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Abstract
This paper explores the challenges of detect-
ing LGBTQIA+ hate speech of large language
models across multiple languages, including
English, Italian, Chinese and (code-mixed)
English-Tamil, examining the impact of ma-
chine translation and whether the nuances of
hate speech are preserved across translation.
We examine the hate speech detection abil-
ity of zero-shot and fine-tuned GPT. Our find-
ings indicate that: (1) English has the highest
performance and the code-mixing scenario of
English-Tamil being the lowest, (2) fine-tuning
improves performance consistently across lan-
guages whilst translation yields mixed results.
Through simple experimentation with original
text and machine-translated text for hate speech
detection along with a qualitative error analysis,
this paper sheds light on the socio-cultural nu-
ances and complexities of languages that may
not be captured by automatic translation.

Warning: The paper contains examples of mul-
tilingual hate speech towards LGBTQIA+ com-
munity because of the nature of the work.

1 Introduction

LGBTQIA+ individuals are particularly vulnerable
to hate speech due to their sexual orientation and
gender identity. They are frequently subject to ha-
rassment, discrimination, violence due to their iden-
tity (Chakravarthi et al., 2024). Therefore, many so-
cial media platforms have implemented hate speech
detection as part of content sanitation on their plat-
forms to create safer online environments. As so-
cial media platforms become increasingly diverse
with people coming from different linguistic back-
grounds, we investigate if hate speech detection is
sustained across different languages, translations,
and code-mixing environments. In other words, is
hate speech detection “lost in translation”1?

1As part of a discussion on his poem “Stopping by Woods
on a Snowy Evening”, Robert Frost famously remarked
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Figure 1: Evaluation methodology of machine
translation-based hate speech detection.

The approach of using machine translation to
translate the test data into English and running in-
ference using an English-only model has long been
studied (Pikuliak et al., 2021). This method may
be better for complex tasks that require common
sense or real-world knowledge, as it benefits from
the use of a stronger English-only model (Artetxe
et al., 2023), which may be useful for the complex
task of hate speech detection.

Therefore, we ask the question: “How does hate
speech detection perform for original text and trans-
lated text?” We do so for the case of hate speech
towards LGBTQIA+ people. While it is intuitive
that machine translation will not preserve all seman-
tics, our experiments with zero-shot and fine-tuned
GPT show that it particularly holds true for hate
speech detection. Our error analysis sheds light on
the nature of errors to highlight ‘what’ is lost in
translation.

“You’ve often heard me say – perhaps too often – that po-
etry is what is lost in translation. It is also what is lost in
interpretation.” (Untermeyer, 1964, p. 18)
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Language Source Total Samples Non-Homotransphobic Homotransphobic

English (McGiff and Nikolov, 2024) 1,277 656 (51.4%) 621 (48.6%)
Italian (Nozza et al., 2023) 5,000 2,992 (59.8%) 2,008 (40.2%)
Chinese (Lu et al., 2023) 2011 1247 (62.0%) 764 (38.0%)
English-Tamil (Chakravarthi et al., 2021) 6033 5384 (89.2%) 649 (10.8%)

Table 1: Comparison of datasets. % in the Non-Homotransphobic and Homotransphobic columns refer to the
proportion of each class relative to the total samples in each dataset, with each row summing to 100%.

2 Methodology

Our methodology is as shown in Figure 1. We
utilise labeled datasets in English, Italian, Chinese,
and English-Tamil (code-mixed2), each focusing
on LGBTQIA+-specific hate speech. Our prepro-
cessing involves removing excess spaces and in-
valid characters.

We translate non-English datasets (Italian, Chi-
nese, and English-Tamil (code-mixed) into English
via the chosen LLM (large language model) in zero-
shot setting using the following user prompt ‘Trans-
late this sentence into English: ‘text”. This forms
our Translated Dataset.

We then perform zero-shot classification using
the chosen LLM to the detect homotransphobia3,
with 1 referring to homotransphobic content and 0
referring to non-homotransphobic content. We use
the following system prompt “You are an AI assis-
tant that classifies text as either homotransphobic
(1) or not homotransphobic (0). Respond with only
0 or 1.”, and the user prompt being “Classify the
following text: ‘text". This is applied on both the
Preprocessed Dataset and the Translated Dataset.
This gives us classification results for Original and
Translated respectively.

We then perform fine-tuning on the LLM via
the OpenAI API4 using the Preprocessed Dataset
and Translated Dataset using the same prompts
as what was used for the earlier round of classifica-
tion. We then get the classification results for Fine-
tuned (Original) and Fine-tuned (Translated) re-
spectively.

Finally, we perform comparative analysis be-
tween the classification results from four models

2Code-mixing indicates the use of vocabulary from multi-
ple languages. The English-Tamil (code-mixed) dataset em-
ployed in this paper are remarks written in mostly Roman
character employing Tamil vocabulary with either Tamil or
English grammar (Chakravarthi et al., 2021).

3‘Homotransphobic’ is used as an umbrella term to indicate
hate speech towards the LGBTQIA+ community

4https://platform.openai.com/docs/guides/
fine-tuning

Original, Fine-tuned (Original), Translated, and
Fine-tuned (Translated) and evaluate the impact
of translation on the final effectiveness of the model
and measure the performance improvement, if any,
achieved through fine-tuning.

3 Experiment Setup

The LLM which we use for our experiments is
the gpt-3.5-turbo model5, a chat-bot based on the
GPT-3.5 language model developed by OpenAI.
This model is optimised for prompt-based usage
but performs equally well for traditional NLP tasks
(Das et al., 2024).

The datasets which we employ are shown in Ta-
ble 1 with a train-validation-test split of 60:20:20.
It is noted that the datasets display varying de-
grees of imbalance which could affect model per-
formance across languages. While the English and
Italian datasets are fairly balanced, and the Chinese
dataset shows a moderate imbalance, the English-
Tamil dataset exhibits severe imbalance, with only
10.8% of samples being homotransphobic, broadly
referred to as hate speech towards the LGBTQIA+
community.

The downstream task is hate speech detection,
and is evaluated using the following metrics: F1
score, precision, recall, and Cohen-Kappa agree-
ment. In particular, Cohen’s Kappa is used to mea-
sure the agreement between the predicted labels
and the true label. It is chosen as it is a good mea-
sure of intra-rater reliability, while correcting for
times when the raters may agree by chance (Cohen,
1960). F1 score, precision, and recall are weighted
to account for class imbalances.

4 Results

4.1 Quantitative Evaluation

Table 2 compares the performance of gpt3.5-turbo
on original text versus translated text across differ-
ent languages. English yields the highest F1-score

5https://platform.openai.com/docs/models
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Language Condition F1 P R K ∆ F ∆ K

English Original 0.7952 0.7082 0.9066 0.5488 - -
Fine-tuned 0.8689 0.8833 0.8548 0.7486 +0.0737 +0.1998

Italian Original 0.5990 0.4514 0.8899 0.1414 - -
Translated 0.5355 0.4424 0.6783 0.0960 -0.0635 -0.0454
Fine-tuned (Original) 0.8375 0.8417 0.8333 0.7292 +0.2385 +0.5878
Fine-tuned (Translated) 0.7417 0.7371 0.7463 0.5662 +0.2062 +0.4702

Chinese Original 0.7464 0.7493 0.7435 0.5878 - -
Translated 0.6839 0.7099 0.6597 0.2463 -0.0625 -0.3415
Fine-tuned (Original) 0.8146 0.8255 0.8039 0.7030 +0.0682 +0.1152
Fine-tuned (Translated) 0.7661 0.7958 0.7386 0.6308 +0.0822 +0.3845

English- Tamil Original 0.3619 0.2843 0.4977 0.1998 - -
Translated 0.3202 0.3511 0.2943 0.2463 -0.0417 +0.0465
Fine-tuned (Original) 0.5391 0.6200 0.4769 0.2452 +0.1772 +0.0454
Fine-tuned (Translated) 0.4037 0.5000 0.3385 0.3469 +0.0835 +0.1006

Table 2: Performance Metrics (F1: F1-score, P: Precision, R: Recall: K: Cohen’s Kappa) and Changes Across
Languages and Conditions. All scores are weighted. ∆ columns represent the changes in F1-score and Cohen’s
Kappa between different conditions: Fine-tuned (Original → Fine-tuned), Translated (Original → Translated), and
Fine-tuned (Translated → Fine-tuned).

(0.7952), followed by Chinese (0.7464), Italian
(0.5990), and English-Tamil (0.3619). The strong
performance in Chinese suggests good generalisa-
tion to non-Latin scripts after translation, while the
low score for English-Tamil highlights challenges
with code-mixed content (Doğruöz et al., 2021).

We also evaluate whether applying the subse-
quent transformation process degrades or improves
the performance. Translating non-English con-
tent to English produces mixed results. English-
Tamil sees a slight improvement in Cohen’s Kappa
(+0.0465) despite a decrease in F1-score (-0.0417),
which suggests translating and classifying may im-
prove model performance in code-mixed languages
(Gautam et al., 2021). Italian shows marginal de-
creases in both metrics. Chinese experiences the
most significant performance drop (F1: -0.0625,
Kappa: -0.3415), suggesting substantial loss of
context during translation. These findings indicate
that in general, translation decreases the effective-
ness of hate speech detection. However, the degree
of reduction is language-dependent.

Fine-tuning consistently improves performance
across all languages, with the most substantial
gains in Italian (∆F1: +0.2385, ∆Kappa: +0.5878)
and English-Tamil (∆F1: +0.1772). Even English
and Chinese, which have strong baseline perfor-
mances, see notable improvements. Fine-tuning
on translated text also shows benefits, though gen-
erally not as substantial as fine-tuning on original
text, with Chinese being an exception.

4.2 Qualitative Analysis

We now show qualitative analysis of how hate is
‘lost in translation’ as shown in the previous section.
This is visible in the case of slang and culturally
specific references. We request the assistance of
native speakers of Italian, Tamil, and Chinese to
identify prominent translation errors for the mis-
classified case as shown in Table 3.

Table 3 indicates that most of LGBTQ termi-
nologies, derogatory language involving LGBTQ
people, and sometimes even non-LGBTQ slang
words (in the case of English-Tamil) are mistrans-
lated across the three languages (Italian, English-
Tamil, and Chinese). This suggests that while the
translation models may handle standard language
adequately, they struggle with specialised or sub-
cultural terms, which are often crucial in detecting
hate speech. Despite these challenges, the model
shows some strengths, such as correctly identify-
ing some LGBTQIA+-related slang like “BL"，
“CP"， and “腐女" in translations.

The qualitative analysis reveals significant chal-
lenges in translating and detecting LGBTQIA+
hate speech across languages, particularly with
slang, implicit hate, and cultural-specific expres-
sions. While the model shows promise in some
areas, there is a clear need for more nuanced,
language-specific approaches to improve accuracy
in multilingual hate speech detection.
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Language Original Text GPT Translation Human Translation T P Analysis

Chinese
你怎么骂基佬我也不生
气我也不是男的我还有
男朋友

I’m not angry even if you
scold me, I’m not a man, I
have a boyfriend.

I won’t be offended if you
call me gay. I’m not a man.
I have a boyfriend.

0 1 Mistranslation of “基佬” (brash slang for gay people).

Chinese
男同没皮没脸要借别人
的好脸

Men who have no shame
want to borrow other peo-
ple’s good reputation.

Gay men who have no
shame want to borrow
other people’s good repu-
tation.

1 0
“男同” (abbreviation for gay men) was missed in transla-
tion.

Chinese
妇男，快12点了，你上
飞机没有？

Woman, it’s almost 12
o’clock, have you boarded
the plane?

House-husband, it’s al-
most 12 o’clock, have you
boarded the plane?

1 0 Mistranslation of “妇男” (house-husband) as woman.

English-
Tamil

Yogesh Waran Hey nee 9
taane

Yogesh, you are a 9 out of
10

Yogesh Waran, aren’t you
trans?

1 0
Mistranslation of “9” (double meaning word for the trans-
gender community).

English-
Tamil

Serupa alla ADI nara-
munda

"Similar to ADI, nara-
munda"

Will beat you with slipper,
fool

1 0
Translation is completely wrong. “Serupu” means “slip-
per/footwear” and “naramunda” is pejorative term meaning
“fool”.

English-
Tamil

Serpala adikanum......enga
ponanulm ithuka tholla
thanga mudila ...

I need to talk to Serpala...I
can’t handle this on my
own...

I will hit with slipper, I
cant bear this trouble.

1 0
Mistranslation of Serpala, which means “with slip-
per/footwear” with an informal and aggressive connotation,
as a name.

Italian

@user_ab @user_abcde
@user_abcdef @user_a
Sono tutti innamorati del
busone

@user_ab @user_abcde
@user_abcdef @user_a
They are all in love with
the big bus

They’re all in love with
anal sex

1 0
Mistranslation of “Busone” (Northern Italian slang for anal
sex, used for mocking homosexuals) as “big bus” (-one affix
is used to indicate something that is big)

Italian
MADONNA SUCCHI-
ACAZZI E PUTTANA
#bestemmie #world

MADONNA SUCKS
DICK AND WHORE
#blasphemy #world

GOD FUCKING
DAMMIT

0 1
Mistranslation of “Madonna Puttana” which is a common
rage expression in Italian involving saints but is not homo-
transphobic

Italian
Non ho letto nulla ma nel
dubbio Sala ricchione

I haven’t read anything but
just in case Sala is a rich
man

I haven’t read anything but
just in case Sala is a faggot

1 0
Mistranslation of “ricchione” (Southern Italian derogatory
slang for homosexual people) as “rich” (which is “ricco”)

Table 3: Qualitative error analysis of misclassified examples for the Zero-shot on Translated. Each sample is given
the ‘Original Text’, the ‘GPT Translation’, and the ‘Human Translation’. ‘T’ stands for ‘Truth’ and ‘P’ stands for
‘Prediction’. ‘Truth’ and ’Prediction’ values are either 0 (non-homotransphobic) or 1 (homotransphobic). ‘Analysis’
are comments on the translation error.

5 Related Work

Despite broad interest in hate speech detection, re-
search specifically addressing LGBTQIA+ com-
munities remain limited. Challenges to create
a generalised hate speech model for various tar-
gets have been reported in particular(Nozza et al.,
2023). Shared tasks have been particularly impor-
tant for hate speech detection towards LGBTQIA+
community. The LT-EDI@EACL series (2022-
2024) focuses on the identification of homopho-
bia, transphobia, and nonanti-LGBTQIA+ con-
tent in Tamil, English, and code-mixed English-
Tamil (Chakravarthi et al., 2022, 2023, 2024). The
shared task has expanded to include various lan-
guages to look at homotransphobia in a multilin-
gual context. There have also been other shared
tasks on the topic, focusing on various languages.
Examples include HOMO-MEX2023@IberLEF
which focuses on hate speech detection towards
the Mexican Spanish-Speaking LGBTQIA+ popu-
lation (Bel-Enguix et al., 2023; Tash et al., 2023).
In a similar vein, HODI is a shared task for the
automatic detection of homotransphobia in Italian
presented at EVALITA 2023 (Nozza et al., 2023).
Beyond shared tasks, some research has employed
Transformer-based models like BERT and XLM-

RoBERTa to identify transphobic and homopho-
bic insults in social media comments (Manikan-
dan et al., 2022). Benchmarks such as Wino-
Queer (Felkner et al., 2023) provide pairs of sen-
tences to measure anti-LGBTQIA+ bias in lan-
guage models. To the best of our knowledge, this is
the first hate speech detection comparison centered
around machine translation. The datasets we use
are reported in past work.

6 Conclusion

This study provides valuable insights into the effec-
tiveness of LLM in hate speech detection in diverse
linguistic settings involving LGBTQIA+ communi-
ties. We compare the ability of zero-shot and fine-
tuned GPT for hate speech detection of multilingual
text in the original language and translated versions
to English. Our insights were: (1) hate speech de-
tection via LLM is in general effective (including in
non-Latin script settings), however LLMs perform
significantly worse when dealing with code-mixed
languages; (2) hate speech detection via LLM can
be improved simply via fine-tuning, although the
degree of improvement is language-dependent; (3)
translation is ineffective in transferring nuanced
ideas and show visible degradation on hate speech
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detection performance.
To the best of our knowledge, this is the first

work in hate speech detection with machine transla-
tion as our anchor. While the technique itself is sim-
plistic, our research demonstrates the complexity
of hate speech detection, especially for LGBTQIA+
communities in multilingual contexts and the need
for continued research in this area. By advancing
our understanding of multilingual hate speech de-
tection, we can work towards creating safer, more
inclusive online spaces for LGBTQIA+ individuals
across different linguistic communities.

Limitations and Future Work

We now discuss limitation and future work. First
of all, large language models have shown to exhibit
bias towards LGBTQIA+ communities (Sosto and
Barrón-Cedeño, 2024; Felkner et al., 2023), and
there may exist potential biases in the training data
and model itself.

Secondly, the cascaded approach of using gpt3.5-
turbo for both translation and classification makes
the process vulnerable to errors from both stages
and may introduce biases or errors that are difficult
to isolate (Unanue et al., 2023). Future work could
benefit from variations to the translation and classi-
fication process in order to study the influence of
each component on the final evaluation.

In addition, the use of GPT is prompt-dependent.
The quality of the prompt can significantly impact
the quality and accuracy of the model’s outputs (Li
et al., 2024). Our works have not analyzed the
effects of insignificant prompt variation on the
model’s performance on selected tasks. Further-
more, we have also used English prompts for non-
English datasets. Future work can experiment with
prompts in the language that corresponds to each
dataset.

Moreover, there is a lack of context beyond sin-
gle sentences in our analysis. Providing more con-
textual information could lead to a more robust
understanding of the cultural context and lead to
better results. This could be done via adding slang
words and their translations in the prompt.

Additionally, we have not analyzed if there was
any correlation between the translation quality and
the performance on the downstream tasks. In ad-
dition, whilst English, Italian, and Chinese are
high-resource languages, Tamil is much more low-
resourced and this could have contributed to the
low performance of English-Tamil. Future work

could include an LLM that has been trained more
intensively on Tamil.

Lastly, it would be highly beneficial to compare
gpt3.5-turbo with other large language models and
specialised hate speech detection systems to bench-
mark its effectiveness.
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