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Abstract

Code language models have emerged as useful
tools for various programming tasks, yet they
often struggle when it comes to complex ones.
In this paper, we explore the potential of cur-
riculum learning in enhancing the performance
of these models. While prior research has sug-
gested that curriculum learning does not nec-
essarily help in improving the performance of
language models, our results surprisingly show
that this may not be the case for code language
models. We demonstrate that a well-designed
curriculum learning approach significantly im-
proves the accuracy of small decoder-only code
language models on the task of code execution,
while its effect on code completion is less sig-
nificant. To explore the potential of curriculum
learning, we train multiple GPT models with
1 million parameters each to predict the next
token and evaluate them on code completion
and execution tasks. Our contributions include
proposing a novel code difficulty assessment
metric by combining software code measures,
investigating the effectiveness of Curriculum
Learning for code language models, and intro-
ducing a Novel Curriculum Learning sched-
ule that enhances the performance of small
decoder-only language models in code execu-
tion tasks. The results of this paper open the
door for more research on the use of curriculum
learning for code language models.

1 Introduction

With the advent of large language models (LLMs)
like GPT-3 (Brown et al., 2020), auto-regressive
decoder-only architectures have become dominant
in language modeling. These models have shown
significant improvement over state-of-the-art per-
formance on a wide range of natural language tasks.
Accordingly, previous work (Chen et al., 2021; Lu
et al., 2021; Nijkamp et al., 2022; Zheng et al.,
2023) has introduced such architectures for code

*Both authors contributed equally to this work and share
first authorship.

modeling, motivated by the software naturalness
hypothesis (Hindle et al., 2016; Buratti et al., 2020),
which suggests that programming languages can
be understood and generated like natural languages
(Xu and Zhu, 2022).

However, these models often struggle with com-
plex tasks such as understanding code and reason-
ing about it, which remains a challenge for them.
Austin et al. (2021) evaluated the ability of large
language models to predict the output of ground-
truth programs. The authors found that the few-shot
execution performance of their largest model, with
137 billion parameters, never exceeded 29% accu-
racy across various prompt configurations. Fine-
tuning on an code execution dataset resulted in only
modest improvements, with the best configuration
achieving 28.2% accuracy.

In this context, we investigate whether Curricu-
lum Learning (CL) - training models on simpler
examples first before gradually increasing difficulty
- can improve the performance of decoder-only lan-
guage models’ trained on source code. We assume
that training language models using CL will lead
to better performance compared to conventional
training. We focus on small-scale models, which
allows us to experiment with different setups and
iterate quickly.

Prior research has investigated the use of cur-
riculum learning for language model pre-training,
finding no substantial evidence to support its effec-
tiveness (Campos, 2021). However, the potential
benefits of this approach in the context of Code
Intelligence (Xu and Zhu, 2022), remain relatively
unexplored. In contrast to these earlier findings,
our investigation indicates that the advantages of
CL may be more task-dependent. Particularly, we
show that while CL exhibits potential in enhancing
code execution capabilities, its influence on code
completion tasks is less significant.

More specifically, we follow an incremental
study where we generate a Python code dataset,
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design a code difficulty assessment metric which
enables us to categorize our dataset into three levels:
“easy”, “medium”, and “hard”. Based on these lev-
els, we propose three-stage Curriculum Learning
(CL) schedules to train our code language models.

To further illustrate the challenges posed by com-
plex code examples, we evaluated the Code Llama
13B model (Rozière et al., 2024) on our "hard level"
test set, where it achieved only 39.06% accuracy.
This evaluation highlights the limitations of cur-
rent LLM-based code modeling approaches, which
still struggle to effectively capture the semantics of
source code.

Our results indicate that performance on code
execution can indeed be improved when we de-
sign a good curriculum schedule and use a robust
code difficulty metric. However, when it comes to
code completion tasks, the impact of CL is less pro-
nounced. This suggests that the benefits of CL may
not be present across all tasks, but rather, depend
on the specific nature of the task.

Believing this can advance the research on
code language models, we have open-sourced our
datasets1, models and source code2.

Our main contributions can be summarized as
follows:

• First, we propose a code difficulty assessment
metric combining software code measures.

• Second, we explore the potential of Curricu-
lum Learning for auto-regressive code lan-
guage models by investigating numerous cur-
riculum schedules.

• Finally, we propose a Novel Curriculum
Learning schedule that improves small
decoder-only language models’ performance
on code execution.

2 Overview

In order to explore whether using Curriculum
Learning can improve the performance of decoder-
only language models trained on code, we adopt
the following methodology (Presented in Figure 1) :
We first generate data (consisting of code snippets
followed by their outputs) focusing on a subset
of the Python programming language, which al-
lows us to reduce the vocabulary size (section 4).
We then assess the difficulty of the generated code

1https://tinyurl.com/TinyPyD
2https://tinyurl.com/CL4SCLM

snippets using our proposed code difficulty metric,
which we refer to as the Overall Metric (OM) (sec-
tion 3) and split the data into three levels - easy,
medium, and hard. Next, the models are trained
on different Curriculum Learning schedules (sec-
tion 5). Finally, we evaluate the performance of the
models based on token-level and line-level code
completion as well as code execution, and compare
them to a baseline model trained on all levels of
data shuffled together (section 7).

Additionally, to investigate the effect of Curricu-
lum Learning on larger pretrained models, we fine-
tuned Code Llama 7B (Rozière et al., 2024) using
our best Curriculum Learning schedule and com-
pared it with a baseline finetuning approach where
all levels of data are shuffled together (section 7).

3 Code Difficulty Metric

Determining the difficulty of code is not straight-
forward. It requires a quantitative measure, which
can be provided by commonly used software engi-
neering metrics like Cyclomatic Complexity (CC)
and Halstead Difficulty (HD). CC, proposed by Mc-
Cabe (1976), quantifies the number of linearly inde-
pendent paths through a program’s source code. On
the other hand, HD, introduced by Halstead (1977),
is calculated using the number of operators and
operands present in the code. These established
metrics allow for the numerical evaluation of code
difficulty. However, their independent use may not
fully capture the overall difficulty of the code.

Therefore, we have designed a new metric, re-
ferred to as the Overall Metric (OM), which is the
average of CC and HD (see Equation 1). The idea
behind creating OM is to have a more comprehen-
sive measure of difficulty that takes into account
both structural complexity via CC and operational
complexity via HD.

OM =
CC +HD

2
(1)

4 Dataset Generation Process

4.1 Automatic Python Code Generation

To generate the data for training code language
models in a curriculum learning setting, we used
TinyPy Generator (Yamani et al., 2024), an au-
tomatic Python code generation tool developed by
us. This tool uses context-free grammars to gen-
erate synthetic syntactically correct Python pro-
grams, focusing on a constrained subset of Python
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b = 8
b = b * b
print(b)
# output
# 64

a = 5
c = 4
if  a >= c :
    print(a)
# output
# 5

...
Code Snippets

Figure 1: Overview of Our Approach : We begin by generating code snippets using TinyPy Generator. Next, we
assess the difficulty of the generated code snippets using the Overall Metric we propose and categorize the data into
three levels of difficulty: easy, medium, and hard. Our 1M parameters decoder-only language models are trained
following various Curriculum Learning schedules. We then compare their performance to a 1M baseline model
trained on all the data simultaneously, with all three levels shuffled.

that includes assignments, conditionals, loops, and
print statements. This vocabulary constraint de-
creases the Embeddings dimension, leaving more
capacity for Transformer blocks while maintain-
ing a small number of parameters, as pre-training
loss decreases insignificantly without Transformer
blocks (Deshpande et al., 2023).

TinyPy Generator not only generates code snip-
pets but also executes and writes them along with
their respective outputs (expressed in comments)
to a file. By training the model on code followed
by its output, we assume that this helps the model
to better get the connection between the code and
its intended function.

4.2 Analysis of Generated Code Snippets

We first used TinyPy Generator to generate
1,200,000 random code snippets (examples shown
in Figure 3). We then categorized these auto-
matically generated programs based on their dif-
ficulty according to the OM metric. More pre-
cisely, we had to determine optimal thresholds to
divide the generated snippets into three levels of
difficulty: easy, medium, and hard. The Visual-
isation of the distribution of OM scores for the
generated snippets (depicted in Figure 2) revealed
that most fell into the easy category with OM < 2.
A smaller subset were of medium difficulty with
2 ≤ OM < 4, and the smallest group were hard
snippets with OM ≥ 4. This analysis helped us
understand the OM score ranges for the code snip-
pets produced by TinyPy Generator. Additionally,
it allowed us to determine the thresholds for easy,
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Figure 2: Distribution of Overall Metric (OM) Scores
for the Initial Set of Generated Snippets.

medium, and hard snippets.

4.3 Dataset Creation

Building on the insights from the analysis, we pro-
ceeded to create a balanced dataset for the train-
ing of our language models. More precisely, we
produced a total of 400k snippets for each level,
culminating in a dataset of 1.2M snippets in total,
as shown in Figure 3 (more examples are presented
in Appendix B). Then, each level’s dataset was
randomly partitioned into training, validation, and
testing sets. After that, we proceeded to create the
‘ALL levels’ dataset, which is a shuffled concate-
nation of all train, test, and validation sets from
each level into the train, test, and validation sets of
the ALL dataset. Additional details about the final
datasets are provided in Table 1.
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Difficulty
Level

Easy Medium Hard ALL
levels

Train #
in tokens

340,000 340,000 340,000 1,020,000
22,438,558 30,777,288 42,719,202 95,935,048

Val #
in tokens

52,000 52,000 52,000 156,000
3,436,602 4,710,195 6,533,573 14,680,370

Test #
in tokens

8,000 8,000 8,000 24,000
527,649 724,530 1,005,030 2,257,209

Table 1: Training data statistics : The number of code
snippets (training, validation, and test) and their corre-
sponding token counts for each difficulty level - Easy,
Medium, Hard, and cumulatively for All Levels.

5 Curriculum Learning Schedules

Curriculum learning (CL) is a training strategy that
presents easier or simpler examples earlier in train-
ing and gradually increases the difficulty of exam-
ples over time. This section details the Curriculum
Learning schedules we propose, namely: Sequen-
tial, Incremental, and Hybrid, illustrated in Fig-
ure 4. Each schedule is divided into three stages.
After completing a stage, we reset the learning rate
and optimizer before continuing training on the
data for the next stage. The three schedules are
defined as follows:

5.1 Sequential curriculum learning schedule

In the Sequential Curriculum Learning schedule,
the model is initially trained on the ’easy’ level
data for a fixed number of iterations. After this
stage, the model moves to the ‘medium’ level data.
After another fixed number of iterations, the model
finally transitions to the ‘hard’ level.

5.2 Incremental curriculum learning schedule

The Incremental Curriculum Learning schedule
progressively introduces more complex data into
the training set. The model starts with the ‘easy’
level data for a fixed number of iterations. Once
this stage is complete, the ‘medium’ level data is
added to the training set for another fixed number
of iterations. Upon completion of this stage, ‘hard’
level data is incorporated.

5.3 Hybrid curriculum learning schedule

The Hybrid Curriculum Learning schedule is a
blend of the Sequential and Incremental schedules.
In the first stage, the model is trained exclusively
on the ‘easy’ level data for a certain number of
iterations. In the second stage, a combination of

Code Snippets

e = 8
d = (e + e)-(e / 4)
for e in range(1, 6) :
    print(d)
# output
# 14.0
# 14.0
# 14.0
# 14.0
# 14.0

Medium

d = 0
a = 6 - d
if not (d == 4) or ( d <= 7) :
    print(d - d)
elif (not d < d) :
    print(d / 7)
else :
    print(a)
# output
# 0

Hard

e = 1
e = e + 9
print(e)
# output
# 10

Easy

Figure 3: One code snippet example from each diffi-
culty level (the examples are chosen arbitrarily). More
examples are presented in Appendix B.

the top 50% most difficult examples from the ‘easy’
level data and the ‘medium’ level data is used for
training. In the final stage, we combine both top
50% most difficult examples from the ‘easy’ and
‘medium’ levels with the ‘hard’ level data.

6 Experimental Setup

In this section, we describe our experimental setup
for evaluating the effectiveness of curriculum learn-
ing for code language models, including the model
architecture we used, our training process, and the
evaluation tasks and metrics we employed.

6.1 Model Architecture

For our models, we employ NanoGPT3 (Karpathy,
2022), a small version of the GPT model family.
The primary reason for this choice is its ability to
train from random initialization (from scratch) un-
der a variety of settings, allowing for rapid iteration.

3The original NanoGPT (Karpathy, 2022) is licensed un-
der the permissive MIT License, allowing modification and
distribution.
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Figure 4: Our three curriculum learning schedules. Se-
quential progresses from easy to hard snippets sequen-
tially. Incremental starts with easy snippets, gradually
adding harder ones. The Hybrid schedule starts with
easy snippets, then adds a mix of the hardest easy snip-
pets and medium snippets, and finally combines the
hardest snippets from the easy and medium levels with
hard snippets.

NanoGPT employs a decoder-only transformer ar-
chitecture, comprising six self-attention layers, six
heads, and an embedding dimension of 384. This
results in approximately 10.6 million parameters.
We modify the model by reducing the embedding
dimension to 120 and setting the block size to 256,
which results in a model with around 1 million pa-
rameters. The model uses a vocabulary size of 41
and does not include bias in its linear layers. We
employ character-level tokenization and absolute
position encoding.

6.2 Training Details

All our models are trained from scratch using the
conventional next-token prediction objective. The
hyperparameters for each model were selected
based on minimizing the validation loss.

Baseline Model: The baseline model is trained
on all the data simultaneously, with all three
levels shuffled. Given the small size of our model,
we do not find it necessary to employ dropout
for regularization. The batch size is set to 64,
the learning rate is set to 1e-3, and the AdamW

optimizer is used for training. The learning rate
decay is implemented using milestones set at 70%,
80%, and 90% of the total number of iterations,
which is 120k.

Models Trained with Curriculum Learning
(CL): These models also do not use dropout and
have a batch size of 64. However, the number of
iterations varies for each stage, with the total sum-
ming up to 120k iterations (See Table 2). Note that
we tested various iterations settings and reported
the best. For each stage, the learning rate is set
to 1e-3, and is decayed using the same milestone
percentages as the baseline model. The AdamW
optimizer is used for training.

Model Iterations per
stage

Total
Iterations

Baseline - 120k
Sequential CL 40k, 40k, 40k 120k
Incremental CL 25k, 30k, 65k 120k
Hybrid CL 20k, 30k, 70k 120k

Table 2: Details of Training Iterations for our models.
‘Iterations per stage’ denotes the number of iterations
for each stage for models trained using CL.

6.3 Evaluation tasks and metrics
To evaluate the effectiveness of Curriculum Learn-
ing for improving code language models, we assess
their performance on three key tasks: token-level
completion, line-level completion, and code execu-
tion, as presented in Figure 5.

Code Tasks

Token-Level

e = 1
e = e + 9
print(e)
# output
# 10

Line-Level

e = 1
e = e + 9
print(e)
# output
# 10

Completion

Execution

e = 1
e = e + 9
print(e)
# output
# 10

Context Prediction

Figure 5: Experimental Evaluation on Three Code
Tasks: Token-Level Completion, Line-Level Comple-
tion, and Code Execution

6.3.1 Code Completion
We evaluate code completion performance at
two levels, inspired by the approach used in
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CodeXGLUE (Lu et al., 2021):

• Token-level: Similar to (Lu et al., 2021), mod-
els are evaluated on completing the next token
in the incomplete snippet.

• Line-level: We slightly modified the line-level
task from (Lu et al., 2021). We provide the
model with the previous lines of the incom-
plete snippet and let it generate the next line.

For both levels, we report the Accuracy, which
measures whether the model’s output exactly
matches the expected output. For the Line comple-
tion task, we also report the Edit Similarity (ES)
calculated using Levenshtein distance between the
model’s predicted line and the expected line.

6.3.2 Code Execution
To assess the code execution abilities of our models,
we utilize the ’ALL levels’ test set, as detailed in
subsection 4.3. The models are prompted with the
code portion of the test snippets, stopping at the ‘#
output’ comment to exclude the output and let the
model predict it. The model generates the output
one token at a time, as described in Appendix D.
We employ the Output Accuracy as our evalua-
tion metric, which checks if the generated output
exactly matches with the expected output from exe-
cuting the code. The accuracy is calculated for each
difficulty level and an overall accuracy is computed
across all levels.

7 Experiments and Results

7.1 Correlating OM with Model Learning
Capabilities

To validate the effectiveness of OM in assessing
the difficulty of code snippets, we generated six
conceptual levels of complexity, based on program-
ming concepts: (1) assignments with simple arith-
metic; (2) assignments with advanced arithmetic
expressions; (3) simple if-elif-else statements; (4)
advanced if-elif-else statements with arithmetic ex-
pressions; (5) simple for loops; and (6) advanced
for loops with arithmetic expressions.

We trained and evaluated models with less than
1 million parameters on each level and reported
their average accuracy in Table 3. The results
showed an inverse relationship between OM and
accuracy, confirming OM’s effectiveness in ranking
code snippet difficulty.

Level OM Average Accuracy
1 0.85 96.65%
2 0.98 87.33%
3 1.77 58.43%
4 3.5 50.29%
5 1.0 83.73%
6 1.38 73.19%

Table 3: Average Overall Metric (OM) Score vs. Aver-
age Accuracy Achieved by models under 1M parameters
at Each level from 1 to 6.

7.2 Code Completion

To test the effectiveness of CL for code comple-
tion, we compared models trained with CL with
our baseline. As shown in Table 4, the incremen-
tal approach leads to a minor gain in token-level
accuracy over the baseline. Similarly, the hybrid
curriculum achieves small improvements in Line-
level accuracy of 0.3% and edit similarity of 0.5.
While these results demonstrate that curriculum
learning can provide some benefits, the improve-
ments are not significant enough to conclusively
state its effectiveness for code completion.

Model Token-Level Line-Level
Accuracy Accuracy ES

Baseline 81.23% 41.74% 74.15
Sequential CL 75.64% 25.84% 66.96
Incremental CL 81.27% 42.01% 74.25
Hybrid CL 81.13% 42.04% 74.65

Table 4: Performance Evaluation of Our Models on
Code Completion Tasks, measured in terms of Token-
Level Accuracy and Line-Level Accuracy and Edit Sim-
ilarity (ES).

7.3 Code Execution

7.3.1 Performance on All Levels

To determine the impact of different curriculum
learning (CL) strategies on code execution per-
formance, we compared models trained with in-
cremental, sequential, and hybrid CL schedules
against a baseline model trained on all difficulty lev-
els simultaneously. As shown in Table 5, the hybrid
CL approach achieves the best performance, with
significant gains over the baseline on medium and
hard test sets. The incremental CL model also im-
proves upon the baseline overall. However, sequen-
tial CL enables some learning of advanced concepts
but reduces overall performance. In conclusion, our
results demonstrate that a well-designed curricu-
lum, especially the hybrid schedule, substantially
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outperforms conventional training without CL for
code execution tasks.

7.3.2 Performance on the "hard" Level
To evaluate the ability of curriculum learning (CL)
to prepare a model for complex tasks, we compared
the performance of models trained with CL to a
model trained exclusively on the “hard” training
set for 120k iterations. The comparison is con-
ducted on the "hard" test set, which contains the
most complex examples in our dataset. The re-
sults are presented in Table 6. We notice that all
three CL approaches substantially outperformed
the model trained exclusively on hard data, with the
hybrid CL method achieving the highest accuracy
of 74.04%.This shows that CL is more effective
than conventional hard-only training for preparing
models to perform well on complex code execution
examples.

7.4 Investigating the Effect of Curriculum
Learning on Larger Pretrained Models

To further validate the effectiveness of curriculum
learning (CL) observed in our earlier experiments,
we extended our evaluation by fine-tuning the Code
Llama 7B model (Rozière et al., 2024). We com-
pared the performance of a model fine-tuned on
the ’ALL’ dataset (referred to as ’CodeLlama Base-
line’) with a model fine-tuned using the hybrid CL
technique (referred to as ’CodeLlama CL’). The re-
sults consistently reflected the improvements noted
in smaller models.

For code completion tasks, as shown in Table 7,
the CodeLlama CL model demonstrated minor im-
provements over the baseline model. For code ex-
ecution, as illustrated in Table 8, the CodeLlama
CL model significantly outperformed the baseline
model.

These findings validate that CL advantages scale
to larger pretrained models. The consistent gains
across model sizes highlight our CL approch’s gen-
eralizability for enhancing code understanding in
auto-regressive language models.

8 Discussion

We designed a code difficulty metric combining
software measures, referred to as OM, to catego-
rize generated programs into easy, medium and
hard levels. The inverse correlation between the
OM scores and the model accuracies validates its
effectiveness for program difficulty assessment. An
interesting observation is that conditionals posed

more difficulty for models than loops, contrary to
expectations. This suggests certain language fea-
tures are inherently harder to learn for models.

This categorization allowed us to explore var-
ious three-stage curriculum schedules for model
training. Our experiments revealed that the hybrid
technique achieves much higher output accuracy
compared to the conventional training baseline, es-
pecially on complex code, indicating its effective-
ness in incrementally developing model capabili-
ties. However, the sequential strategy, while help-
ing models learn hard concepts, suffers a loss in
overall accuracy. This highlights the importance of
curriculum design : simply progressing from easy
to hard tasks does not guarantee gains.

In the context of code completion tasks, the in-
fluence of CL is not as significant as expected. This
implies that the advantages of CL may not be appli-
cable to all tasks, but instead, they may vary based
on the particular characteristics of the task.

Furthermore, our fine-tuning experiments with
the Code Llama 7B model further validated the
effectiveness of curriculum learning. While the
gains in code completion tasks were minor, the
hybrid CL approach significantly improved code
execution performance. These findings reinforce
our findings that a well-designed curriculum can
enhance model capabilities, especially for complex
tasks, even when scaling to larger models.

9 Related Works

9.1 Code Language Models

The application of pre-trained Transformers in
code processing can be traced back to dates be-
fore decoder-only auto-regressive models became
dominant. These models have consistently deliv-
ered state-of-the-art results across a wide range of
tasks, including code summarization, generation,
and translation (Xu and Zhu, 2022). Such exam-
ples include encoders like CuBERT (Kanade et al.,
2020), CodeBert (Feng et al., 2020) and Graph-
CodeBERT (Guo et al., 2020). The use of the
encoder-decoder architecture have also been pro-
posed with models like : CodeT5 (Wang et al.,
2021), CodeT5+ (Wang et al., 2023) and Alpha-
Code (Li et al., 2022b).

Following the introduction of GPT-3 (Brown
et al., 2020), autoregressive decoder-only language
models have taken a leading role in the field of
language modeling. Consequently, a multitude of
studies have been published proposing the use of
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Model ALL Easy Medium Hard
Baseline 74.58% 80.44% 76.09% 67.22%

Sequential CL 62.56% 46.47% 70.73% 70.47%
Incremental CL 76.79% 82.63% 77.68% 70.06%

Hybrid CL 79.23% 82.84% 80.79% 74.04%

Table 5: Output Accuracy of Our Models - Baseline, Sequential CL, Incremental CL, and Hybrid CL - on different
levels of difficulty (Easy, Medium, Hard) and their overall accuracy (ALL).

Model Accuracy
Trained on hard level only 61.78%

Sequential CL 70.47%
Incremental CL 70.06%

Hybrid CL 74.04%

Table 6: Output Accuracy of a model trained exclusively
on hard level versus models trained using CL schedules:
‘Sequential’, ‘Incremental’, and ‘Hybrid’, when tested
on hard examples.

Model Token-Level Line-Level
Accuracy Accuracy ES

CodeLlama
Baseline

72.00% 32.83% 70.11

CodeLlama CL 72.73% 33.54% 70.84

Table 7: Fine-tuning results of Code Llama 7B with
and without hybrid curriculum learning (CL) for code
completion tasks.

such architectures for code. Codex by OpenAI
(Chen et al., 2021), one of the largest language
models for code, is trained on public repositories
on Github across multiple programming languages.
Other notable attempts include CodeGPT (Lu et al.,
2021), CodeGen (Nijkamp et al., 2022), PolyCoder
(Xu et al., 2022), CodeGeeX (Zheng et al., 2023),
and Code Llama (Rozière et al., 2024).

9.2 Curriculum Learning

Prior work has investigated curriculum learning
(Elman, 1993; Sanger, 1994; Bengio et al., 2009)
for the pre-training of language models. The pa-
per introduced by Li et al. (2022a) discusses the
concept of Sequence Length Warmup, a method
that uses CL for stable training of GPT models
with larger batches and learning rates. This sig-
nificantly reduces data and time requirements for
pre-training. Additionally, the effectiveness of cur-
riculum learning for pre-training BERT models has
been explored in several studies (Press et al., 2021;
Zhang et al., 2021; Campos, 2021; Nagatsuka et al.,
2021, 2023). The results have been mixed. Some

Model Accuracy
CodeLlama Baseline 81.29%

CodeLlama CL 85.18%

Table 8: Fine-tuning results of Code Llama 7B with
and without hybrid curriculum learning (CL) for code
execution.

research shows curriculum learning can acceler-
ate convergence, shorten training time, and boost
accuracy while other studies do not find these ad-
vantages.

10 Conclusion

In this paper, we explored the potential of curricu-
lum learning in enhancing the performance of code
language models, given their struggle with complex
tasks.

First, we generated a dataset of Python code us-
ing the TinyPy Generator. Second, we designed a
code difficulty metric (OM) combining software
complexity measures, and validated its efficacy in
assessing program difficulty. Third, we used the
OM to categorize programs into easy, medium, and
hard levels and explored various curriculum sched-
ules. Finally, we evaluated our models on code
completion and execution tasks and compared them
to a baseline trained on all the data shuffled. Our
results show that certain curriculum learning strate-
gies can significantly improve language models’
performance on code execution, compared to con-
ventional training. Nonetheless, for code comple-
tion, the gains from CL were not as significant as
expected.

Additionally, our fine-tuning experiments with
the Code Llama 7B model reinforced these find-
ings, demonstrating that CL can lead to signifi-
cant improvements in code execution tasks even
for larger models.

In conclusion, our investigation shows that
thoughtfully implemented curriculum learning can
improve generative code language models’ perfor-
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mance on code execution tasks. Yet, its impact is
less noticeable in code completion tasks. This sug-
gests that curriculum learning’s effectiveness may
vary depending on the task’s specific characteris-
tics. Overall, our work highlights the potential of
curriculum learning to enhance language models
for complex code reasoning.

Limitations

Some limitations provide avenues for future work.
Our study was restricted to a subset of Python.
Testing curriculum techniques on all the Python
language could reveal if its advantages generalize
across the entire language. Additionally, our focus
solely on Python code represents another limitation.
Exploring whether curriculum learning improves
performance for other programming languages mer-
its investigation.

Nevertheless, within the defined scope, our find-
ings strongly suggest curriculum learning is a
promising training paradigm for boosting code exe-
cution performance. The hybrid curriculum sched-
ule we propose offer a sound starting point for
integrating curriculum learning into code language
model development. Extending this approach by
addressing the above limitations provides rich op-
portunities for future work.
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computation. All our experiments were conducted
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One key risk is that of malicious use, where
bad actors could leverage powerful code generation
systems to automatically produce harmful software
like viruses or bots. Even without harmful intent
from researchers, releasing and open-sourcing our

curriculum learning methodology and model code
could enable this misuse if proper safeguards are
not implemented.
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A Details about Difficulty Metrics

A.1 Cyclomatic Complexity

Cyclomatic Complexity (CC) (McCabe, 1976) is a
software metric used to quantify the number of lin-
early independent paths through a program’s source
code. This metric is derived from the program’s
control flow graph, where nodes symbolize com-
mand groups, and directed edges connect nodes if
the subsequent command can be executed immedi-
ately after the preceding one.

CC is calculated as the number of decisions
within a code block, plus one. Specifically, given

the control flow graph of a program, the CC metric
is calculated using the following formula:

CC = E −N + 2P

where:

• E is the number of edges in the control flow
graph.

• N is the number of nodes in the control flow
graph.

• P is the number of connected components in
the graph (often equal to 1 for a single pro-
gram).

A.2 Halstead Difficulty

Halstead’s metrics (Halstead, 1977) aim to quantify
various aspects of software, which are computed
statically from the source code. In our context,
we are particularly interested in the Halstead’s Dif-
ficulty metric (HD). The following variables are
defined:

• η1 = the number of distinct operators

• η2 = the number of distinct operands

• N1 = the total number of operators

• N2 = the total number of operands

With these variables, we can compute several
measures:

• Program vocabulary: η = η1 + η2

• Program length: N = N1 +N2

• Calculated program length: N̂ = η1 log2 η1 +
η2 log2 η2

• Volume: V = N log2 η

• Difficulty: HD = η1
2 · N2

η2

• Effort: E = D · V

• Time required to program: T = E
18 seconds

• Number of delivered bugs: B = V
3000

B Additional Examples of Code Snippets

Additional examples of code snippets are provided
in Figure 6.
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Code Snippets

a = 2
b = 1
e = (a - 0)-(b * b)*(a * b)
if ( b > 7) :
    print(a - a)
elif not (b == b) :
    print(a + b)
else :
    print(a - b)
# output
# 1

a = 1
b = 7
c = 6
e = 6
if (a <= c) and (not b > e) :
   print(c)
elif (c > 2) or (not b < b) or
(e == 6) :
    print(e)
else :
    print(b)
# output
# 6

Hard
b = 2
if not (b >= 2) :
    print(b)
elif not (b >= 4) :
    print(b + b)
else :
    print(b / 8)
# output
# 4

c = 0
a = 8
a = (c * a)-(7 / 5)
for a in range(4, 9) :
    print(c + 8)
# output
# 8
# 8
# 8
# 8
# 8

Mediume = 3
a = 8
print(a - e)
# output
# 5

e = 4
d = 8
if not d == e :
    print(e)
# output
# 4

a = 8
d = a * 5
for a in range(8, 15, 1) :
    print(a * 3)
# output
# 24
# 27
# 30
# 33
# 36
# 39
# 42

Easy

Figure 6: Additional Examples of Code Snippets,

C Hardware and Software Specifications

All our models were trained for less than 2 hours on
a machine equipped with a single NVIDIA Tesla
V100-PCIE-32GB GPU and were implemented
using PyTorch 2.0.0. All codes were written in
Python 3.8.6.

D Generation Process of our models

The generation process of our models begins by
providing the model with the context, which con-
sists of the last 256 tokens. The model then predicts
the logits for the next token based on this context.
These logits are converted into a probability distri-
bution via softmax. The torch.multinomial
function is used to sample the next token from this
distribution. This sampled token is added back to
the context. This procedure is repeated until the
maximum number of new tokens has been gener-
ated. The final output consists of all the tokens
generated by the model.

401


