
Proceedings of The 22nd Annual Workshop of the Australasian Language Technology Association, pages 41–63
December 2-4, 2024 ©2024 Association for Computational Linguistics

A Closer Look at Tool-based Logical Reasoning with LLMs:
The Choice of Tool Matters

Long Hei Matthew Lam Ramya Keerthy Thatikonda Ehsan Shareghi
DSAI, Monash University

llam0013@student.monash.edu.au Ramya.Thatikonda1@monash.edu
Ehsan.Shareghi@monash.edu

Abstract

The emergence of Large Language Mod-
els (LLMs) has demonstrated promising
progress in solving logical reasoning tasks ef-
fectively. Several recent approaches have pro-
posed to change the role of the LLM from the
reasoner into a translator between natural lan-
guage statements and symbolic representations
which are then sent to external symbolic solvers
to resolve. This paradigm has established the
current state-of-the-art result in logical reason-
ing (i.e., deductive reasoning). However, it
remains unclear whether the variance in per-
formance of these approaches stems from the
methodologies employed or the specific sym-
bolic solvers utilized. There is a lack of con-
sistent comparison between symbolic solvers
and how they influence the overall reported per-
formance. This is important, as each symbolic
solver also has its own input symbolic language,
presenting varying degrees of challenge in the
translation process. To address this gap, we
perform experiments on 3 deductive reason-
ing benchmarks with LLMs augmented with
widely used symbolic solvers: Z3, Pyke, and
Prover9. The tool-executable rates of symbolic
translation generated by different LLMs exhibit
a near 50% performance variation. This high-
lights a significant difference in performance
rooted in very basic choices of tools. The al-
most linear correlation between the executable
rate of translations and the accuracy of the out-
comes from Prover9 highlight a strong align-
ment between LLMs ability to translate into
Prover9 symbolic language, and the correct-
ness of those translations. 1

1 Introduction

The recent state-of-the-art approaches to logical
reasoning have combined Large Language Mod-
els (LLMs) with external symbolic mechanisms
(Nye et al., 2021; Pan et al., 2023; Ye et al., 2023;

1Code and data are publicly available at https://github.
com/Mattylam/Logic_Symbolic_Solvers_Experiment.

Gao et al., 2023; Lyu et al., 2023). This approach
leverages LLMs’ remarkable proficiency in trans-
lating natural language into symbolic representa-
tion such as First Order Logic (FOL) or symbolic
solvers’ specified language (e.g., Pyke, Z3) (Yang
et al., 2023), and the symbolic solver’s ability to
execute these translations through a fully determin-
istic proof process (Metaxiotis et al., 2002). These
existing published methods try a variety of tools
and tool-specific formalism. Table 1 summarises
various tools used in recent state-of-the-art stud-
ies. This variability of tools makes it impossible to
have a fair understanding of each approach. There
is currently a lack of consistent comparison that
will allow others to understand better where this
performance gain stems from.

In this paper, we take 3 widely used tools: Z3
(de Moura and Bjørner, 2008), Pyke (Frederiksen,
2008), and Prover9 (McCune, 2005) and analyse
the difficulty LLMs face for translating natural
language into their desired input format, and the
internal capability of these tools at solving cer-
tain satisfiability tasks. We select GPT4o, GPT-
3.5-Turbo (OpenAI, 2023), Gemini-1.0-Pro (Team
et al., 2023) and Cohere Command R Plus, as rep-
resentatives of the most capable family of LLMs,
along with 3 widely used deductive reasoning
benchmarks ProofWriter (Tafjord et al., 2021), FO-
LIO (Han et al., 2022), and ProntoQA (Saparov and
He, 2023). We conduct a fair side-by-side compari-
son of tools by trying various number of identical
prompts, demonstration shots, and minimal adjust-
ment for each solver.

Our findings indicate that LLMs find it easier to
translate for Prover9, followed by Z3, and lastly
Pyke. Although Prover9 can solve more questions
accurately, Prover9 demonstrates a lower discrep-
ancy between execution rate and overall accuracy.
This means that Prover9 is more likely to solve
a question given the right syntax and format pro-
duced by LLMs. Overall, Z3 and Prover9 are all

41

https://github.com/Mattylam/Logic_Symbolic_Solvers_Experiment
https://github.com/Mattylam/Logic_Symbolic_Solvers_Experiment

Solver Dataset Papers Problem

Z3

AR-LSAT (Zhong et al., 2022),
ProntoQA (Saparov and He, 2023),
ProofWriter (Tafjord et al., 2021),
BoardgameQA (Kazemi et al., 2023)

LogicLM,
SatLM

Analytical,
Deductive,
FOL

Pyke
ProntoQA (Saparov and He, 2023),
ProofWriter (Tafjord et al., 2021)

LogicLM,
Logical Solver

Deductive,
FOL

Prover9 FOLIO (Han et al., 2022)
LogicLM,
LINC

Deductive,
FOL

Table 1: A summary of the symbolic solvers and the
datasets it has solved in different studies: LogicLM
(Pan et al., 2023), LINC (Olausson et al., 2023), Logical
Solver (Feng et al., 2023), and SatLM (Ye et al., 2023).

competitive options, Pyke’s performance is signif-
icantly inferior and only comparable to the other
tools in solving PrOntoQA. Our experiments across
3 benchmarks (based on the accuracy of outputs)
highlight an up-to 50% of performance variation
for each LLM under different tools, and well as the
performance change for each tool under different
LLMs.

2 Tools & Logical Reasoning with LLMs

The tool-based approaches to logical reasoning
combine LLMs with external symbolic solvers.
This synergy harnesses the capability of LLMs to
convert diverse natural language statements into
logical symbolic formalism. While being less flex-
ible compared with free-form reasoning methods,
such as Chain-of-Thought (Wei et al., 2022), the
tool-based approach, given a correct formal trans-
lation, has important advantages: logical coherence
during the reasoning (i.e., unlike LLMs, theorem
provers cannot make reasoning shortcuts or hal-
lucinate) is guaranteed, while the internal proof
trace of the theorem provers offers a transparent
and verifiable reasoning chain.

2.1 Logical Solvers

Automated theorem provers (ATPs) and Satisfia-
bility Modulo Theories (SMT) solvers are tools
equipped with built-in functions designed to as-
sist in logical reasoning tasks. These solvers can
vary in syntax, proof search strategies, theorem
automation, and complexity. ATPs efficiently re-
solve first order logic problems without external
interaction. SMT solvers closely resemble ATPs in
solving first-order formulae but add complexity by
handling theories such as equality, arrays, and bit-
vectors. Logical solvers, specifically Z3, Prover9,
and Pyke, are used for logical reasoning tasks with
LLMs due to their ease of use in a Python environ-
ment (Pan et al., 2023; Ye et al., 2023). We study

the logical solvers based on their ability to handle
first-order logic and explore the crucial differences
in external syntax and internal theories of these
tools. In this context, we define the task as follows:
given a set of premises P ∈ {P1, P2, . . . , Pn}, the
objective is to determine whether the conclusion C
logically follows from these premises. The transla-
tion syntax for each tool is presented in Figure1.

Z3 Prover developed by Microsoft, is an SMT
solver designed to determine the satisfiability of
given constraints (de Moura and Bjørner, 2008).
Z3 encompasses a diverse array of functionali-
ties, including equality reasoning, arithmetic oper-
ations, handling arrays, and incorporating quanti-
fiers. It supports multiple programming languages
and mathematical operators, making it a versatile
tool for a wide range of research applications. Z3
utlizes the DPLL algorithm for satisfiability resolu-
tion, where constrains are converted to conjunctive
normal form (CNF). The solver then searches for a
solution through backtracking, continuing until it
finds a combination of truth values that satisfies the
conditions. In deductive logical reasoning, the tool
can check if the conclusion C renders the assertions
P satisfiable. Z3 requires an explicit specification
of data types of variables, functions, and their at-
tributes, which are typically Boolean for deductive
reasoning. Due to its flexible operations, Z3 has
been applied to tasks beyond logical verification,
as shown in Table 1. Additionally, the simplicity of
these tasks enables the translation format of Z3 to
resemble programming languages, as demonstrated
in Appendix A.2.

Prover9 is an automated theorem prover for first-
order and equational logic, based on resolution
techniques (McCune, 2005). This tool accepts first-
order logic statements and applies logical trans-
formations such as CNF conversion, quantifier op-
erations, and skolemization to produce simplified
clauses. The inference process involves iterating
over given clauses to generate new clauses in a non-
redundant manner by categorizing the clauses into
usable and non-usable forms. For deductive reason-
ing task, the premises P produce new premise, i.e.,
{P1, P2} =⇒ {P12}, for various combinations.
These derived premises Pxy are retained if they are
relevant to the conclusion, and discarded otherwise.
The inference is based on all the stored premises
once all combinations have been exhausted. Al-
though the logical transformations allow flexible
input, Prover9 is sensitive to special characters and

42

Figure 1: Overview of syntax used for different Theorem Provers: Z3 and Prover9 adhere to the traditional first-order
logic (FOL) format, while Pyke adopts a simplified formula approach, distinguishing premises into rules and facts

spaces, which require careful handling. Compared
to Z3 or other ATPs, Prover9 cannot solve a variety
of mathematical problems, thus limiting its appli-
cability to certain fields of logic (McCune, 2003).
In Python, Prover9 is accessible through the NLTK
logic library.

Pyke short for Python Knowledge Engine, is
a solver used for building and executing rule-
based expert systems (Frederiksen, 2008). Al-
though pyke is used for optimizing software de-
velopment, Pan et al. (2023) demonstrated its ap-
plication in solving a first-order logic problem.
Given a logical inference task, Pyke establishes
a knowledge base and incorporates known facts
(fact.kfb) and rules (rule.krb) from the input,
i.e., P −→ (Pfacts, Prules). The conclusion is parsed
as a rule that is propagated through the knowledge
base until it reaches a resolution. The predicates
in the first order logic are treated as facts and are
connected to form rules. Given its limited syntax,
Pyke supports simple connectives such as ‘and’,
‘or’, and ‘implies’. The free variables (e.g., $x)
are generally considered to be universal quantifiers,
thus restricting the use of existential quantifiers.
Due to these limitations, Pyke may not adequately
handle complex tasks involving first-order logic,
such as FOLIO. However, it remains well-suited for
rule-based tasks like ProofWriter and ProntoQA.

2.2 Free-form Logical Reasoning with LLMs

The free-form approaches to reasoning rely on
LLMs’ internal capabilities via various mecha-
nisms to help improve LLM’s performance in logi-
cal reasoning. For example, prompts that encour-
age LLMs to solve tasks in a Chain-of-Thought ap-
proach is a general technique that enhances LLM’s
performance (Wei et al., 2022; Kojima et al., 2022).

Despite the promising outcomes, this approach falls
short when dealing with complex logical reasoning
tasks. This limitation stems from the lack of ex-
plicit logical grounding and the inherent ambiguous
and nuanced nature of natural language. Recent
studies have revisited Formal Logic to address this
challenge. Han et al. (2022) shows that incorpo-
rating first-order logic (FOL) translations into the
context can notably enhance LLM’s performance.
Feng et al. (2023) emulates the reasoning processes
of an automated theorem solver (Pyke) through
solving Logical tasks using the tool-based approach
and training LLMs on Pyke’s reasoning steps. The
free-form approach capitalises on the inherent ca-
pabilities of LLM to learn complex logical rules.
However, this approach solely relies upon LLM’s
logical reasoning prowess and is susceptible to is-
sues such as hallucinations and taking shortcuts
(Dasgupta et al., 2022; Ji et al., 2023). To address
this issue, recent approaches aim to augment LLMs
with external symbolic solvers (Ye et al., 2023; Gao
et al., 2023).

2.3 Tool-based Logical Reasoning with LLMs
Ye et al. (2023) and Gao et al. (2023) integrated
Z3 and Python interpreters with LLMs to tackle
various reasoning datasets. Pan et al. (2023) ex-
panded upon this by incorporating a broader range
of symbolic solvers and employing error-solving
self-refinement techniques. However, the rationale
behind the adoption of symbolic solvers primarily
relied on theoretical definitions rather than empiri-
cal performance evaluations. Consequently, there
exists a gap in the literature regarding the explo-
ration of the interplay between LLMs, symbolic
solvers, and their respective performance character-
istics.

The primary advantages of the tool-based ap-

43

proach are: (1) The tasks are now processed with
clear logical grounding and unambiguous language.
This approach guarantees that the answer is not a
product of hallucination or shortcuts, because the
symbolic tools will exhaustively process all log-
ical rules in the premise and only execute clear
and correct commands. (2) As LLM’s translation
capability continues to improve, the tool-based ap-
proach will be able to solve more complex logi-
cal problems, provided they fall within the logical
reasoning capacity of symbolic solvers. (3) The
tool errors are clearly labeled and displayed (i.e.,
run-time error messages). This allows the introduc-
tion of various error-solving mechanisms like self-
refinement (Pan et al., 2023). In contrast, it is dif-
ficult for the free-form approach to improve upon
its current results in the absence of any reliable
feedback, specially in the light of recent debates
on LLMs self-correction capability (Huang et al.,
2024; Li et al., 2024). In this study, errors are iso-
lated into solver-specific errors (e.g., LLM’s trans-
lation misses a bracket, which causes the solver
to throw an error) and parse errors (i.e., Predicate
extraction mistakes or LLMs interpreting the log-
ical statements incorrectly, examples of these are
shown in Appendix A.3).

The main disadvantages of the tool-based ap-
proach are: (1) This approach does not apply to
tasks that do not have a complete reasoning chain.
All symbolic solvers require a full chain of logic to
reach the correct conclusion. For instance, consider
the followint example: Premise: People like Mark
love bbq. Question: Mark is not Human? Both hu-
mans and LLMs can answer this question correctly,
but a tool-based approach will fail. This is due to
the break in the chain of logic. The term “Mark is
human” is missing from the premise. Although this
term is obvious for humans and LLMs, symbolic
solvers require the exact match in predicates to pro-
cess the task. A detailed discussion of this issue is
included in section 3.2. (2) Changes in LLMs can
cause solver-specific errors.2 (3) This approach is
unforgiving to simple translation errors. While pro-
cessing logical tasks, Human and LLMs can often
bypass errors to some extent and still reach the cor-
rect conclusion. However, a tool-based approach
requires the LLM to translate tasks flawlessly, even

2For instance, during the experiment stage, we tried to
rerun the SatLM experiment on ProofWriter, but the execution
rate dropped from 99% to 20%. This is caused by GPT3.5 not
being able to add a complete bracket to the method Forall()).
It is a surprising mistake that continues to happen.

minor mistakes like misusing suffixes (e.g., “Jom-
puses(x)” instead of “Jompus(x)”) will cause the
symbolic solver to throw an error. One of the main
focuses of this study is the analysis of how different
symbolic tools handle errors caused by LLMs.

3 Experiments

3.1 Experimental Setup
In our experiments we assess the performance vari-
ations of LLM when paired with various sym-
bolic solvers. We evaluate GPT-4o, GPT-3.5-Turbo,
Gemini-Pro-1.0, and Command-r-plus integrated
with Z3, Pyke, Prover9 on three common logical
reasoning benchmarks (introduced shortly). Un-
like Pan et al. (2023) and other studies, we ex-
clude self-refinement methods and random guess-
ing procedures. In cases where LLM’s translation
is infeasible, it will not yield an answer, and any
specific errors encountered are documented. The
only exception is the missing bracket issue for the
translation of Z3, as this was not an issue in ex-
periments done in Ye et al. (2023) and Pan et al.
(2023). We use a one-shot demonstration for all
experiments. If different solvers are employed to
tackle the same dataset, the given prompt problem
remains consistent, with the sole variance lying
in the solver-specific translations of the prompts.
Examples of the prompt are shown in Appendix
A.2. We also expand the one-shot experiment for
FOLIO to two-shot and four-shot to highlight the
impact of additional shots. The primary metrics for
evaluation consist of two key factors: the percent-
age of executable logical formulations (ExecR.),
and the overall accuracy (Acc).

Data The 3 benchmarks are introduced shortly
and examples are included in Appendix A.1. We
limit the test set size to 200 for cost reason. PrOn-
toQA (Saparov and He, 2023) is a synthetic dataset
created to analyze the capacity of LLMs for de-
ductive reasoning. We use the hardest fictional
characters version and the hardest 5-hop subset for
evaluation. PrOntoQA only has questions in the
close world setting (i.e., True/False only). We in-
clude this dataset in the experiment to compare nat-
ural and fictional settings, as it has a similar level
of logical difficulty to ProofWriter. ProofWriter
(Tafjord et al., 2021) is a commonly used dataset
for deductive logical reasoning. Compared with
PrOntoQA, the problems are expressed in a more
naturalistic language form. We evaluate 6 different
variations of ProofWriter. We use both open-world

44

Z3 Prover9 Pyke

Dataset LLMs ExecR. Acc. ExecR. Acc. ExecR. Acc.

ProofWriter
gpt-4o 75.00% 74.17% 97.33% 95.67% 99.83% 79.17%
gpt-3.5-turbo 84.83% 82.88% 90.67% 87.00% 62.83% 53.33%

(Avg. OWA) gemini-1.0-pro 93.00% 91.00% 86.83% 62.50% 49.33% 36.67%
command-r-plus 88.67% 87.00% 61.33% 56.66% 61.83% 51.50%

ProofWriter
gpt-4o 77.83% 77.83% 98.00% 98.00% 99.83% 87.00%
gpt-3.5-turbo 88.33% 88.00% 94.00% 93.83% 58.17% 51.67%

(Avg. CWA) gemini-1.0-pro 96.83% 96.83% 84.83% 58.50% 42.83% 34.17%
command-r-plus 92.50% 92.50% 58.67% 58.33% 45.33% 41.33%

PrOntoQA

gpt-4o 96.00% 96.00% 100.00% 100.00% 100.00% 100.00%
gpt-3.5-turbo 95.50% 93.49% 85.50% 63.50% 99.50% 72.50%
gemini-1.0-pro 100.00% 100.00% 100.00% 97.50% 100.00% 100.00%
command-r-plus 93.00% 87.00% 64.50% 46.50% 96.50% 92.00%

FOLIO

gpt-4o 40.00% 36.00% 84.00% 66.50% ✗ ✗

gpt-3.5-turbo 29.00% 24.49% 61.00% 39.99% ✗ ✗

gemini-1.0-pro 31.00% 25.50% 67.50% 50.00% ✗ ✗

command-r-plus 25.50% 19.00% 50.50% 32.50% ✗ ✗

Combined

gpt-4o 74.31% 73.50% 94.06% 91.71% 99.86% 85.50%
gpt-3.5-turbo 80.50% 78.83% 87.56% 80.75% 66.07% 55.36%
gemini-1.0-pro 87.56% 86.12% 85.31% 63.81% 53.79% 44.64%
command-r-plus 82.75% 80.56% 59.38% 53.00% 60.64% 52.93%

Table 2: Accuracy and execution rate of 1-shot experiments done with gpt-4o, gpt-3.5-turbo, gemini-pro-1.0 and
command-r-plus on 3 Datasets. Results for Proofwriter Open and Closed World Assumptions (OWA and CWA) are
averaged over depths (Depth 2, 3, and 5). We present the percentage of executable logical formulations (ExecR.)
together with the overall accuracy (Acc.). ✗: the tool was unable to solve this dataset. The numbers highlighted in
red color represent the highest accuracy between the 3 chosen tools.

(OWA) and close-world assumptions (CWA), in-
cluding depth-2, depth-3, and depth-5 (i.e., each
part requiring 2, 3, and 5 hops of reasoning). To
ensure a fair evaluation, we control all datasets to
have a uniform distribution of True, False, and Un-
known (if applicable) answers. FOLIO (Han et al.,
2022) is a difficult expert-written dataset for first-
order logical reasoning. The problems are mostly
aligned with real-world knowledge and expressed
in natural flowing language. Tackling its questions
demands adeptness in complex first-order logic rea-
soning. Pyke is unable to solve FOLIO, this is due
to the lack of a built-in function for the exclusive
disjunction (i.e., either-or). In contrast, Prover9
and Z3 offer a built-in function to handle this logic
seamlessly.

3.2 Main Results

We report the results of the tool-based reasoning
approach experiments in Table 2. Different LLMs
exhibit varying preferences for tools. For datasets

with simpler logical complexity, GPT models tend
to favor Prover9, while Gemini and Command R+
models perform significantly better using Z3. Pyke
is only competitive in solving PrOntoQA and is
unable to solve datasets like FOLIO and performs
significantly worse on ProofWriter. Pyke’s primary
issue is the low and inconsistent executable rate.
According to Table 4, without considering the op-
tion of LLMs, Prover9 performs better for the FO-
LIO dataset, Z3 performs better on other datasets.
Both Z3 and Prover9 have their distinct advantages.
Prover9’s programming language, which closely
resembles the language of First-Order Logic (FOL),
contributes to its higher execution rate. The Pear-
son correlation coefficient between executable rate
and accuracy across all LLMs (Prover9, Z3, and
Pyke have, 0.98, 0.82, 0.94, respectively3) indicate
an almost linear dependence between execution
success and accuracy for Prover9. The lower cor-

3p-values: 1.02× 10−18, 5.37× 10−7, 6.1× 10−12

45

Z3

Pro
ve

r9
Pyk

e
40

50

60

70

80

90

100
Ex

ec
ut

ab
le

 R
at

e
command-r-plus

Z3

Pro
ve

r9
Pyk

e

gemini-1.0-pro

Z3

Pro
ve

r9
Pyk

e

gpt-3.5-turbo

Z3

Pro
ve

r9
Pyk

e

gpt-4o

Depth
2
3
5

Figure 2: Executable Rate for different LLM-Tool combinations, for depth 2, 3, 5 of the ProofWriter Open World
Assumption (OWA). Similar trend exists for the Close World Assumption (CWA).

relation for Z3 highlights the discrepancy between
writing executable codes for Z3, and the accuracy
of those codes.

Natural vs. Fictional We compare the perfor-
mance of ProntoQA Depth 5 and ProofWriter
CWA Depth 5 to investigate how different symbolic
solvers affect the performance of tool-augmented
LLMs in natural versus fictional world settings.
The main difference between the datasets is that
PrOntoQA uses fictional characters (i.e., imagi-
nary characters like Jompus and Wompus), while
ProofWriter is expressed in more naturalistic lan-
guage. Saparov et al. (2023) have shown that real-
world knowledge helps LLMs in reasoning more ef-
fectively, a fictional world setting decreases LLM’s
logical performance. On average, Prover9’s per-
formance is most aligned with this observation.
The executable rate on average decreases for all
LLMs, and average accuracy drops by 1.38% in a
fictional setting. Both Z3 and Pyke’s overall accu-
racy increased by 6.62% and 30.87%. This shows
that while using Z3 and Prover9, fictional wording
helps LLMs in generating consistent and correct
translations. Overall, in a fictional setting, Pyke’s
performance is significantly boosted. Meanwhile,
GPT-3.5-Turbo shifts its preference from Prover9
to Z3, and Command R+ changes its preference
to Pyke. We speculate the nuance in results to be
reflective of potential interference between com-
monsense knowledge and fictional statements.

Depth The relaiton between depth and exe-
cutable rate is somewhat mixed, specially between
depth 2 and 3. While for command-r-plus we ob-
serve a general decay in performance (i.e., between
depth 2 and 5) across all tools, both GPT models
and Gemini exhibit resilence to depth, with perfor-
mance even improving across most tools (except
for Prover9). This observation highlights the ro-
bustness of translation-based approaches (i.e., us-
ing LLMs for translation and tools for solving) in

handling various complexities, while prior findings
reported the reasoning ability of LLMs (alone) gen-
erally diminish as the number of reasoning hops
increases (Han et al., 2022).

Demonstration Shots We present the statistics
of the FOLIO dataset in varying number of shots
in Table 3. Prover9 achieves the best performance,
while Z3 struggles with execution rate. The best
result for FOLIO was 66.5%, which is achieved
with 1 shot prompting using GPT-4o and Prover9.
The primary factors that limit the execution rate
performance on FOLIO are: (1) some natural word-
ings in FOLIO make it difficult for predicate ex-
traction. For example, GPT4o interpreted the term
"Eastern wild turkey" as two separate terms "East-
ern(x)" and "WildTurkey(x)", but "Eastern(x)" has
no meaning and the predicate should be extracted
as EasternWildTurkey(x). (2) FOLIO is anno-
tated by humans and thus assumes a degree of
commonsense, this presents incomplete reason-
ing chains and ambiguous sentences. As shown
in A.3, GPT-3.5-Turbo incorrectly translated the
statement “Marvin cannot be from Earth and from
Mars.” into “Not(And(FromEarth(marvin), From-
Mars(marvin)))”, which entails Marvin is not from
Earth and not from Mars. The simple fix is just to
change Not() into Xor(). This problem was caused
by the inherently ambiguous nature of the natu-
ral language. (3) there is a limitation to learning
by increasing the number of shots. Specifically,
GPT-4o and Prover9’s parse errors increased with
a higher number of shots, as shown in Table 3.
Overall, while Prover9 can solve a greater number
of questions, Z3 shows significant potential in ad-
dressing FOLIO. This is due to Z3’s error-display
capabilities, which are essential for continuous im-
provement.

46

Z3 Prover9

ExecR. Acc. ExecR. Acc.

GPT-4o

k = 1 40% 36% 84% 66.5%
k = 2 50.5% 40.96% 74.5% 58%
k = 4 51% 39.5% 77% 62%

GPT-3.5-Turbo

k = 1 29% 24.49% 61% 39.99%
k = 2 37% 31% 58% 40.5%
k = 4 48% 36.5% 65% 44.5%

Gemini-1.0-Pro

k = 1 31% 25.5% 67.5% 50.00%
k = 2 47.5% 39% 60.5% 38%
k = 4 48% 36.5% 65.5% 44%

Command-R-Plus

k = 1 25.50% 19.00% 50.50% 32.50%
k = 2 33.5% 26.5% 42.5% 29.5%
k = 4 42% 32.5% 60.5% 46%

Table 3: The effect of varying number of shots (k =
1, 2, 4) on accuracy and executable rates under GPT-4o,
GPT-3.5-turbo, Gemini-1.0-pro and command-r-plus
on FOLIO. We present the percentage of executable
logical formulations (ExecR.) together with the overall
accuracy (Acc.).

4 Analysis

As indicated by the executable rate in Table 2,
LLMs generally find it easier to produce executable
logical formulations for Prover9. This is attributed
to its foundation in FOL-based programming lan-
guage, which most large language models (LLMs)
are familiar with as a form of logical formulation.
While GPT models are more successful at convert-
ing these logical formulations into accurate results,
Gemini-1.0-pro and Command R+ face challenges
in achieving similar accuracy. This is an issue be-
cause an executable formulation cannot provide
feedback when an incorrect result is given. This
hinders further improvement and self-refinement.
Z3 does not have this issue. Its executable rate is a
reflection of its accuracy. Moreover, Z3’s program-
ming language closely aligns with Python, offering
a unique advantage in error displaying and further
improvement. Z3 is also a flexible tool that allows
the inclusion of self-defined complex logical rules
like "XorAnd()" (i.e., a combination of the rule
"Either or" and "And".). This capability is par-

ticularly useful for addressing complex reasoning
datasets like FOLIO. We did not define such a rule
during our experiment but this capability should be
considered in further studies.

Non-executable logical formulations can be cat-
egorized into parse errors and execution errors.
Additionally, for Z3, there is a separate category
known as execution exceptions.

• parse error refers to the mistakes identified by
the parser. Through the prompt, we have prede-
fined a set of instructions and logical rules that
LLMs can use. However, when LLMs halluci-
nate and generate logical rules or code that do
not exist in the solver, the parser will detect these
discrepancies and throw an parse error. This error
indicates the LLM’s inability to adhere to the one-
shot prompt, resulting in methods or code that
the parser cannot process. For instance, using
Exist() instead of Exists() for Z3 is an example
of such an error.

• execution error occurs when the solver encoun-
ters given facts that are inconsistent, predicates
that are defined wrong, or when there are solver-
specific syntax errors. This type of error can be
resolved through self-refinement, as the errors
are explicitly displayed. We call this run-time
error.

• execution exception is a special case for Z3,
where the solver runs both the original conclu-
sion and the negation of the same conclusion but
receives true as the answer in both cases. This
indicates that the facts are inconsistent. We com-
bined these errors into run-time errors for Fig-
ure 3 Z3 visualisation.

As shown in Figure 3, for GPT4o, while Pyke pro-
duced 3 execution errors on easier logical reason-
ing datasets in total, its high execution rate did not
translate to high accuracy. Predominately Prover9
and Z3’s error is a parse error, with execution error
controlled at around 8 questions. In addition, all
non-executable questions are different, there are
no common questions that all 3 solvers find dif-
ficult to solve. For FOLIO, the execution error
increases, and the parse error drops significantly.
Challenging datasets, such as FOLIO, encompass a
larger number of unseen, complex logical rules and
more intricate predicates, which result in higher er-
ror rates during translation by LLMs. Additionally,
there is an increasing number of questions that both
solvers are unable to process. This suggests that

47

73.50%

0.81%17.62%

8.06%

Z3 (1600)

93.44%

2.81%3.00%0.75%

Prover9 (1600)

85.50%

14.36%
0.00%0.14%

Pyke (1400)

Exec w/ CorrectO Exec w/ IncorrectO Non-Exec (Parse) Non-Exec (Runtime)

Figure 3: The proportion of various executable and non-executable instances per each tool for GPT4o. Note, Pyke
does not include FOLIO (hence 1400 instances compared to Z3 and Prover 9). The Exec w/ CorrectO, and Exec w/
IncorrectO denote Executable translations that lead to correct, and incorrect outputs once executed by the tool. The
Non-exec (Parse) or (Runtime) denote the non-executable translations which are either due to parsing error or other
potential runtime issues.

both solvers find around 25-30% of questions hard
to solve.

5 Conclusion

In this study, we investigated and compared the per-
formance of LLMs combined with three widely
used symbolic solvers to closely examine how
each solver influences the performance of tool-
augmented LLMs in logical reasoning. Our ex-
periments demonstrated that the choice of tools
(i.e., Z3, Pyke, Prover9) has a significant impact on
the downstream performance across various bench-
marks and LLMs.

Limitations

The tool-based approach to logical reasoning is
limited to deductive reasoning datasets with a com-
plete reasoning chain. This constraint arises from
the inherent nature of symbolic solvers. A poten-
tial solution is for LLMs to generate the missing
segments of the reasoning chain. Additionally,
black-box LLMs can exhibit inconsistencies, pro-
ducing results that change in the course of time. For
instance, during our experiment, GPT-3.5-Turbo
consistently failed to add a closing bracket to the
method "Forall()", while Command R+ failed to
include an opening bracket. This was not an issue
for Pan et al. (2023) and Ye et al. (2023) (or at
least was not reported in their papers). We limited
our use of solvers to their built-in functions. To
enhance the performance of each tool, more unique

logical combinations can be integrated and imple-
mented. For example, Z3 is a flexible tool that
allows the inclusion of rules such as "Male(x) ==
Not(Female(x))". There is further potential to in-
clude more defined complex logical rules that can
make LLM translation easier.

References
Ishita Dasgupta, Andrew K. Lampinen, Stephanie

C. Y. Chan, Antonia Creswell, Dharshan Kumaran,
James L. McClelland, and Felix Hill. 2022. Lan-
guage models show human-like content effects on
reasoning. CoRR, abs/2207.07051.

Leonardo Mendonça de Moura and Nikolaj S. Bjørner.
2008. Z3: an efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Bu-
dapest, Hungary, March 29-April 6, 2008. Proceed-
ings, volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer.

Jiazhan Feng, Ruochen Xu, Junheng Hao, Hiteshi
Sharma, Yelong Shen, Dongyan Zhao, and Weizhu
Chen. 2023. Language models can be logical solvers.
arXiv preprint arXiv:2311.06158.

Bruce Frederiksen. 2008. Applying expert system tech-
nology to code reuse with pyke. PyCon: Chicago.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: program-aided language
models. In International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu,

48

https://doi.org/10.48550/ARXIV.2207.07051
https://doi.org/10.48550/ARXIV.2207.07051
https://doi.org/10.48550/ARXIV.2207.07051
https://doi.org/10.1007/978-3-540-78800-3_24
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html

Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 10764–10799. PMLR.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting
Qi, Martin Riddell, Luke Benson, Lucy Sun, Eka-
terina Zubova, Yujie Qiao, Matthew Burtell, David
Peng, Jonathan Fan, Yixin Liu, Brian Wong, Mal-
colm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai,
Tao Yu, Rui Zhang, Shafiq R. Joty, Alexander R. Fab-
bri, Wojciech Kryscinski, Xi Victoria Lin, Caiming
Xiong, and Dragomir Radev. 2022. FOLIO: natu-
ral language reasoning with first-order logic. CoRR,
abs/2209.00840.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2024. Large language
models cannot self-correct reasoning yet. In The
Twelfth International Conference on Learning
Representations.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu,
Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12):248:1–248:38.

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung
Kim, Xin Xu, Vaiva Imbrasaite, and Deepak Ra-
machandran. 2023. Boardgameqa: A dataset for
natural language reasoning with contradictory infor-
mation. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Loka Li, Guangyi Chen, Yusheng Su, Zhenhao Chen,
Yixuan Zhang, Eric P. Xing, and Kun Zhang.
2024. Confidence matters: Revisiting intrinsic self-
correction capabilities of large language models.
CoRR, abs/2402.12563.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. CoRR, abs/2301.13379.

William McCune. 2003. Otter 3.3 reference manual.
arXiv preprint cs/0310056.

William McCune. 2005. Release of prover9. In Mile
high conference on quasigroups, loops and nonasso-
ciative systems, Denver, Colorado.

Kostas S. Metaxiotis, Dimitris Askounis, and John E.
Psarras. 2002. Expert systems in production planning
and scheduling: A state-of-the-art survey. J. Intell.
Manuf., 13(4):253–260.

Maxwell I. Nye, Michael Henry Tessler, Joshua B.
Tenenbaum, and Brenden M. Lake. 2021. Improv-
ing coherence and consistency in neural sequence
models with dual-system, neuro-symbolic reasoning.
In Advances in Neural Information Processing Sys-
tems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 25192–25204.

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang,
Armando Solar-Lezama, Joshua Tenenbaum, and
Roger Levy. 2023. LINC: A neurosymbolic approach
for logical reasoning by combining language models
with first-order logic provers. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 5153–5176, Singapore.
Association for Computational Linguistics.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Wang. 2023. Logic-lm: Empowering large
language models with symbolic solvers for faithful
logical reasoning. In Findings of the Association for
Computational Linguistics: EMNLP 2023, Singapore,
December 6-10, 2023, pages 3806–3824. Association
for Computational Linguistics.

Abulhair Saparov and He He. 2023. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Pad-
makumar, Nitish Joshi, Mehran Kazemi, Najoung
Kim, and He He. 2023. Testing the general deductive
reasoning capacity of large language models using
OOD examples. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
Proofwriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL/IJCNLP 2021, Online Event, August 1-6,
2021, volume ACL/IJCNLP 2021 of Findings of ACL,
pages 3621–3634. Association for Computational
Linguistics.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:

49

https://doi.org/10.48550/ARXIV.2209.00840
https://doi.org/10.48550/ARXIV.2209.00840
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
http://papers.nips.cc/paper_files/paper/2023/hash/7adce80e86aa841490e6307109094de5-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/7adce80e86aa841490e6307109094de5-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/7adce80e86aa841490e6307109094de5-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2402.12563
https://doi.org/10.48550/ARXIV.2402.12563
https://doi.org/10.48550/ARXIV.2301.13379
https://doi.org/10.48550/ARXIV.2301.13379
https://doi.org/10.1023/A%3A1016064126976
https://doi.org/10.1023/A%3A1016064126976
https://proceedings.neurips.cc/paper/2021/hash/d3e2e8f631bd9336ed25b8162aef8782-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d3e2e8f631bd9336ed25b8162aef8782-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d3e2e8f631bd9336ed25b8162aef8782-Abstract.html
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.48550/ARXIV.2303.08774
https://aclanthology.org/2023.findings-emnlp.248
https://aclanthology.org/2023.findings-emnlp.248
https://aclanthology.org/2023.findings-emnlp.248
https://openreview.net/pdf?id=qFVVBzXxR2V
https://openreview.net/pdf?id=qFVVBzXxR2V
https://openreview.net/pdf?id=qFVVBzXxR2V
http://papers.nips.cc/paper_files/paper/2023/hash/09425891e393e64b0535194a81ba15b7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/09425891e393e64b0535194a81ba15b7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/09425891e393e64b0535194a81ba15b7-Abstract-Conference.html
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.317
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.317
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi,
and Faramarz Fekri. 2023. Harnessing the power of
large language models for natural language to first-
order logic translation. CoRR, abs/2305.15541.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett.
2023. Satlm: Satisfiability-aided language models
using declarative prompting. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,
Daya Guo, Yining Chen, Jiahai Wang, Jian Yin, Ming
Zhou, and Nan Duan. 2022. Analytical reasoning of
text. In Findings of the Association for Computa-
tional Linguistics: NAACL 2022, pages 2306–2319.

50

https://doi.org/10.48550/ARXIV.2305.15541
https://doi.org/10.48550/ARXIV.2305.15541
https://doi.org/10.48550/ARXIV.2305.15541
http://papers.nips.cc/paper_files/paper/2023/hash/8e9c7d4a48bdac81a58f983a64aaf42b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/8e9c7d4a48bdac81a58f983a64aaf42b-Abstract-Conference.html

A Appendix

A.1 Dataset Examples

ProofWriter
Example: ProofWriter Depth 5 Open World Assumption Q774

Problem:
The bald eagle is blue. The bald eagle is kind. The bald eagle likes the cat. The bald eagle does not
visit the tiger. The cat chases the mouse. The cat is green. The cat likes the bald eagle. The cat
likes the mouse. The cat does not like the tiger. The mouse likes the cat. The tiger chases the cat.
The tiger chases the mouse. The tiger is red. The tiger likes the cat. The tiger visits the cat. The
tiger visits the mouse. If something likes the bald eagle then it is blue. If something visits the bald
eagle and it visits the cat then the bald eagle is red. If something chases the mouse then it visits the
cat. If something is blue then it chases the tiger. If something visits the cat and the cat chases the
tiger then the tiger likes the bald eagle. If something likes the tiger then the tiger likes the bald
eagle. If something chases the mouse then it visits the mouse.

Question:
Based on the above information, is the following statement true, false, or unknown?
The cat does not like the mouse.

Answer: False

PrOntoQA
Example: ProntoQA Q3

Problem:
Vumpuses are floral. Vumpuses are tumpuses. Tumpuses are brown. Each tumpus is a wumpus.
Wumpuses are small. Each wumpus is a rompus. Each zumpus is metallic. Every rompus is happy.
Rompuses are impuses. Each impus is amenable. Each impus is a dumpus. Every dumpus is not
metallic. Dumpuses are numpuses. Each numpus is bitter. Each numpus is a jompus. Every jompus
is cold. Each jompus is a yumpus. Wren is a tumpus. Question:
Is the following statement true or false?
Wren is not metallic.

Answer: True

FOLIO
Example: FOLIO dev Q1

Problem:
If people perform in school talent shows often, then they attend and are very engaged with school
events. People either perform in school talent shows often or are inactive and disinterested
members of their community. If people chaperone high school dances, then they are not students
who attend the school. All people who are inactive and disinterested members of their community
chaperone high school dances. All young children and teenagers who wish to further their
academic careers and educational opportunities are students who attend the school. Bonnie either

51

both attends and is very engaged with school events and is a student who attends the school,
or she neither attends and is very engaged with school events nor is a student who attends the school.

Question:
Based on the above information, is the following statement true, false, or uncertain?
If Bonnie is either both a young child or teenager who wishes to further her academic career
and educational opportunities and chaperones high school dances or neither is a young child nor
teenager who wishes to further her academic career and educational opportunities, then Bonnie
is either a student who attends the school or is an inactive and disinterested member of the
community.

Answer: True

A.2 Prompts
ProofWriter Prompts for Z3 Solver One-shot demonstration

Given a problem description and a question. The task is to parse the problem and the question into
Python Z3 solver.
——
Problem:
Anne is quiet. Erin is furry. Erin is green. Fiona is furry. Fiona is quiet. Fiona is red. Fiona is
rough. Fiona is white. Harry is furry. Harry is quiet. Harry is white. Young people are furry. If
Anne is quiet then Anne is red. Young, green people are rough. If someone is green then they are
white. If someone is furry and quiet then they are white. If someone is young and white then they
are rough. All red people are young.
Question:
Based on the above information, is the following statement true, false, or unknown? Anne is white.
###
solution in Python:
def solution():
Anne is quiet.
quiet(Anne)
Erin is furry.
furry(Erin)
Erin is green.
green(Erin)
Fiona is furry.
furry(Fiona)
Fiona is quiet.
quiet(Fiona)
Fiona is red.
red(Fiona)
Fiona is rough.
rough(Fiona)
Fiona is white.
white(Fiona)
Harry is furry.
furry(Harry)
Harry is quiet.

52

quiet(Harry)
Harry is white.
white(Harry)
Young people are furry.
ForAll([x], Implies(young(x), furry(x)))
If Anne is quiet then Anne is red.
Implies(quiet(Anne), red(Anne))
Young, green people are rough.
ForAll([x], Implies(And(young(x), green(x)), rough(x)))
If someone is green then they are white.
ForAll([x], Implies(green(x), white(x)))
If someone is furry and quiet then they are white.
ForAll([x], Implies(And(furry(x), quiet(x)), white(x)))
If someone is young and white then they are rough.
ForAll([x], Implies(And(young(x), white(x)), rough(x)))
All red people are young.
ForAll([x], Implies(red(x), young(x)))
Question: the following statement true, false, or unknown? Anne is white.
return white(Anne)

ProofWriter Prompts for Prover9 One shot demonstration for LLM

Given a problem description and a question, the task is to parse the problem and the question into
first-order logic formulas. The grammar of the first-order logic formula is defined as follows:

1. Logical conjunction of expr1 and expr2: expr1 ∧ expr2

2. Logical disjunction of expr1 and expr2: expr1 ∨ expr2

3. Logical exclusive disjunction of expr1 and expr2: expr1 ⊕ expr2

4. Logical negation of expr1: ¬expr1

5. expr1 implies expr2: expr1 → expr2

6. expr1 if and only if expr2: expr1 ↔ expr2

7. Logical universal quantification: ∀x

8. Logical existential quantification: ∃x

Problem
Anne is quiet. Erin is furry. Erin is green. Fiona is furry. Fiona is quiet. Fiona is red. Fiona is
rough. Fiona is white. Harry is furry. Harry is quiet. Harry is white. Young people are furry. If
Anne is quiet then Anne is red. Young, green people are rough. If someone is green then they are
white. If someone is furry and quiet then they are white. If someone is young and white then they
are rough. All red people are young.
Question:
Based on the above information, is the following statement true, false, or unknown? Anne is white.
###
Predicates
quiet(x) ::: x is quiet.
furry(x) ::: x is furry.

53

green(x) ::: x is green.
red(x) ::: x is red.
rough(x) ::: x is rough.
white(x) ::: x is white.
young(x) ::: x is young
Premises
quiet(Anne) ::: Anne is quiet.
furry(Erin) ::: Erin is furry.
green(Erin) ::: Erin is green.
furry(Fiona) ::: Fiona is furry.
quiet(Fiona) ::: Fiona is quiet.
red(Fiona) ::: Fiona is red.
rough(Fiona) ::: Fiona is rough.
white(Fiona) ::: Fiona is white.
furry(Harry) ::: Harry is furry.
quiet(Harry) ::: Harry is quiet.
white(Harry) ::: Harry is white.
∀x(young(x) → furry(x)) ::: Young people are furry.
(quiet(Anne) → red(Anne)) ::: If Anne is quiet then Anne is red.
∀x(young(x) ∧ green(x) → rough(x)) ::: Young, green people are rough.
∀x(green(x) → white(x)) ::: If someone is green then they are white.
∀x((furry(x) ∧ quiet(x)) → white(x)) ::: If someone is furry and quiet then they are white.
∀x((young(x) ∧ white(x)) → rough(x)) ::: If someone is young and white then they are rough.
∀x(red(x) → young(x)) ::: All red people are young.
Conclusion:
white(Anne)

ProofWriter Prompts for Pyke Solver One-shot demonstration

Task Description: You are given a problem description and a question. The task is to:
1) define all the predicates in the problem
2) parse the problem into logic rules based on the defined predicates
3) write all the facts mentioned in the problem
4) parse the question into the logic form
Problem:
Anne is quiet. Erin is furry. Erin is green. Fiona is furry. Fiona is quiet. Fiona is red. Fiona is
rough. Fiona is white. Harry is furry. Harry is quiet. Harry is white. Young people are furry. If
Anne is quiet then Anne is red. Young, green people are rough. If someone is green then they are
white. If someone is furry and quiet then they are white. If someone is young and white then they
are rough. All red people are young.
Question:
Based on the above information, is the following statement true, false, or unknown? Anne is white.
###
Predicates:
quiet($x, bool) ::: x is quiet.
furry($x, bool) ::: x is furry.
green($x, bool) ::: x is green.
red($x, bool) ::: x is red.
rough($x, bool) ::: x is rough.
white($x, bool) ::: x is white.

54

young($x, bool) ::: x is young
Facts:
quiet(Anne, True) ::: Anne is quiet.
furry(Erin, True) ::: Erin is furry.
green(Erin, True) ::: Erin is green.
furry(Fiona, True) ::: Fiona is furry.
quiet(Fiona, True) ::: Fiona is quiet.
red(Fiona, True) ::: Fiona is red.
rough(Fiona, True) ::: Fiona is rough.
white(Fiona, True) ::: Fiona is white.
furry(Harry, True) ::: Harry is furry.
quiet(Harry, True) ::: Harry is quiet.
white(Harry, True) ::: Harry is white.
young($x, True) >>> furry($x, True)) ::: Young people are furry.
quiet(Anne, True) >>> red(Anne, True)) ::: If Anne is quiet then Anne is red.
young($x, True) && green($x, True) >>> rough($x, True) ::: Young, green people are rough.
green($x, True) >>> white($x, True) ::: If someone is green then they are white.
furry($x, True) && quiet($x, True) >>> white($x, True)
::: If someone is furry and quiet then they are white.
young($x, True) && white($x, True) >>> rough($x, True)
::: If someone is young and white then they are rough.
red($x, True) >>> young($x, True) ::: All red people are young.
Query:
white(Anne)

A.3 Incorrect Example Generation

The following section includes classic Incorrect translations, more incorrect translations can be found in
Processed_Datasets in https://github.com/Mattylam/Logic_Symbolic_Solvers_Experiment

Example 1: Prover9 PrOntoQA_2 Parse error
..........
∀x(Dumpus(x) → Happy(x)) ::: Every dumpus is happy.
∀x(Dumpus(x) → Vumpus(x)) ::: Each dumpus is a vumpus.
∀x(Vumpus(x) → Bright(x)) ::: Vumpuses are bright.
∀x(Vumpus(x) → Jompus(x)) ::: Every vumpus is a jompus.
∀x(Jompus(x) → Large(x)) ::: Jompuses are large.
Stella is a yumpus.
Conclusion:
Bright(Stella) ::: Stella is bright.

Analysis: LLM failed to perform all translations, "Stella is yumpus" was not translated, thus system
throws a parse error

Example 2: Z3 FOLIO_dev_27 Incorrect Interpretation

Problem: All aliens are extraterrestrial. If someone is from Mars, then they are aliens. No
extraterrestrial is human. Everyone from Earth is a human. Marvin cannot be from Earth and from
Mars. If Marvin is not from Earth, then Marvin is an extraterrestrial.

55

https://github.com/Mattylam/Logic_Symbolic_Solvers_Experiment

Question: Based on the above information, is the following statement true, false, or uncertain?
Marvin is an alien.
Answer: False
Predicted Answer: Unknown
Translation from LLM:
........
All aliens are extraterrestrial.
ForAll([x], Implies(Alien(x), Extraterrestrial(x)))
If someone is from Mars, then they are aliens.
ForAll([x], Implies(FromMars(x), Alien(x)))
No extraterrestrial is human.
ForAll([x], Implies(Extraterrestrial(x), Not(Human(x))))
Everyone from Earth is a human.
ForAll([x], Implies(FromEarth(x), Human(x)))
Marvin cannot be from Earth and from Mars.
Not(And(FromEarth(marvin), FromMars(marvin)))
If Marvin is not from Earth, then Marvin is an extraterrestrial.
Implies(Not(FromEarth(marvin)), Extraterrestrial(marvin))
Question: Marvin is an alien.
return Alien(marvin)

Analysis: LLM incorrectly interpreted the logic of the statement. The correct translation should
be Xor(And(FromEarth(marvin), FromMars(marvin))), the wording of the statement makes it
ambiguous for LLMs to interpret. If the statement was, Marvin is either from Earth or from Mars,
LLMs would have been able to translate it.

Example 3: Z3 FOLIO_dev_16 Difficult predicate extraction
Problem: All rabbits are cute. Some turtles exist. An animal is either a rabbit or a squirrel. If
something is skittish, then it is not still. All squirrels are skittish. Rock is still.
Question: Based on the above information, is the following statement true, false, or uncertain?
Rock is a turtle. Answer: Unknown
Error: ExecutionError NameError: name ’Exist’ is not defined. Did you mean: ’exit’?"
Translation from LLM:
........
All rabbits are cute.
ForAll([x], Implies(Rabbit(x), Cute(x)))
Some turtles exist.
Exist([x], Turtle(x))
An animal is either a rabbit or a squirrel.
ForAll([x], Or(Rabbit(x), Squirrel(x)))
If something is skittish, then it is not still.
ForAll([x], Implies(Skittish(x), Not(Still(x))))
All squirrels are skittish.
ForAll([x], Implies(Squirrel(x), Skittish(x)))
Rock is still.
Still(Rock)
Question: Rock is a turtle.
return Turtle(Rock)

56

A.4 How Z3 tackles BoardgameQA

A few players are playing a boardgame. The current state of the game is as follows. The cat is
named Meadow. The cat published a high-quality paper. The gecko winks at the eagle. The puffin
is named Peddi. And the rules of the game are as follows. Rule1: Regarding the cat, if it has a
high-quality paper, then we can conclude that it prepares armor for the canary. Rule2: If you are
positive that you saw one of the animals rolls the dice for the eagle, you can be certain that it will
also proceed to the spot right after the sun bear. Rule3: If the cat prepares armor for the canary and
the cricket gives a magnifier to the canary, then the canary will not remove one of the pieces of
the aardvark. Rule4: If the cat has a name whose first letter is the same as the first letter of the
puffin’s name, then the cat does not prepare armor for the canary. Rule5: The canary removes one
of the pieces of the aardvark whenever at least one animal proceeds to the spot right after the sun
bear. Rule6: Regarding the cat, if it has something to sit on, then we can conclude that it does not
prepare armor for the canary. Rule3 is preferred over Rule5. Rule4 is preferred over Rule1. Rule6
is preferred over Rule1.
Based on the game state and the rules and preferences, does the canary remove from the board one
of the pieces of the aardvark?

solution in Python:
def solution():
rules
Rule1: Regarding the cat, if it has a high-quality paper, then we can conclude that it prepares
armor for the canary.
Rule1 = Implies(has_high_quality_paper(cat), prepare_armor(cat, canary))
Rule2: If you are positive that you saw one of the animals rolls the dice for the eagle, you can be
certain that it will also proceed to the spot right after the sun bear.
Rule2 = ForAll([x], Implies(roll_dice(x, eagle), proceed_to_spot_right_after(x, sun_bear)))
Rule3: If the cat prepares armor for the canary and the cricket gives a magnifier to the canary,
then the canary will not remove one of the pieces of the aardvark.
Rule3 = Implies(And(prepare_armor(cat, canary), give_magnifier(cricket, canary)),
Not(remove_piece(canary, aardvark)))
Rule4: If the cat has a name whose first letter is the same as the first letter of the puffin’s name,
then the cat does not prepare armor for the canary.
Rule4 = Implies(has_same_first_letter_name(cat, puffin), Not(prepare_armor(cat, canary)))
Rule5: The canary removes one of the pieces of the aardvark whenever at least one animal
proceeds to the spot right after the sun bear.
Rule5 = Implies(Exists([x], proceed_to_spot_right_after(x, sun_bear)), remove_piece(canary,
aardvark))
Rule6: Regarding the cat, if it has something to sit on, then we can conclude that it does not
prepare armor for the canary.
Rule6 = Implies(has_something_to_sit_on(cat), Not(prepare_armor(cat, canary)))
The current state of the game is as follows. The cat is named Meadow. The cat published a
high-quality paper. The gecko winks at the eagle. The puffin is named Peddi.
The cat is named Meadow. The puffin is named Peddi. The first letter of Meadow is M. The first
letter of the Peddi is P. So the cat does not have the same first letter name as the puffin.
has_same_first_letter_name(cat, puffin) == False
The cat published a high-quality paper.
has_high_quality_paper(cat) == True
The gecko winks at the eagle.
winks_at(gecko, eagle) == True
preferences. Rule3 is preferred over Rule5. Rule4 is preferred over Rule1. Rule6 is preferred

57

over Rule1.
soft_rules = [Rule5, Rule1, Rule1]
Rule3 is preferred over Rule5. So Rule5 is suppressed by the precondition of Rule3.
Rule5 = Or(And(prepare_armor(cat, canary), give_magnifier(cricket, canary)), Rule5)
Rule4 is preferred over Rule1. So Rule1 is suppressed by the precondition of Rule4.
Rule1 = Or(has_same_first_letter_name(cat, puffin), Rule1)
Rule6 is preferred over Rule1. So Rule1 is suppressed by the precondition of Rule6.
Rule1 = Or(has_something_to_sit_on(cat), Rule1)
question: does the canary remove from the board one of the pieces of the aardvark?
return remove_piece(canary, aardvark)

A.5 GPT4o and Cohere command-r-plus Prompts

The prompts require some adjustments for GPT-4O and Cohere, as both models tend to produce com-
plete executable code rather than adhering to the provided example. For instance, GPT-4O will define
"s.solver()" and create the decision rule for Z3, instead of generating translations as specified in the
prompt. Here we provide an overview of what is changed in the prompt.

ProofWriter GPT4O Prompts for Z3 Solver One-shot demonstration

The grammar of the first-order logic formula is defined as follows:
1) logical conjunction of expr1 and expr2: And(expr1, expr2)
2) logical disjunction of expr1 and expr2: Or(expr1, expr2)
3) logical exclusive disjunction of expr1 and expr2: Xor(expr1, expr2)
4) logical negation of expr1: Not(expr1)
5) expr1 implies expr2: Implies(expr1, expr2)
6) expr1 if and only if expr2: expr1 == expr2
7) logical universal quantification: ForAll()
8) logical existential quantification: Exists()
Given a problem description and a question. The task is to parse the [Problem] and the [Question]
into Python Z3 solver. You are meant to follow the example format and do not provide any further
explanations. Keep all the # signs as symbols and do not interpret them as markdown marker.
——
[Problem]:
Anne is quiet. Erin is furry. Erin is green. Fiona is furry. Fiona is quiet. Fiona is red. Fiona is
rough. Fiona is white. Harry is furry. Harry is quiet. Harry is white. Young people are furry. If
Anne is quiet then Anne is red. Young, green people are rough. If someone is green then they are
white. If someone is furry and quiet then they are white. If someone is young and white then they
are rough. All red people are young.
[Question]:
Based on the above information, is the following statement true, false, or unknown? Anne is white.
####
[Problem Parse Output]:
Anne is quiet.
quiet(Anne)
Erin is furry.
furry(Erin)
Erin is green.
green(Erin)
Fiona is furry.

58

furry(Fiona)
Fiona is quiet.
quiet(Fiona)
Fiona is red.
red(Fiona)
Fiona is rough.
rough(Fiona)
Fiona is white.
white(Fiona)
Harry is furry.
furry(Harry)
Harry is quiet.
quiet(Harry)
Harry is white.
white(Harry)
Young people are furry.
ForAll([x], Implies(young(x), furry(x)))
If Anne is quiet then Anne is red.
Implies(quiet(Anne), red(Anne))
Young, green people are rough.
ForAll([x], Implies(And(young(x), green(x)), rough(x)))
If someone is green then they are white.
ForAll([x], Implies(green(x), white(x)))
If someone is furry and quiet then they are white.
ForAll([x], Implies(And(furry(x), quiet(x)), white(x)))
If someone is young and white then they are rough.
ForAll([x], Implies(And(young(x), white(x)), rough(x)))
All red people are young.
ForAll([x], Implies(red(x), young(x)))
[Question Parse Output]:
Question: the following statement true, false, or unknown? Anne is white.
return white(Anne)

ProofWriter Cohere Prompts for Z3 Solver One-shot demonstration
For the Z3 solver, the Cohere prompt was slightly adjusted because produces translation not aligned with
the given example.

The grammar of the first-order logic formula is defined as follows:
1) logical conjunction of expr1 and expr2: And(expr1, expr2)
2) logical disjunction of expr1 and expr2: Or(expr1, expr2)
3) logical exclusive disjunction of expr1 and expr2: Xor(expr1, expr2)
4) logical negation of expr1: Not(expr1)
5) expr1 implies expr2: Implies(expr1, expr2)
6) expr1 if and only if expr2: expr1 == expr2
7) logical universal quantification: ForAll()
8) logical existential quantification: Exists()
Given a problem description and a question. The task is to parse the [Problem] and the [Question]
into Python Z3 solver. You are meant to follow the example format and do not provide any further
explanations. Follow the format given and do not define "s" and "s.solver" for the Z3 solver. Keep
all the # signs as symbols and do not interpret them as markdown marker.

59

——
[Problem]:
Anne is quiet.
.......

ProofWriter GPT4o and Cohere Prompts for Prover9 One shot demonstration for LLM

The grammar of the first-order logic formula is defined as follows:

1. Logical conjunction of expr1 and expr2: expr1 ∧ expr2

2. Logical disjunction of expr1 and expr2: expr1 ∨ expr2

3. Logical exclusive disjunction of expr1 and expr2: expr1 ⊕ expr2

4. Logical negation of expr1: ¬expr1

5. expr1 implies expr2: expr1 → expr2

6. expr1 if and only if expr2: expr1 ↔ expr2

7. Logical universal quantification: ∀x

8. Logical existential quantification: ∃x

Given a problem description and a question. The task is to parse the [Problem] and the [Question]
into Prover9 solver. You are meant to follow the example format and do not provide any further
explanations. Keep all the ::: signs as symbols and do not interpret them as markdown marker.
[Problem]:
Anne is quiet. Erin is furry. Erin is green. Fiona is furry. Fiona is quiet. Fiona is red. Fiona is
rough. Fiona is white. Harry is furry. Harry is quiet. Harry is white. Young people are furry. If
Anne is quiet then Anne is red. Young, green people are rough. If someone is green then they are
white. If someone is furry and quiet then they are white. If someone is young and white then they
are rough. All red people are young.
[Question]:
Based on the above information, is the following statement true, false, or unknown? Anne is white.
####
[Problem Parse Output]:
Predicates
quiet(x) ::: x is quiet.
furry(x) ::: x is furry.
green(x) ::: x is green.
red(x) ::: x is red.
rough(x) ::: x is rough.
white(x) ::: x is white.
young(x) ::: x is young
Premises
quiet(Anne) ::: Anne is quiet.
furry(Erin) ::: Erin is furry.
green(Erin) ::: Erin is green.
furry(Fiona) ::: Fiona is furry.
quiet(Fiona) ::: Fiona is quiet.
red(Fiona) ::: Fiona is red.
rough(Fiona) ::: Fiona is rough.

60

white(Fiona) ::: Fiona is white.
furry(Harry) ::: Harry is furry.
quiet(Harry) ::: Harry is quiet.
white(Harry) ::: Harry is white.
∀x(young(x) → furry(x)) ::: Young people are furry.
(quiet(Anne) → red(Anne)) ::: If Anne is quiet then Anne is red.
∀x(young(x) ∧ green(x) → rough(x)) ::: Young, green people are rough.
∀x(green(x) → white(x)) ::: If someone is green then they are white.
∀x((furry(x) ∧ quiet(x)) → white(x)) ::: If someone is furry and quiet then they are white.
∀x((young(x) ∧ white(x)) → rough(x)) ::: If someone is young and white then they are rough.
∀x(red(x) → young(x)) ::: All red people are young.
[Question Parse Output]:
Conclusion:
white(Anne)

ProofWriter GPT4o and Cohere Prompts for Pyke Solver One-shot demonstration

The grammar of the first-order logic formula is defined as follows:
1) logical conjunction of expr1 and expr2: expr1 && expr2
2) logical negation of expr1: expr1($x, False), as example if "Anne is not quiet", the term would be
"Quiet(Anne, False)"
3) expr1 implies expr2: expr1 »> expr2
Given a problem description and a question. The task is to parse the [Problem] and the [Question]
into Pyke solver. You are meant to follow the example format and do not provide any further
explanations. Keep all the ::: signs as symbols and do not interpret them as markdown marker.
[Problem]:
Anne is quiet. Erin is furry. Erin is green. Fiona is furry. Fiona is quiet. Fiona is red. Fiona is
rough. Fiona is white. Harry is furry. Harry is quiet. Harry is white. Young people are furry. If
Anne is quiet then Anne is red. Young, green people are rough. If someone is green then they are
white. If someone is furry and quiet then they are white. If someone is young and white then they
are rough. All red people are young.
[Question]:
Based on the above information, is the following statement true, false, or unknown? Anne is white.
####
[Problem Parse Output]:
Predicates:
quiet($x, bool) ::: x is quiet.
furry($x, bool) ::: x is furry.
green($x, bool) ::: x is green.
red($x, bool) ::: x is red.
rough($x, bool) ::: x is rough.
white($x, bool) ::: x is white.
young($x, bool) ::: x is young
Facts:
quiet(Anne, True) ::: Anne is quiet.
furry(Erin, True) ::: Erin is furry.
green(Erin, True) ::: Erin is green.
furry(Fiona, True) ::: Fiona is furry.
quiet(Fiona, True) ::: Fiona is quiet.
red(Fiona, True) ::: Fiona is red.

61

rough(Fiona, True) ::: Fiona is rough.
white(Fiona, True) ::: Fiona is white.
furry(Harry, True) ::: Harry is furry.
quiet(Harry, True) ::: Harry is quiet.
white(Harry, True) ::: Harry is white.
young($x, True) >>> furry($x, True)) ::: Young people are furry.
quiet(Anne, True) >>> red(Anne, True)) ::: If Anne is quiet then Anne is red.
young($x, True) && green($x, True) >>> rough($x, True) ::: Young, green people are rough.
green($x, True) >>> white($x, True) ::: If someone is green then they are white.
furry($x, True) && quiet($x, True) >>> white($x, True)
::: If someone is furry and quiet then they are white.
young($x, True) && white($x, True) >>> rough($x, True)
::: If someone is young and white then they are rough.
red($x, True) >>> young($x, True) ::: All red people are young.
[Question Parse Output]:
Query:
white(Anne)

62

Dataset Z3 Prover9 Pyke
Avg_Acc Avg_Acc Avg_Acc

ProofWriter D5 OWA 85.75% 75.00% 56.63%
ProofWriter D3 OWA 83.04% 75.37% 52.37%
ProofWriter D2 OWA 82.50% 76.00% 56.50%
ProofWriter D5 CWA 87.50% 78.25% 60.25%
ProofWriter D3 CWA 89.25% 76.13% 45.63%
ProofWriter D2 CWA 89.63% 77.12% 54.75%
PrOntoQA 94.12% 76.87% 91.12%
FOLIO (1 Shot) 26.25% 43.78% ✗

FOLIO (2 Shot) 34.36% 41.60% ✗

FOLIO (4 Shot) 36.87% 49.13% ✗

Table 4: Average accuracy of Experiment done with GPT-4o, GPT-3.5-turbo, Gemini-1.0-pro and command-r-plus
on all datasets. We present the percentage of the overall average accuracy of tools (Avg_Acc). The shots represent
the number of shots used in the prompt.✗: the tool was unable to solve this dataset. The numbers highlighted in red
color represent the highest accuracy between the 3 chosen tools.

63

