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Abstract

Transformer model has been a de-facto stan-
dard in natural language processing. Its adap-
tations in other fields such as computer vision
showed promising results that this architecture
is a powerful neural network in representation
learning regardless of the data type. This recent
success has led to research in multimodal Large
Language Model (LLM), which enabled us to
new types of tasks and applications with multi-
ple data types. However, multimodal LLM in
the biomedical domain is primarily limited to
images, text, and/or sequence data. Here I pro-
pose to work on multimodal LLM architecture
for biomedical graphs such as protein structure
and chemical molecules. The research hypoth-
esis is based on the fact that clinicians and re-
searchers in computational biology and clinical
research take advantage of various information
for their decision-making process. Therefore,
an AI model being able to handle multiple data
types should boost its ability to use diverse
knowledge for improved performances in clini-
cal applications.

1 Introduction

The foundation model revolutionized not only natu-
ral language processing (NLP) but also the human-
AI interaction after the release of ChatGPT service
by OpenAI (OpenAI, 2023a). ChatGPT enhanced
the usability with a chat interface allowing users to
instruct large language model (LLM) for any tasks
even the ones requiring complex domain knowl-
edge such as medical domain text (Savage et al.,
2024). The emergence of open-source medical
LLMs has further enhanced access to these tech-
nologies in healthcare settings, addressing privacy
concerns associated with patient data (Toma et al.,
2023; Kweon et al., 2023; Chen et al., 2023).

This success of the foundation model quickly
extended to computer vision (CV), expanding the
application of chat assistant tools to medical im-
age analytics (OpenAI, 2023b; Li et al., 2023b;

Tu et al., 2023). Recently, visual instruction tun-
ing was introduced to open the possibility of a
visual assistant in medicine (Li et al., 2023a; Lee
et al., 2023). Additionally, there has been notable
progress in extending the model’s capabilities to
handle biological sequences, including DNA se-
quences and chemical sequences represented by
Simplified Molecular Input Line Entry Specifica-
tion (SMILES) notation (Taylor et al., 2022; Con-
sens et al., 2023; Zhang et al., 2024).

Despite these advancements, multimodal re-
search in biomedicine has focused on integrating
text, image, and sequence data. While these modal-
ities have proven invaluable in capturing certain
medical nuances, they often overlook the structural
intricacies inherent in biomedical graph data, such
as knowledge graphs and protein structures. Con-
sequently, the full potential of multimodal learning
remains largely unexplored in addressing the mul-
tifaceted challenges encountered in computational
biology and clinical research.

1.1 Biomedical Graphs
Graph-based representations in biology and
medicine are effective in elucidating the complex
mechanisms of diseases and uncovering novel in-
sights, such as biomarkers and therapeutic tar-
gets (Zhang et al., 2021; Chandak et al., 2023).
Over the years, there has been a notable shift in
graph representation learning methodologies, mov-
ing from traditional graph neural networks to trans-
former model architectures, mirroring advance-
ments seen in other modalities. Notably, trans-
former models have shown considerable promise
in graph representation learning, particularly for
small biomedical graphs like chemical molecules.
This approach has demonstrated the ability to over-
come challenges such as over-smoothing observed
in graph neural networks, while also exhibiting
improved performance with deeper models (Ying
et al., 2021).
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Figure 1: Overview of Foundation Model for Biomedical Graphs

1.2 Thesis Objective

As clinicians and researchers rely on multimodal
data to make their decisions regarding patient care,
there exists a pressing need to extend the scope
of biomedical multimodal models to cover vari-
ous modalities such as biomedical graphs (Soman
et al., 2023; Lv et al., 2024). This extension holds
the promise of significantly enhancing the capabili-
ties of foundation models in biomedical research,
thereby broadening the horizons for a myriad of
biomedical tasks, including drug discovery, differ-
ential diagnoses, and treatment planning.

In light of these considerations, the proposed re-
search aims to bridge the gap between foundation
models and biomedical graph data, leveraging the
rich structural information encoded in graphs to
enhance the capabilities of multimodal learning in
biomedical research. The overarching objective is
to develop novel methodologies and frameworks
that effectively harness the synergies between foun-
dation models and biomedical graph data, enabling
clinicians and researchers to derive deeper insights
from complex biological networks.

Figure 1 shows how different modalities includ-
ing the biomedical graphs such as protein and
knowledge graph will be fused with the medical
foundation model. With this foundation model,
clinicians and researchers can use prompts with
their expertise for clinical and biomedical appli-
cations for precision medicine and drug discovery.

For instance, the model can be queried to find a
disease that can be cured with an existing drug.

The thesis proposes to explore the hypothe-
sis that multimodal representation learning with
biomedical graphs will improve the performance of
drug discovery and precision medicine applications
of foundation models. To achieve this objective,
the research aims to:

1. Develop a novel state-of-the-art foundation
model with genetics and pharmacology re-
lated biomedical guidelines to better under-
stand human diseases.

2. Extend the modality of the developed LLM to
interpret biomedical graphs as well as other
modalities in the biomedical domain.

3. Compare the performance of the multimodal
model with unimodal models and other state-
of-the-art methods.

4. Use the foundation model for applications
such as target identification and drug repurpos-
ing especially for neurodegenerative diseases
such as Dementia.

Through these objectives, the research aims to con-
tribute towards advancing precision medicine and
healthcare innovation, paving the way for person-
alized and targeted approaches to healthcare using
the foundation model. So far, I am working on the
first objective, training a biomedical LLM and the
preliminary result for this objective is included in
this proposal.
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2 Methods

The proposed foundation model for biomedical
graphs, depicted in Figure 1, integrates multiple
specialized encoders with a backbone LLM that
is also trained for the biomedical domain to effec-
tively process and understand diverse biomedical
data types such as medical images and ontologies.

2.1 Medical Language Encoder

The following open-source LLMs were used to
investigate their performance in handling medical
domain text.

LLaMA2 (Touvron et al., 2023). LLaMA2, 7B,
13B, and 70B models without chat optimization
were used in this work. These models were trained
on 2 trillion (T) pretraining tokens in the general
domain. There are several medical LLMs fur-
ther trained from LLaMA2 model weights (Toma
et al., 2023; Kweon et al., 2023; Chen et al., 2023).
Among these medical LLMs, the Meditron 70B
model claims to be the best-performing model
(Chen et al., 2023). The recent version of the
LLaMA family model, LLaMA-3 (Meta, 2024)
8B, was also used in this work. The pretraining
corpus was increased to 15 T tokens.

Mistral (Jiang et al., 2023) Mistral-7B-v0.1
without chat optimization was used. While the
details of the training dataset remain undisclosed,
Mistral is known to utilize Grouped Query At-
tention, similar to Llama2-70B, along with Slid-
ing Window Attention. For the biomedical LLM,
BioMistral is one of the first models in the
biomedicine domain based on the Mistral model
(Labrak et al., 2024).

Phi-2 (Microsoft, 2023) Phi-2 model is the
smallest model in this study. Phi-2 is 2.7B parame-
ters and is trained on an augmented textbook corpus
consisting of 1.4 T tokens. Other training details re-
main undisclosed. As far as my understanding, no
Phi-2 model was trained for the biomedical domain
at the time of conducting the research.

Phi-3 (Abdin et al., 2024) Lastly, I selected the
Phi-3 model, which is slightly larger (3.8B param-
eters) and a recent version of the Phi model. The
training corpus became larger as well (3.3 T to-
kens). Just like the Phi-2 model, the Phi-3 model
trained for the biomedical domain did not exist.

2.2 Vision Encoder

SigLIP model trained at resolution 512X512 will
be used for the vision encoder (Zhai et al., 2023).

It is a CLIP model with an improved loss, sigmoid
loss. For medical image and text alignment training,
the MIMIC-CXR dataset, which is made up of
chest X-ray images and corresponding radiology
reports, will be used (Johnson et al., 2019). Also,
various types of clinical notes at University College
London Hospitals will be used as well as national
resources such as the Scottish Medical Imaging
(SMI) archive (Baxter et al., 2023). It contains 54
million reports and medical images such as MRIs.

2.3 Sequence Encoder

For encoding biological sequences such as DNA
sequences, protein sequences, and SMILES rep-
resentations of chemical structures, I propose to
use the Galactica mini and base models (Taylor
et al., 2022). Galactica stands out as the only op-
tion specifically trained to handle a diverse range
of biological sequence data types, for specialized
embedding capturing the unique characteristics of
DNA, protein, and chemical sequences.

2.4 Graph Encoder

Considering the absence of a single graph trans-
former model trained to handle knowledge graphs,
protein structures, and chemical structures simulta-
neously, I plan to train a graph transformer model
tailored for this purpose. However, one of the cur-
rent limitations of existing graph transformer ar-
chitectures lies in their constrained input size. To
address this limitation, linear attention or any other
efficient attention can enable the model to handle
larger graphs effectively.

The training data for this encoder will be col-
lected from previous works with protein structure
and chemical molecule structure encoding (Hie
et al., 2022; Ying et al., 2021). For the knowledge
graph training dataset, I plan to construct the graph
from biomedical entities recognized from clinical
notes and biomedical papers. By leveraging these
datasets, I aim to train a robust Graph Transformer
model capable of effectively encoding diverse types
of graph data.

2.5 Foundation Model for Biomedical Graphs

Once the encoder for each modality is trained,
alignment using multi-layer perceptron adapters
between the medical LLM and encoders will be im-
plemented, an approach inspired by LLaVA family
models (Li et al., 2023a; Lee et al., 2023). This will
enable the foundation model to comprehend vari-
ous modalities. Training data will be constructed
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for this alignment, as well as for reinforcement
learning to train the model for the expected output
of various downstream tasks.

2.6 Downstream tasks
I aim to work on datasets for brain diseases such as
dementia and multiple sclerosis.

Dementia is a syndrome caused by many dis-
eases including Alzheimer’s disease. It affects
memory and cognition, and symptoms become
worse over time without cures. The foundation
model will be used for the diagnosis and prognosis
of dementia, aiding in precision medicine. For the
diagnosis, the memory test report as well as the
genetic expression profile will be used to diagnose
the patient. The model will be also used to estimate
biomarkers for Alzheimer’s disease prognosis such
as brain volume from MRIs. The patient’s speech
language ability is also another important data that
the model will interpret for the prognosis.

Multiple sclerosis is a brain disease that changes
our immune system to attack the myelin sheath.
It can cause disability but has no cure. I aim to
work on target identification for drug discovery.
For target identification tasks, I propose to ana-
lyze single-cell disease-gene association networks
sourced from the SC2disease dataset (Zhao et al.,
2021). This dataset contains comparisons of gene
expressions of different multiple sclerosis disease-
related health status. It can thereby provide valu-
able insights into disease-gene associations at the
single-cell level, and offer rich data for comprehen-
sive analysis and interpretation.

3 Preliminary Experiment and Results

3.1 Medical LLM Training
The training dataset was collected from Medline-
Plus1 which includes a medical encyclopedia and
texts about drugs and genetics. The collected train-
ing dataset for continued pretraining was 2.2 mil-
lion tokens based on Phi-2. Continued pretraining
was done for all the models with an epoch of 3 and
a learning rate of 5e-5.

Figure 2 illustrates the breakdown of the Med-
linePlus corpus categories. The largest category,
Health Conditions, comprises 26.1% of the corpus
and includes information on the frequency, causes,
synonyms, and inheritance patterns of various dis-
eases. The Genes category, accounting for 20.3%
of the corpus, describes the normal functions of

1https://medlineplus.gov/

Figure 2: MedlinePlus Corpus Categories in tokens

human genes and the health implications of genetic
modifications. The Medical Tests category, making
up 19.9% of the corpus, covers tests such as allergy
skin tests, detailing their purposes, procedures, and
possible results. The Health Topics category con-
stitutes 18.8% of the corpus and serves as an ency-
clopedia covering body parts, therapies, and well-
ness issues, with content regularly reviewed and up-
dated daily. The Introduction to Genetics category,
comprising 9.75% of the dataset, provides funda-
mental explanations of human genetics concepts.
Finally, the Dietary Supplements category, repre-
senting 5.15% of the dataset, offers descriptions of
the effectiveness, usual dosages, and potential drug
interactions of various supplements.

The MedlinePlus training corpus is diverse and
evenly distributed across various biomedical do-
mains. For each category, one example is shown
in Table 1. The examples highlight the diversity
within the corpus which ensures a comprehensive
representation of medical knowledge, which is cru-
cial for training robust models capable of handling
a wide range of medical and genetic information.

3.2 Medical LLM Evaluation

To evaluate the performance of the trained med-
ical LLMs as well as the baseline models, this
work uses the prevalent multiple choice question
answering benchmarks in the medical language
model domain, including MMLU medical subjects
(MMLU_MED), MedQA, and MedMCQA (Jin
et al., 2021; Pal et al., 2022; Hendrycks et al., 2020).
The evaluation metric utilized is classification ac-
curacy based on logits. As all the benchmarks are
in MCQ format, the token with the highest logit
value can be selected as the model’s predicted an-
swer. The prompt used for evaluation as well as
the example question and response are shown in
Table 2. The models generate responses, and their
accuracy is measured by comparing their responses
to the expected correct answers.
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Health Conditions
10q26 deletion syndrome is a condition that
results from the loss (deletion) of a small piece
of chromosome 10 in each cell. ...
Genes
The AAAS gene provides instructions for mak-
ing a protein called ALADIN whose function
is not well understood. ...
Medical Tests
What is an acetaminophen level test?
This test measures the amount of ac-
etaminophen in the blood. ...
Health Topics
Zika is a virus that is spread mostly by
mosquitoes. A pregnant mother can pass it
to her baby during pregnancy or around the
time of birth. ...
Introduction to Genetics
How do genes direct the production of pro-
teins?
Most genes contain the information needed to
make functional molecules called proteins. ...
Dietary Supplements
Aloe is used topically (applied to the skin) and
orally. Topical use of aloe is promoted for
acne, ...

Table 1: Examples of MedlinePlus pretrain data for
each category.

3.2.1 MMLU_MED
MMLU (Massive Multitask Language Understand-
ing) (Hendrycks et al., 2020) is a benchmark de-
signed to measure the model’s ability in knowledge-
intensive QA across 57 subjects. These subjects
cover various levels of education: high school,
college, and professional level. Questions in the
dataset are structured as four-way multiple choice
questions (MCQs), offering a standardized format
for evaluation. Within the extensive list of subjects,
there are nine healthcare-related subjects which are
college medicine, professional medicine, clinical
knowledge, anatomy, high school biology, college
biology, medical genetics, nutrition, and virology.
Collectively, these nine subjects comprise a total
of 1,871 questions in the test set.

3.2.2 MedQA
MedQA (Jin et al., 2021) is an open-ended MCQ
dataset made from professional medical doctor li-
cense exams. The dataset is available in three ver-

Prompt with Question
The following are multiple choice questions
(with answers) about medqa.
Question: A 67-year-old man with transitional
cell carcinoma of the bladder comes to the
physician because of a 2-day history of ring-
ing sensation in his ear. He received this first
course of neoadjuvant chemotherapy 1 week
ago. Pure tone audiometry shows a sensorineu-
ral hearing loss of 45 dB. The expected benefi-
cial effect of the drug that caused this patient’s
symptoms is most likely due to which of the
following actions?
A. Inhibition of proteasome
B. Hyperstabilization of microtubules
C. Generation of free radicals
D. Cross-linking of DNA
Answer:
Expected Response: D

Table 2: Prompt example with a question and expected
response from MedQA.

sions, one of which is an English version sourced
from the United States Medical License Exams.
While MMLU’s professional medicine subject also
includes questions from USMLE practice exami-
nations, MedQA’s English version sets itself apart
by incorporating questions drawn from both real
exams and mock tests for USMLE. 1,273 USMLE-
style questions are provided as the test dataset to
benchmark the model’s ability to answer medical
questions at the professional level. Each question
is accompanied by four or five answer choices and
corresponding relevant document collections, in-
tended to help models in generating accurate re-
sponses.

3.2.3 MedMCQA
MedMCQA (Pal et al., 2022) is a benchmark with
questions sourced from postgraduate-level Indian
medical school entrance exams (AIIMS and NEET
PG). Covering a breadth of medical specialties,
the dataset has questions about 2,400 healthcare
topics and 21 subjects within the medical domain.
4,183 MCQ, each offering four answer choices, are
provided for evaluation.

3.3 Evaluation Results
The preliminary results in Table 3 for the med-
ical large language training provide several no-
table trends. Firstly, there is a clear trend between
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Model Size (B) MedQA MMLU_MED MedMCQA Avg
Meditron 7 22.00 35.70 31.34 29.68
LLaMA-2 7 27.57 41.05 36.43 35.02

LLaMA-2-MedlinePlus 7 29.93 40.62 36.24 35.60
Phi-2 2.7 30.87 55.42 36.03 40.77

Phi-2-MedlinePlus 2.7 31.81 56.81 39.52 42.72
LLaMA-2 13 35.35 55.64 39.06 43.35

Mistral-MedlinePlus 7 42.42 63.44 45.76 50.54
Mistral 7 45.01 66.86 49.56 53.81

LLaMA-2 70 50.98 70.02 50.82 57.27
Meditron 70 52.79 69.11 51.30 57.73

LLaMA-3-MedlinePlus 8 49.41 69.54 55.94 58.30
Phi-3-MedlinePlus 3.8 51.92 71.57 54.22 59.24

Phi-3 3.8 52.16 71.89 54.27 59.44
LLaMA-3 8 52.47 72.26 56.32 60.35

Table 3: MCQ accuracy using logits. The result is sorted by the average score.

model size and performance, with larger mod-
els consistently achieving higher accuracy scores
across all three benchmark datasets. For instance,
the LLaMA-2 model, particularly in its larger 70-
billion-parameter model, shows superior perfor-
mance compared to smaller models. This under-
scores the importance of model scale in capturing
the complexity of medical language and achieving
better task performance. However, due to the con-
straints of the scarce computational resources at
the hospital, smaller models with adequate perfor-
mance can be preferred.

Additionally, the effect of continued training
is observed. LLaMA-2-MedlinePlus and Phi-2-
MedlinePlus models demonstrate enhanced perfor-
mance compared to their counterparts trained on
general-domain data. However, it is worth noting
that this trend is not universal, as observed with the
Mistral-MedlinePlus model, which did not exhibit
a significant increase in performance despite con-
tinued training. While the LLaMA-3-MedlinePlus
model and Phi-3-MedlinePlus model showed im-
proved performance in the MMLU_MED bench-
mark, these models showed a significant decrease
in performance for the MedQA benchmark.

To ensure the integrity of the models regarding
the pretraining corpus and evaluation benchmarks,
a thorough analysis for data contamination was con-
ducted using the recent method, MIN-K% PROB
(Shi et al., 2023). The MIN-K% PROB score mea-
sures the average log-likelihood of the K% tokens
with minimum probability, indicating how well a
language model predicts the presence of tokens in

the given text. A higher log-likelihood might sug-
gest that the model has been exposed to the eval-
uation data during its training phase, potentially
leading to artificially inflated performance metrics.

Even for the pretraining corpus, a model with
a higher score might have been trained with the
same or a very similar corpus, making the gains
from continued pretraining negligible. Ensuring
the validity of our results is crucial to confirm that
improvements in model performance are due to
genuine learning and not the memorization of the
evaluation dataset. However, due to computational
limitations, contamination analysis of the pretrain-
ing data was not feasible for this preliminary work.

To test for contamination, 100 examples from
each dataset were sampled. The more number of
examples exhibit high log-likelihood and therefore
low MIN-K% PROB scores (0.1 or lower), is more
likely that the dataset has already been used for
training. This helps in identifying and mitigating
potential data leakage, ensuring fair and accurate
model evaluations.

Dataset LLaMA2 Mistral Phi-3
MedQA 45 54 67

MMLU_MED 22 43 43
MedMCQA 14 26 30

Table 4: Number of examples with less than 0.1 MIN-
K% PROB score. The reference model is the Phi-2
model.

Table 4 shows the contamination result, and it
shows that Phi-3 when compared to Phi-2 showed
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Question and Response
Question: A 67-year-old man with transitional cell carcinoma of the bladder comes to the physician
because of a 2-day history of ringing sensation in his ear. He received this first course of neoadjuvant
chemotherapy 1 week ago. Pure tone audiometry shows a sensorineural hearing loss of 45 dB.
The expected beneficial effect of the drug that caused this patient’s symptoms is most likely due to
which of the following actions?...
Phi-3
A. Inhibition of tubulin polymerization
B. Increased intracellular concentration of cyclic AMP
C. Inactivation of microtubule-associated proteins
D. Initiation of apoptosis in tumor cells
E. Incorporation into DNA and inhibition DNA synthesis
<|assistant|> E.Incorporate into DNA, inhibit DNA synthesise
Answer E is correct.
Phi-3-MedlinePlus
A. Inhibition of DNA topoisomerase II
B. Increased production of reactive oxygen species
C. Inactivation of tubulin
D. Intravascular thrombin formation
E. Intrinsic factor antagonism
"<|end|>
Phi-2
A 67 year old man with bladder cancer comes to your office for a follow-up visit. He has been
receiving neoadjunct chemotherapy for the past 2 weeks. He reports that he has been experiencing
ringing in his ears for the last 2 days. He also reports that his hearing has been getting worse.
He is concerned that he may have developed tinnitus. Which of the drugs is most commonly
associated with this side effect?
Phi-2-MedlinePlus
A 67 year old man with a history of prostate cancer comes to his physician for a routine checkup.
He has been taking finasteride for the past 5 years. The physician orders a prostate-specific antigen
(PSA) test. The PSA level is elevated. Which of the next steps is most appropriate?

Table 5: Response comparison for the question from Table 2 between baseline Phi-3 and continued trained model.
The question and the prompt are the same as in the Table 2.

the highest number of examples that were suspi-
cious of the contamination. For MedQA, 67 out of
100 examples had a very high log likelihood value.
This somewhat explains the performance drop with
the continued pretraining as the baseline model
already might have been already trained with the
evaluation datasets used in this work.

To confirm Phi-3’s data contamination, espe-
cially for MedQA, the model responses were com-
pared as shown in Table 5. Rather than giving the
right cause for the symptom, Phi-3 models gener-
ated multiple choice options which did not have
the desired answer. This hallucination effect was
not seen in Phi-2 models which just generated a
similar case of a patient rather than answering the
cause. The example of response suggests that the

effect of continued pretraining was limited to logit-
based classification as all the models did not give
the desired answer.

Nevertheless, while these preliminary findings
provide valuable insights, further in-depth analysis
is warranted to explore the nuances of model per-
formance in the medical domain fully. Future work
will focus on leveraging other training methods and
more comprehensive training data. Additionally,
exploration of other evaluation methods for diverse
tasks can contribute to more accurate and com-
prehensive assessments of LLM performance in
real-world healthcare applications. Collaborations
with healthcare professionals will ensure that the
model is aligned with clinical needs and practices
by evaluating and interpreting model outputs.
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4 Conclusion

This proposal describes the plan to develop a foun-
dation model architecture uniquely trained to un-
derstand the complexities of biomedical graphs.
Unlike existing models that primarily focus on text,
images, or sequences, the proposed model aims to
bridge the gap by integrating information from di-
verse data types such as knowledge graphs, protein
structures, and chemical molecules. By leveraging
the strengths of large language models in captur-
ing textual information and combining them with
specialized encoders for biological sequences and
graph structures, the foundation model holds im-
mense potential to revolutionize various aspects of
healthcare, including diagnosis, treatment planning,
and drug discovery.

The model can be used to create an interactive
agent that clinicians and researchers can utilize
to help them navigate problems in biomedical re-
search, thereby enhancing decision-making pro-
cesses in clinical practice and computational biol-
ogy research. For instance, the incorporation of
knowledge graphs may allow for a more nuanced
exploration of relationships between genes, drugs,
and diseases, facilitating target identification for
drug discovery as well as drug repurposing, which
accelerates the clinical trial progress.

Moreover, the integration of protein structure
and chemical molecule data should enable our
model to delve deeper into molecular mechanisms
underlying diseases and drug interactions. This
deeper understanding opens the possibility of using
an assistant tool for more effective protein-drug
binding affinity prediction for drug discovery, as
well as the identification of potential novel biomark-
ers for disease diagnosis and prognosis.

By leveraging the collective insights from di-
verse data modalities, the proposed foundation
model has the potential to significantly improve
performance across a spectrum of biomedical
tasks. The development of a multimodal founda-
tion model represents a pivotal step towards un-
locking the full potential of artificial intelligence
in biomedicine, thereby enhancing our understand-
ing of complex biological systems and ultimately
improving healthcare outcomes for patients.

Moving forward, future work will focus on de-
veloping the proposed foundation model to address
specific challenges such as training with scarce
data. Additionally, I will conduct the research with
the help of the collective expertise of health infor-

matics researchers and clinicians in order to de-
velop the foundation model with a focus on real-
world biomedical applications, especially for neu-
rodegenerative diseases.

Limitation

The limitation of this proposal is the lack of eval-
uation with clinicians and medical professionals.
Incorporating feedback from domain experts could
provide valuable insights into the practical utility
and reliability of the models in real-world clinical
settings. Additionally, while the study used sev-
eral established medical benchmarks, these datasets
may not fully capture the range of complexities
and variances encountered in real-world medical
data. Future research should focus on broader
datasets, more diverse medical tasks, and exten-
sive real-world evaluations to ensure the robustness
and applicability of the proposed models in various
clinical scenarios.

Broader Impacts and Ethics Statement

I fully comply with the copyright requirements of
MedlinePlus. The content sourced from Medline-
Plus for our pretraining corpus is used under their
permissible use policy, ensuring that all derived
data and models respect the original terms and con-
ditions.

This work utilizes clinical data strictly for re-
search purposes. All clinical data is or will be
anonymized to protect patient privacy and confi-
dentiality in accordance with ethical standards and
regulatory requirements.

My work does not raise any major ethical con-
cerns regarding the usage of LLMs as all LLMs
tested were used for research purposes only. How-
ever, all LLMs even the ones further trained with
the MedlinePlus pretraining corpus are not rigor-
ously tested for use in real-world clinical applica-
tions or scenarios. Thus, they may not be suitable
for use in the clinical decision making process.
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