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Abstract

Collaborative argumentation holds significant
potential for enhancing students’ learning out-
comes within classroom settings. Conse-
quently, researchers have explored the appli-
cation of artificial intelligence (Al) to automat-
ically analyze argumentation in these contexts.
Despite the remarkable performance of deep
learning models in this task, their lack of in-
terpretability poses a critical challenge, lead-
ing to teachers’ skepticism and limited utiliza-
tion. To cultivate trust among teachers, this
PhD thesis proposal aims to leverage explain-
able Al techniques to provide explanations for
these deep learning models. Specifically, the
study develops two deep learning models for
automated analysis of argument moves (claim,
evidence, and warrant) and specificity levels
(low, medium, and high) within collaborative
argumentation. To address the interpretabil-
ity issue, four explainable Al methods are pro-
posed: gradient sensitivity, gradient input, in-
tegrated gradient, and LIME. Computational
experiments demonstrate the efficacy of these
methods in elucidating model predictions by
computing word contributions, with LIME de-
livering exceptional performance. Moreover,
a quasi-experiment is designed to evaluate the
impact of model explanations on user trust and
knowledge, serving as a future study of this
PhD proposal. By tackling the challenges of in-
terpretability and trust, this PhD thesis proposal
aims to contribute to fostering user trust in Al
and facilitating the practical implementation of
Al in educational contexts.

1 Introduction

Collaborative argumentation refers to a dialogue-
based activity in which participants engage in con-
structing, critiquing, and reconciling arguments
through social interactions(Rapanta and Felton,
2022). Within classroom settings, empirical ev-
idence consistently demonstrates that collabora-
tive argumentation fosters critical thinking and

knowledge construction by integrating learned facts
and knowledge, reasoning, justifying, and negotiat-
ing (Asterhan and Schwarz, 2016; Gao et al., 2023).
To fully harness its potential, teachers are encour-
aged to instruct students how to argue, facilitate
students’ engagement, and effectively manage col-
laborative argumentation (Asterhan et al., 2020; Ra-
panta and Felton, 2022). However, it has been ob-
served that many teachers face challenges to master
the necessary skills to effectively promote collab-
orative argumentation in their classrooms (Lugini,
2021; Oyler, 2019). To address this issue, some
researchers propose recording and analyzing argu-
mentative discussions utterance by utterance, em-
ploying an evaluation rubric to assess whether ad-
justments in teaching strategies and support inter-
ventions are needed for future classes (Lampert
et al., 2010). However, for teachers who are already
burdened with daily responsibilities, conducting
such laborious manual analyses is not feasible.

To tackle this challenge, researchers have turned
to the application of natural language processing
(NLP) and artificial intelligence (Al) techniques
to automate the analysis of classroom argumenta-
tion (McLaren et al., 2010; Nazaretsky et al., 2023;
Wang et al., 2024b). Initially, conventional ma-
chine learning techniques were employed to ex-
amine various aspects of teachers’ discourse and
students’ engagement (Olney et al., 2017; Reilly
and Schneider, 2019). Subsequently, deep learning
techniques were increasingly adopted to achieve
more accurate analysis. For instance, Nazaretsky
et al. (2023) utilized Transformer-based neural net-
works to train models that automatically analyze
teachers’ ability to attend to students’ ideas. De-
spite these advancements, it has been observed that
teachers are hesitant to trust the decisions made
by such models (Nazaretsky et al., 2021, 2022).
They express significant concerns regarding the
lack of transparency and interpretability in these
models, which undermines their trust (Nazaretsky
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et al., 2022; Jackson and Panteli, 2023). Deep
learning models often consist of complex structures
with multiple layers interconnected by thousands
or even millions of neurons, making them appear
as “black boxes" that provide users with direct de-
cisions without revealing the underlying process of
prediction. The lack of understanding regarding the
internal workings and individual decisions of these
models likely leads to user distrust and underuti-
lization of these tools, which can have a significant
impact on the deployment of AI (Qin et al., 2020)
and teacher instruction in this particular case.

To enhance user trust in Al-powered models and
systems, researchers have proposed leveraging ex-
plainable AI (xAl) to unravel the working mecha-
nisms and individual decisions, providing explana-
tions of AI (Meske et al., 2022). As a result, various
interpreting methods have been developed (Arrieta
et al., 2020). A systematic review conducted by
Haque et al. (2023) demonstrates that explanations
provided by XAl effectively increase user trust and
transparency in Al tools. Desipte the significant
progress, the interpretability issue of deep learning
models for collaborative argumentation analysis in
the classroom context remains largely unexplored.

Hence, this PhD thesis proposal aims to inves-
tigate whether explainable AI methods can be ef-
fectively utilized to explain deep learning models
for classroom collaborative argumentation analysis.
Specifically, we train two deep learning models
on authentic transcripts of classroom collaborative
argumentation to automatically analyze argumen-
tative moves (i.e., claim, warrant, and evidence)
and specificity levels (i.e., low, medium, and high).
Subsequently, we employ four interpreting meth-
ods — gradient sensitivity, gradient input, inte-
grated gradient, and LIME — to explain the model
predictions by quantifying the contributions of in-
put. The experimental results demonstrate that all
four interpreting methods effectively explain the
model predictions, with the LIME method yielding
the most competitive outcomes. Furthermore, we
design a quasi-experiment to evaluate the impact
of explanations on user trust in and knowledge of
the Al-powered collaborative argumentation model.
We aim to contribute to addressing the interpretabil-
ity challenge in the field of Al-supported classroom
teaching, potentially fostering user trust in Al and
facilitating the practical application of Al in teach-
ing contexts.

2 Related Work

2.1 Alin classroom interaction

Many researchers have employed Al techniques
to examine and analyze diverse facets of class-
room interaction, with the aim of providing timely
and valuable feedback to enhance teaching and
learning. One fundamental approach involves us-
ing automatic speech recognition techniques to
transcribe classroom recordings, encompassing
teacher questions (Blanchard et al., 2015) and
student speech (Evers and Chen, 2022). Addi-
tionally, researchers have investigated features of
teacher discourse, including support types (Hunk-
ins et al., 2022), uptake (Demszky et al., 2021),
talk moves (Suresh et al., 2019), and instructional
activities (Xu et al., 2020). Moreover, they have
also examined characteristics of student utterances,
such as speech acts (Shan et al., 2023), creativ-
ity (Chien et al., 2020), and sentiment (Huang et al.,
2021). In the realm of classroom collaborative ar-
gumentation, researchers have explored modeling
collaboration quality (Reilly and Schneider, 2019),
knowledge graph (Zhen et al., 2021), and problem
solving skills (Pugh et al., 2022).

Conventional machine learning algorithms, in-
cluding random forest, naive Bayes, and sup-
port vector machine (SVM), have typically been
employed for analyzing classroom interaction.
Nonetheless, these algorithms necessitate manual
selection of linguistic features and yield limited
performance. Over the past decade, there has been
an increasing adoption of deep learning algorithms,
such as Transformer, Bert, and recurrent neural
networks (Wang and Chen, 2024). In comparison
to conventional machine learning algorithms, deep
learning algorithms have demonstrated stronger
performance across various tasks. However, as
mentioned earlier, the opaque decision-making
process of deep learning models engenders user
distrust, thereby impeding their practical deploy-
ment and application (Wang et al., 2024b). Re-
cently, large language models (LLMs) have ex-
hibited remarkable capabilities in comprehending
and processing natural language. Consequently,
some studies have investigated their application in
classroom interaction, such as detecting student
talk moves (Wang and Demszky, 2023), evaluating
teacher coaching (Wang et al., 2023b), and estimat-
ing instructional support (Hou et al., 2024; White-
hill and LoCasale-Crouch, 2023). However, there
is still room for improvement in their performance.
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2.2 Explainable Al

Researchers in explainable Al (xAl) propose a set
of machine learning techniques that not only pro-
duce high-performing models but also enable hu-
mans to understand, trust, and manage the emerg-
ing Al tools effectively (Arrieta et al., 2020). xAl
techniques can be categorized into ante-hoc and
post-hoc explainability based on the degree of
interpretability of Al models — how well hu-
mans can comprehend them (Burkart and Huber,
2021). Ante-hoc explainability pertains to self-
explaining models that possess architectural in-
terpretability (Alvarez Melis and Jaakkola, 2018),
including logistic or linear regression, rule-based
learning models, and general additive models. On
the other hand, post-hoc explainability focuses on
enhancing the interpretability of models that are
not inherently transparent by employing external
methods (Arrieta et al., 2020).

In addition, XAl techniques can also be classified
as model-agnostic or model-specific, depending
on the range of models they can explain. Model-
agnostic methods, such as LIME (Ribeiro et al.,
2016) and SHAP (Lundberg and Lee, 2017), can
be applied to all supervised learning models, while
model-specific methods, such as LRP (Bach et al.,
2015) and DeepLIFT (Shrikumar et al., 2017), are
tailored to models with specific structures. Further-
more, XAl techniques can be divided into global
and local methods (Lu et al., 2023). Global meth-
ods, such as knowledge instillation (Liu et al.,
2018) and rule extraction (Bastani et al., 2017),
aim to explain the inner workings of the entire
model, whereas local methods, such as gradient
sensitivity (Li et al., 2016) and LIME, provide
interpretations of individual decision-making pro-
cesses (Adadi and Berrada, 2018).

The utilization of these xAl techniques for pro-
viding explanations of Al models has been demon-
strated to enhance user trust and understanding
of Al models and systems across various do-
mains (Haque et al., 2023), including the field of
education (e.g., Conati et al., 2021; Lu et al., 2024;
Ooge et al., 2022). In the context of classroom
interaction, some studies have also explored the ap-
plication of xAl techniques to unravel predictions
of talk moves made by deep learning models (Wang
et al., 2023a, 2024a). However, limited attention
has been devoted to addressing the interpretability
challenge of deep learning models in the analysis
of collaborative argumentation within classrooms,

which has the potential to significantly impact the
quality of teaching and learning. Therefore, this
study aims to investigate the feasibility of utiliz-
ing XAl techniques for this particular problem and
designs an experiment to assess the effects of ex-
planations on teachers and students, with the goal
of facilitating future practical implementation.

3 Method

3.1 Data

We selected a publicly accessible corpus known
as Discussion Tracker (Olshefski et al., 2020) to
construct and elucidate deep learning models for an-
alyzing collaborative argumentation in classroom
environments. This corpus comprises 108 metic-
ulously transcribed multi-party discussions con-
ducted in American high school English language
arts classes, collected between 2019 and 2022 (Lug-
ini, 2021). The student discourse has been seg-
mented into turns, which represent the sequen-
tial order in which individuals participate in the
conversation. Turns containing collaborative ar-
gumentation have been further divided into argu-
ment discourse units, each annotated using a well-
established coding scheme for argument moves
and specificity. The argument moves are labeled
as claim, evidence, and warrant. Specificity en-
compasses the presence of four key elements: (1)
specificity towards a particular character or scene,
(2) notable qualifications or elaborations, (3) usage
of content-specific terminology (e.g., text quotes),
and (4) a series of supporting reasons (Lugini et al.,
2019; Olshefski et al., 2020). The specificity levels
are classified as low, medium, or high. A com-
prehensive overview of the definition, examples,
and quantities of argument moves and specificity
within the corpus can be found in Table 1 and 2.
The selection of argument moves and specificity for
Al modeling is based on their significant impact
on enhancing students’ learning outcomes (Lee,
2006). For instance, automatically identifying stu-
dents’ argument moves during discussions can of-
fer insights into their argumentative structures. By
intervening when their arguments are poorly struc-
tured, teachers can enhance the quality of their ar-
gumentation. Similarly, the specificity of argument
moves is closely linked to the quality of the dis-
cussion (Chisholm and Godley, 2011). During the
construction of deep learning models for analyzing
argument moves and specificity, we employed a
random selection process to allocate 90% of the
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data from the corpus for model training purposes,
while the remaining 10% was set aside for model

testing.

Table 1: Argument moves in the Discussion Tracker
corpus (Lugini et al., 2019; Olshefski et al., 2020).

Label  Definition Example Number
Claim  An arguable state- Also, at that same 8,207
ment that puts point, I feel like
forth a specific guilt overall was
understanding of  another one of the
a text or subject Nazis’ tactics or
matter. goals at the end.

Evidence Facts, records, I pulled out a 3,043
textual citations, quote that said,
or testimonies “His last words
employed to  had been my name.
substantiate or He had called out
validate a claim to me and I don’t

answer”’.
Warrant Rationales that ex- This was nice be- 1,385

plain how a partic-
ular instance of ev-
idence bolsters a
specific assertion.

cause it wasn’t
like, “The Jewish
kid running next
to me”, like that
kid had a name.
So, that was great.

Table 2: Specificity in the Discussion Tracker cor-

pus (Lugini et al., 2019; Olshefski et al., 2020).

Label  Definition Example Number
Low A statement that It makes us think 5,853
does not include about what he

any of the four said.
components
Medium A statement that Like she’s not 4,250
achieves any one even caring about
of the four ele- them, she’s caring
ments. about Willy.
High A statement that They honestly 2,532
clearly fulfills at don’t really have
least two elements  a characterization
of specificity. because 1 feel
like they don’t
really have like
personalities  or
connections with
other people.
3.2 Model

According to the systematic review conducted by
Wang et al. (2024b), Bert has emerged as the most
widely utilized deep learning model for analyzing
classroom interaction. Therefore, for this study, we
opted to adopt BertForSequenceClassification (De-
vlin et al., 2018) as the baseline model to construct
and explain deep learning models specifically de-
signed for analyzing argument moves and speci-
ficity within collaborative argumentation in the
classroom.

Specifically, we set the student utterances as the
input for both models, while the output consisted of

predicted labels for argument moves or specificity,
along with their corresponding probabilities. Dur-
ing the training of the models, we utilized AdamW
as the optimizer, with 8 epochs, a batch size of 32,
and a learning rate of 4e-4. The implementation
of the code was carried out in Python 3.8, utilizing
the PyTorch and HuggingFace libraries.

Given the focus of this study was not on training
a deep learning model with state-of-the-art perfor-
mance, we did not conduct parameter optimization
or cross-validation. Following the training process,
the model for argument move analysis achieved
an accuracy of 0.7910 and an F1 score of 0.7503,
while the model for specificity analysis attained an
accuracy of 0.7152 and an F1 score of 0.6820.

3.3 Interpreting method

To explain the deep learning models developed for
analyzing argument moves and specificity, we em-
ployed four local and generic interpretation meth-
ods: gradient sensitivity (GS) (Li et al., 2015), gra-
dient input (GI) (Kindermans et al., 2019), inte-
grated gradient (IG) (Sundararajan et al., 2017),
and LIME (Ribeiro et al., 2016). The inclusion of
these local and generic methods was driven by two
key considerations. First, given the diverse range
of deep learning models utilized for collaborative
argumentation, model-specific XAl methods can be
applied to other models regardless of their internal
structures. Second, the convergence of multiple
local explanations enables a comprehensive under-
standing of the overall functioning of the entire
model.

Formally, let us consider a student’s argumen-
tative utterance denoted as u, which consists of n
tokens. We represent the embedding of the utter-
ance as v, with each token’s embedding indicated
as v; (v; € R™), where ¢ denotes the token’s po-
sition. The well-trained deep learning model f
predicts the label of argument move or specificity,
denoted as [, along with its corresponding proba-
bility f;(v). The methods of gradient sensitivity,
gradient input, integrated gradient, and LIME differ
in their approaches to calculating the contribution
of each token towards the predictions.

3.3.1 Gradient sensitivity (GS)

The gradient sensitivity (GS) method (Li et al.,
2015) assumes that if a feature holds importance
for the model’s prediction, even a slight change in
that feature will lead to significant differences in
the prediction. Consequently, this method consid-
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ers the gradients of the features as their respective
contributions to the predictions, as illustrated in
Equation 1, where j denotes the j-th dimension in
v;. The contribution of the i-th token in the input
utterance is then determined by summing up all the
feature gradients in v;, as shown in Equation 2.

Cas(vij) = 85;(;}) (1)
Cas(vi) =) Oiiv) )

3.3.2 Gradient input (GI)

Building upon the GS method, Kindermans et al.
(2019) propose an alternative perspective on feature
contribution, suggesting that it can be viewed as the
product of sensitivity (i.e., feature partial deriva-
tive) and saliency (i.e., feature value), as demon-
strated in Equation 3. Alternatively, the gradient
input (GI) method can be regarded as a simplified
version of first-order decomposition (Bach et al.,
2015). In Equation 4, the non-linear prediction
f1(v) is approximated by the linear sum of token
contributions, where the dot product between the
embedding v; of the i-th token and its derivative

i ’( ) serves as the token’s contribution.

UL
CGI(Ui)%Z gz}(f})vz’j 3)
j=1 Y
N\~ 0h0)
fl(v)NZZI 90 - v; “4)

3.3.3 Integrated gradient (IG)

The integrated gradient (IG) method involves se-
lecting an additional reference sample 4. We as-
sume that the embedding and predicted probability
of label [ for this reference sample are denoted
as 0 and f;(0), respectively. The IG method posits
that the difference in predictions between these two
samples can be attributed to differences in the input
embeddings, as illustrated in Equation 5, where
C1¢(v;) represents the contribution of token v; to
the prediction. By considering the straight-line
path from the baseline embedding ¥ to the input em-
bedding v, and calculating gradients at each point
along the path (Sundararajan et al., 2017), Cr(v;)
is obtained by accumulating these gradients, as
shown in Equation 6. For this study, a reference
sample with all-zero tokens was employed for both
models.

ZCIG (v1) = fiv) = fi(®) (5)
=1 m
Cra(vy) Z Vij — €i5) X
! (©)
/1 Of e+ x(v=10))
B=0 vy
334 LIME

LIME, which stands for Local Interpretable Model-
agnostic Explanations (Ribeiro et al., 2016), cal-
culates feature contributions of the sample u by
selecting neighboring samples and constructing an
interpretable model to approximate the predictions
of the deep learning model f. Specifically, given
an input utterance v consisting of n tokens repre-
sented as (u1, ug, ..., uy ), LIME generates a set of
perturbed samples (e.g., u) in the proximity of or
distant from the original sample w. This is achieved
by randomly preserving some tokens in v while
omitting others. For instance, considering a bi-
nary vector s = (1, S2, ..., Sp) where s; € {0, 1},
if s; = 1, token wu; will be included in the per-
turbed sample v/, while if s; = 0, it will be absent.
Subsequently, LIME employs the deep learning
model f to predict the labels (e.g., f;(u')) for these
perturbed samples. Based on these neighboring
perturbed samples and their corresponding predic-
tions, LIME selects an interpretable model g that
fits the data while endeavoring to closely approx-
imate the predictions of the deep learning model.
The predictions of the interpretable model g on
these samples (i.e., g;(u’)) aim to closely match
the predictions of the deep learning model f (i.e.,
fi(u')). In Equation 7, the loss function measures
the discrepancy between f;(u') and g;(u'), while
also considering the distance between u and u’ as
a weight denoted by 7, (u). In our task, the weight
is computed using cosine distance. For computing
token relevance, a linear regression model is se-
lected as g, as depicted in Equation 8. Additionally,
the number of perturbed samples is set to be 500.
For further technical details, refer to the work by
Ribeiro et al. (2016).

loss = Z (1

~ Z Crive(vi) - vi ®)

=1

—a (@)’
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Argument move prediction: Evidence; Probability: 0.91

Token contribution

03

But  on paragraph 17 page four all

of everythingthat Bates says

she's saying that they are their insight

Figure 1: A visualized explanation for a prediction from the Bert model for argument move analysis using the LIME

method.

3.4 Interpreting example

By employing the proposed four interpreting meth-
ods, we are able to derive the contribution of each
token in a student’s utterance towards the predic-
tions made by the deep learning models developed
for argument move and specificity analysis. How-
ever, the resulting explanations are presented in
numerical form, which may pose challenges for
comprehension, particularly for teachers and stu-
dents who are the primary users of these models
and explanations. To address this issue, we have
designed the explanations in a visualized format.
As depicted in Figure 1, we utilize bar charts to
represent the token contributions. Additionally,
to ensure accessibility for individuals with color-
blindness or color-weakness, we employ yellow,
green, and purple colors to highlight positive and
negative contributions that correspond to support
or objection, respectively.

4 Computational Experiment

Prior to providing visualized explanations for users,
we carried out a computational experiment to as-
sess whether the obtained token contributions accu-
rately represent their significance to the model pre-
diction. In particular, we chose student utterances
for which the argument move and specificity labels
were correctly predicted by deep learning models.
Based on the decreasing order of token contribu-
tions computed by the four interpreting methods,
we removed the most critical words in a step-wise
manner until nine words were eliminated. If the to-
ken contributions truly signify their importance in
the prediction of deep learning models, the removal
of the most importance ones would result in a sub-
stantial change in prediction accuracy. Taking into
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account that random deletion could also lead to a
change in prediction accuracy, we conducted a ran-
dom deletion experiment for comparison purposes.
In our experiment, we separately selected 9,547 ut-
terances for the Bert-based argument move model
and 8,417 utterances for the Bert-based specificity
model, all of which had a length greater than 10.

As depicted in Figure 2, the removal of words
from initially accurately predicted utterances based
on their contributions results in a substantial de-
crease in prediction accuracy compared to the elim-
ination of words at random. For example, for
the Bert-based argument move model, eliminating
nine words according to contributions computed by
LIME and IG causes the prediction accuracy to de-
cline from 1.0 to 0.44 and 0.59, respectively, while
random deletion only leads to a drop in prediction
accuracy to 0.80. Similarly, for the Bert-based
specificity model, removing nine words based on
contributions calculated by LIME and IG results
in a decrease in prediction accuracy from 1.0 to
0.38 and 0.63, respectively, whereas random dele-
tion only causes the prediction accuracy to reduce
to 0.79. The experimental results suggest that the
four interpreting methods can explain argument
move and specificity analysis by effectively identi-
fying crucial words within argumentation, with the
LIME method demonstrating the most exceptional
performance in model explanation. Thus, we will
use LIME to provide model explanations in the
subsequent user experiment.

5 User Experiment Design

Following the successful validation of the explana-
tions, we designed an experiment aimed at evaluat-
ing the impact of these explanations on user trust
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(a) Bert-based argument move model
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Figure 2: Accuracy change when deleting words from
initially correctly predicted utterances based on their
contributions computed by gradient sensitivity (GS),
gradient input (GI), integrated gradient (IG), and LIME
methods.

in and knowledge of the deep learning models for
argument move and specificity. We will implement
it in future practice as a critical empirical study of
the PhD thesis.

5.1 Participants

Given that the deep learning models were devel-
oped within the context of high school English
lessons, our target participants for the experiment
will be 60 high school English teachers who are
interested in receiving Al analysis for their class-
room teaching. We will randomly assign them to
either an intervention group (/N = 30) or a con-
trol group (/V = 30), taking into account variables

such as age, gender, and teaching experience. This
randomization process will ensure that there are
no significant differences in demographic informa-
tion across the three variables mentioned. Both
groups will receive automated analysis pertaining
to the argument move and specificity of collabo-
rative argumentation in their classrooms. The key
distinction between the intervention group and the
control group lies in the provision of explanations.
Specifically, the intervention group will receive ex-
planations accompanying the automated analysis,
while the control group will not receive any expla-
nations.

5.2 Experiment procedure

The experiment procedure, as designed in Figure 3,
encompasses five distinct stages. In stage 1, teach-
ers from both the intervention and control groups
will be required to record two videos of collabora-
tive argumentation within their classrooms. These
videos will then be uploaded to the classroom dis-
course analyzer (CDA) system (Chen et al., 2015),
an automated platform specifically designed to
facilitate classroom dialogue analysis for teach-
ers. Leveraging automatic speech recognition soft-
ware and deep learning models developed in this
study, the CDA system will transcribe and automat-
ically analyze the argument move and specificity
exhibited in the collaborative argumentation videos.
Moving to stage 2, teachers will be invited to at-
tend a workshop where they will analyze the first
collaborative argumentation video using the Al-
powered CDA system. Importantly, the system will
provide argumentation analysis directly, without
any accompanying explanations. Transitioning to
stage 3, teachers will be required to complete a
questionnaire aimed at assessing their trust in and
knowledge of the Al-powered system, particularly
concerning the Al analysis, based on their interac-
tion with the system.

Proceeding to stage 4, teachers will be invited
to analyze the second collaborative argumentation
video utilizing the Al-powered CDA system. How-
ever, while the intervention group will receive argu-
mentation analysis accompanied by explanations,
the control group will continue to receive Al analy-
sis without explanations. Finally, in stage 5, teach-
ers from both groups will complete a questionnaire
to report their trust in and knowledge of the sys-
tem based on their interaction with Al during stage
4. Moreover, a subset of ten teachers from the in-
tervention group will be randomly selected for an
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Intervention group (N = 30)

Stage 1: Collaborative ar ation recording, uploading, and Al analysis
« Each teacher records 2 videos of classroom collaborative argumentation.
« The Al-powered system transcribes and analyzes the argument moves and specificity of these videos.

!

Stage 2: Teachers analyzing collaborative argumentation using AI without explanations
« Teachers learn how to analyze collaborative argumentation using the first video.
* The Al-powered system presents analysis directly without accompanying explanations.

Control group (N = 30)

!

!

Stage 3: Pre-test:

argumentation analysis.

* Questionnaires about teachers’ trust in and knowledge of the Al-powered system for collaborative

v

Stage 4: Teachers analyzing collaborative arg ion using Al with explanatio:
« Teachers learn to analyze collaborative argumentation using the second video.
« The Al-powered system presents analysis with explanations.

!

Stage 5: Post-test :

* Questionnaires about teachers’ trust in and knowledge of the Al-powered system

for collaborative argumentation analysis;
* Interviews

N

Stage 4: Analyzing -ative ar ation using Al without explanations
« Teachers learn to analyze collaborative argumentation using the second video.
« The Al-powered system presents analysis directly without explanations.

!

ah

ns

Stage 5: Post-test :
* Questionnaires about trust in and knowledge of the Al-powered system for
collaborative argumentation analysis;

Figure 3: The procedure of the user experiment.

interview to explore their experiences and percep-
tions regarding the utilization of Al and explana-
tions for collaborative argumentation analysis.

5.3 Instruments

To assess the level of trust among teachers in the
Al-powered system, specifically regarding the deep
learning model for collaborative argumentation
analysis, we will adapt a trust scale initially de-
veloped by Jian et al. (2000). Originally designed
to evaluate user trust in automated systems, this
scale has been widely utilized to measure human
trust in Al-powered tools. It encompasses factors
such as perceived fidelity, loyalty, reliability, secu-
rity, integrity, and familiarity with the Al tools. The
questionnaire consists of 11 items and employs a 7-
point Likert scale to capture participants’ responses
accurately.

Regarding the questionnaire for knowledge as-
sessment, it aims to evaluate teachers’ understand-
ing of the basic functionalities of the Al-powered
system and their comprehension of the deep learn-
ing model for collaborative argumentation analysis,
including how the model makes predictions. This
evaluation is crucial in demonstrating the effec-
tiveness of the developed Al model and its accom-
panying explanations. The design of the knowl-
edge questionnaire will be undertaken by two re-
searchers who are responsible for the development
and integration of the Al-powered collaborative
argumentation model into the CDA system.

6 Conclusion

Recognizing the significance of collaborative ar-
gumentation in teaching and learning, this study
employs Bert (i.e., a widely adopted deep learn-
ing approach) and authentic discussion transcripts
to develop two models for automated analysis of
argument moves (i.e., claim, evidence, and war-
rant) and specificity levels (i.e., low, medium, and
high) within collaborative argumentation. Given
that the “black box" nature of deep learning models
may raise trust concerns among users, four explain-
able Al methods are proposed to unpack model
analysis and provide explanations. These meth-
ods include gradient sensitivity, gradient input, in-
tegrated gradient, and LIME. The computational
experiments demonstrate the effectiveness of these
methods in explaining model predictions by com-
puting word contributions, with LIME exhibiting
the most exceptional performance. Consequently,
this study aims to apply the developed model and
the LIME method for collaborative argumentation
analysis and explanation. A quasi-experiment is
designed to evaluate the influence of model expla-
nations on user trust and knowledge, representing
a future extension of this PhD proposal. By ad-
dressing the challenges of interpretability and trust,
this PhD thesis proposal contributes to the field of
Al-supported classroom teaching, potentially fos-
tering user trust in Al and facilitating the practical
implementation of Al in educational contexts.
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This proposal also has several limitations that
should be addressed before the formal implemen-
tation of the quasi-experiment. First, the study
utilizes only one dataset, leaving uncertainty about
the applicability of the explainable Al methods to
models on other datasets of classroom collabora-
tive argumentation. Second, although the explana-
tions for collaborative argumentation analysis are
designed in a visual format, it is unclear whether
this is the preferred format for teachers and how it
might impact their perception of the explanations.
Therefore, further research should focus on evalu-
ating the proposed method across multiple datasets
and conducting a preliminary experiment to iden-
tify the optimal visualization of explanations. This
will help avoid confounding the effects of explana-
tions on users’ overall trust.
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