in $LANGUAGE.
Caption the image.†
Short image caption:†
Briefly describe the image.†
Write a short image description.†
Summarize the image.†

Caption Matching Does "$CAPTION" accurately describe the image? | Yes, it does. | No, it does not.
Question | Yes Answer | No Answer Does the caption "$CAPTION" fit the picture? | Yes, it does. | No, it does not.

Does "$CAPTION" correctly summarize the image? | Yes, it does. | No, it does not.
Is "$CAPTION" a good image description? | Yes, it is. | No, it is not.
Is "$CAPTION" a correct caption for the picture? | Yes, it is. | No, it is not.
Is the caption "$CAPTION" a good match for the image? | Yes, it is. | No, it is not.
Decide if the following caption accurately describes the image: $CAPTION. Answer: | Yes, it does. | No, it does not.
Is this caption a good match for the picture? $CAPTION. Answer: | Yes, it is. | No, it is not.
Decide if this caption is a correct summary of the image: $CAPTION. | Yes, it is. | No, it is not.
Would "$CAPTION" be a good image summary? | Yes, it would. | No, it would not.
Would the caption "$CAPTION" fit the picture? | Yes, it would. | No, it would not.
Could you use "$CAPTION" as a caption for the image? | Yes, you could. | No, you could not.

VQA $QUESTION. Short English answer:
Question: $QUESTION. Brief answer (in $LANGUAGE):
Give a short answer in $LANGUAGE to the following question. $QUESTION
Answer the provided question in $LANGUAGE with three words or less. $QUESTION
What is the $LANGUAGE answer to this question? $QUESTION
Briefly answer in $LANGUAGE. $QUESTION

VQG Given the image, generate a question in $LANGUAGE whose answer is: $ANSWER. Question:
Based on the image, create a question (in $LANGUAGE) for which the answer is "$ANSWER".
From the image provided, come up with a $LANGUAGE question that leads to the reply: $ANSWER. Question:
What is a $LANGUAGE question for the image with the answer "$ANSWER"?
Given the image, what would be a $LANGUAGE question that has as answer "$ANSWER"?

VQA with rational (instruction templates) Reason the answer to the following question. $QUESTION
Use reasoning to come to an answer for this question. $QUESTION
Think step-by-step to answer this question. $QUESTION
Answer the following question and explain your answer. $QUESTION
$QUESTION What is the answer and why?

VQA with rational (label templates) $ANSWER. So the answer is $RATIONAL
$ANSWER so $RATIONAL
$RATIONAL. This means the answer is $ANSWER
The answer is $ANSWER because $RATIONAL.
$ANSWER because $RATIONAL.

Rational Generation Question: $QUESTION Answer: $ANSWER. Explanation:
Question: $QUESTION: Answer: $ANSWER. The reason is because
The answer to the question "$QUESTION" is "$ANSWER". Why?
Why is the answer to the question "$QUESTION" "$ANSWER"?
Explain why the answer to the question "$QUESTION" is "$ANSWER"

ImageNet Classification What is the main focus of the image? Short $LANGUAGE answer:
What is in the image? Answer briefly in $LANGUAGE.
This is an image of what? Answer briefly in $LANGUAGE.
What is the central object in the image? Give a short $LANGUAGE answer.
The focus of the image is on what? Short $LANGUAGE answer:
Question: This is an image of what? Answer briefly in $LANGUAGE.
What is at the center of this picture? Short $LANGUAGE answer:
Give a short answer in $LANGUAGE to the following question. What is the main thing shown in the image?
Complete the sentence in $LANGUAGE. This is a photo of a
Name the main thing of this photo in $LANGUAGE:
In less than 3 words in $LANGUAGE, what can be seen in this image?

ImageNet Matching Does this image show a $LABEL? | Yes, it does. | No, it does not.
Question | Yes Answer | No Answer Is there a $LABEL? | Yes, there is. | No, there is not.

Are there any $LABEL in the picture? | Yes, there are. | No, there are not.
Does the image contain a $LABEL? | Yes, it does. | No, it does not.
Yes or no, there is a $LABEL in the photo. | Yes | No
Yes or no, there is a $LABEL visible in the image. | Yes | No
Does this picture have a $LABEL in it? | Yes, it does. | No, it does not.
Can you see a $LABEL in the image? | Yes, you can. | No, you can not.

Table 7: Templates used for the training examples. For each example, we randomly select one template. LLaVA
examples are used as is since they are already in instruction form. †: Template is translated to the 95 languages.

Dataset Template

xFlickrCo, XM3600 Caption in $LANGUAGE:
xGQA, MaXM Question: $QUESTION Short answer in $LANGUAGE:
XVNLI Is it guaranteed true that "$HYPOTHESIS"? Yes, no, or maybe? Answer in English:
MaRVL Based on the two images, is it correct to say "$STATEMENT"? Yes or no? Answer in English:

Table 8: Templates used for evaluation. XVNLI labels ‘entailment’, ‘contradiction’, and ‘neutral’ are remapped to
‘yes’, ‘no’, ‘maybe’, respectively; MaRVL labels ‘true’ & ‘false’ are remapped to ‘yes’, ‘no’, respectively.
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E Image Attribution

Image attribution for Figure 3 in order of appear-
ance from top-left to bottom-right:

• Sagrada Familia: https://de.
wikipedia.org/wiki/Datei:
Sagrada_Familia_8-12-21_
(1).jpg. Canaan, CC BY-SA 4.0
https://creativecommons.org/
licenses/by-sa/4.0, via Wikimedia
Commons

• Giza: https://commons.wikimedia.
org/wiki/File:All_Gizah_
Pyramids.jpg. Ricardo Liberato, CC BY-
SA 2.0 https://creativecommons.
org/licenses/by-sa/2.0, via Wiki-
media Commons

• Oktoberfest Kutsche: https:
//de.wikipedia.org/wiki/Datei:
Oktoberfest-Kutscher.jpg.
Hullbr3ach, CC BY-SA 2.5 https:
//creativecommons.org/
licenses/by-sa/2.5, via Wikime-
dia Commons

• Gate of All Nations, Persepolis:
https://commons.wikimedia.org/
wiki/File:Gate_of_All_Nations,
_Persepolis.jpg. Alborzagros, CC BY-
SA 3.0 https://creativecommons.
org/licenses/by-sa/3.0, via Wiki-
media Commons

• Lake saif ul malook: https:
//en.wikipedia.org/wiki/File:
Lake-saif-ul-malook_Pakistan.
jpg. Ayesha.great, CC BY-SA 4.0
https://creativecommons.org/
licenses/by-sa/4.0, via Wikimedia
Commons

• Vlad III: https://en.wikipedia.
org/wiki/File:Vlad_Tepes_002.
jpg. Portrait of Vlad III the Impaler

• Satellite: https://en.wikipedia.
org/wiki/File:Jaz_Murian_
satellite.jpg. NASA, Public do-
main, via Wikimedia Commons

• Krk waterfalls: https://commons.
wikimedia.org/wiki/File:

Krk_waterfalls.jpg. Version13
at English Wikipedia, Public domain, via
Wikimedia Commons

F Full Results

24

https://de.wikipedia.org/wiki/Datei:Sagrada_Familia_8-12-21_(1).jpg
https://de.wikipedia.org/wiki/Datei:Sagrada_Familia_8-12-21_(1).jpg
https://de.wikipedia.org/wiki/Datei:Sagrada_Familia_8-12-21_(1).jpg
https://de.wikipedia.org/wiki/Datei:Sagrada_Familia_8-12-21_(1).jpg
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:All_Gizah_Pyramids.jpg
https://commons.wikimedia.org/wiki/File:All_Gizah_Pyramids.jpg
https://commons.wikimedia.org/wiki/File:All_Gizah_Pyramids.jpg
https://creativecommons.org/licenses/by-sa/2.0
https://creativecommons.org/licenses/by-sa/2.0
https://de.wikipedia.org/wiki/Datei:Oktoberfest-Kutscher.jpg
https://de.wikipedia.org/wiki/Datei:Oktoberfest-Kutscher.jpg
https://de.wikipedia.org/wiki/Datei:Oktoberfest-Kutscher.jpg
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://commons.wikimedia.org/wiki/File:Gate_of_All_Nations,_Persepolis.jpg
https://commons.wikimedia.org/wiki/File:Gate_of_All_Nations,_Persepolis.jpg
https://commons.wikimedia.org/wiki/File:Gate_of_All_Nations,_Persepolis.jpg
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://en.wikipedia.org/wiki/File:Lake-saif-ul-malook_Pakistan.jpg
https://en.wikipedia.org/wiki/File:Lake-saif-ul-malook_Pakistan.jpg
https://en.wikipedia.org/wiki/File:Lake-saif-ul-malook_Pakistan.jpg
https://en.wikipedia.org/wiki/File:Lake-saif-ul-malook_Pakistan.jpg
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://en.wikipedia.org/wiki/File:Vlad_Tepes_002.jpg
https://en.wikipedia.org/wiki/File:Vlad_Tepes_002.jpg
https://en.wikipedia.org/wiki/File:Vlad_Tepes_002.jpg
https://en.wikipedia.org/wiki/File:Jaz_Murian_satellite.jpg
https://en.wikipedia.org/wiki/File:Jaz_Murian_satellite.jpg
https://en.wikipedia.org/wiki/File:Jaz_Murian_satellite.jpg
https://commons.wikimedia.org/wiki/File:Krk_waterfalls.jpg
https://commons.wikimedia.org/wiki/File:Krk_waterfalls.jpg
https://commons.wikimedia.org/wiki/File:Krk_waterfalls.jpg


bn de id ko pt ru zh

mBLIP mT0-XL (zero-shot) 38.51 40.53 38.34 38.31 40.15 39.59 38.99
mBLIP mT0-XL (finetuned) 45.21 50.32 46.80 46.28 49.12 48.94 47.28
mBLIP BLOOMZ-7B (zero-shot) 38.96 37.04 39.99 29.06 41.78 37.55 39.72
mBLIP BLOOMZ-7B (finetuned) 46.90 42.86 48.01 31.56 51.99 43.44 49.64

Table 9: Results in all languages for xGQA. Finetuned results are averaged over 3 seeds.

ar es fr ru

mBLIP mT0-XL (zero-shot) 56.26 57.57 58.52 58.26
mBLIP mT0-XL (finetuned) 73.80 77.62 76.87 77.33
mBLIP BLOOMZ-7B (zero-shot) 56.26 56.17 57.74 51.65
mBLIP BLOOMZ-7B (finetuned) 68.90 68.81 71.57 58.55

Table 10: Results in all languages for XVNLI. Finetuned results are averaged over 3 seeds.

id sw ta tr zh

mBLIP mT0-XL (zero-shot) 64.89 64.80 69.65 68.05 65.91
mBLIP mT0-XL (finetuned) 75.09 74.61 75.93 74.32 75.72
mBLIP BLOOMZ-7B (zero-shot) 59.13 56.23 60.31 57.71 59.68
mBLIP BLOOMZ-7B (finetuned) 80.08 69.71 77.38 61.38 81.16

Table 11: Results in all languages for MaRVL. Finetuned results are averaged over 3 seeds.

fr hi iw ro th zh

mBLIP mT0-XL (zero-shot) 40.61 48.30 35.56 41.74 53.97 26.06
mBLIP BLOOMZ-7B (zero-shot) 22.87 52.38 18.41 31.83 17.22 24.76

Table 12: Results in all languages for MaXM.

de es id ja ru tr zh

mBLIP mT0-XL (zero-shot) 58.23 64.86 47.44 33.27 41.77 35.18 29.98
mBLIP BLOOMZ-7B (zero-shot) 50.50 64.89 54.42 29.10 38.36 25.08 32.42

Table 13: Results in all languages for xFlickrCo.

ar bn cs da de el es fa fi fil fr he

mBLIP mT0-XL (zero-shot) 21.13 11.30 31.84 44.19 32.48 23.36 62.61 0.00 16.78 17.71 57.64 18.69
mBLIP BLOOMZ-7B (zero-shot) 27.78 16.12 21.77 25.25 30.04 14.12 60.03 13.84 4.69 1.99 60.42 7.16

hi hr hu id it ja ko mi nl no pl pt

16.07 5.18 21.54 38.53 45.19 33.23 10.39 4.09 55.72 46.15 31.22 53.13
24.91 2.13 10.99 45.29 42.40 25.43 2.54 0.02 45.54 25.01 20.65 47.79

quz ro ru sv sw te th tr uk vi zh

1.08 21.71 27.25 48.38 11.76 11.20 41.93 22.64 0.00 39.24 13.48
0.02 17.62 22.83 31.77 8.45 8.65 8.16 14.21 8.97 54.29 14.65

Table 14: Results in all languages for XM3600.
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