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Abstract

Multilingual code-switching research is often
hindered by the lack and linguistically biased
status of available datasets. To expand language
representation, we synthesize code-switching
data by replacing intonation units detected
through PSST, a speech segmentation model
fine-tuned from OpenAI’s Whisper, using a
speech-to-text translation dataset, CoVoST 2.
With our dataset, CoVoSwitch, spanning 13 lan-
guages, we evaluate the code-switching trans-
lation performance of two multilingual transla-
tion models, M2M-100 418M and NLLB-200
600M. We reveal that the inclusion of code-
switching units results in higher translation per-
formance than monolingual settings and that
models are better at code-switching transla-
tion into English than non-English. Further,
low-resource languages gain most from inte-
gration of code-switched units when translat-
ing into English but much less when translat-
ing into non-English. Translations into low-
resource languages also perform worse than
even raw code-switched inputs. We find that
systems excel at copying English tokens but
struggle with non-English tokens, that the off-
target problem in monolingual settings is also
relevant in code-switching settings, and that
models hallucinate in code-switching transla-
tion by introducing words absent in both of
the original source sentences. CoVoSwitch and
code are available at https://github.com/
sophiayk20/covoswitch.1

1 Introduction

Code-switching (CSW), otherwise known as code-
mixing, refers to the use of linguistic units from
multiple languages in a conversation or utterance
(Pratapa et al., 2018). In general, researching code-
switching comprehensively is a complicated task
due to the lack of code-switched data. One so-
lution is to use existing code-switching datasets

1CoVoSwitch is released as a HuggingFace dataset. https:
//huggingface.co/datasets/sophiayk20/covoswitch.

(Weller et al., 2022; Nguyen et al., 2023), but
there is a limited number of such datasets and us-
ing them constrains research to the few language
pairs that datasets are concentrated in, such as
Spanish-English or Hindi-English (Winata et al.,
2023). To alleviate the problem, previous work
(Alastruey et al., 2023) brought together multiple
datasets, such as Fisher (Cieri et al., 2004) and Ban-
gor Miami (Deuchar et al., 2014). Nevertheless,
in the multilingual setting, collecting data from
multiple sources mixes different degrees of code-
switching and blocks parallel understanding across
languages.

Alternatively, most works have introduced syn-
thetic datasets (Winata et al., 2023). These have
been based on linguistic theories, such as the
Matrix Language Frame (MLF) Model (Myers-
Scotton, 1997) and the Equivalence Constraint
(Poplack, 1980). Applying the Equivalence Con-
straint requires the use of constituency parsers.
(Rizvi et al., 2021) utilized the Stanford Parser
(Klein and Manning, 2003) and the Berkeley Neu-
ral Parser (Kitaev and Klein, 2018; Kitaev et al.,
2019). However, as of now, the Stanford Parser sup-
ports Arabic, Chinese, English, French, German,
and Spanish, while the Berkeley Neural Parser sup-
ports Arabic, Basque, English, French, German,
Hebrew, Hungarian, Korean, Polish, and Swedish.
This presents a bottleneck in the number of lan-
guages that can be used for research and impedes
the creation of code-switching data for unsupported
or low-resource languages such as Tamil.

Synthetic datasets have also introduced code-
switching mainly based on words. These include
random replacements based on words (Rijhwani
et al., 2017; Xu and Yvon, 2021; Rizvi et al., 2021;
Tarunesh et al., 2021) and replacements based on
connected components of aligned words (Iyer et al.,
2023). However, word-based switching may not
completely reflect the code-switching phenomenon.
Recent research (Pattichis et al., 2023) demon-
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strated that code-switching is more common across
intonation units than within as a result of looser syn-
tactic relationships and that intonation units should
therefore serve as new replacement units instead of
words. This constraint is referred to as the Intona-
tion Unit Boundary Constraint.

To expand language representation, experiment
with intonation units as basis units of code-
switching, and reflect both linguistic and prosodic
constraints, we synthesize data by following the
Matrix Language Frame Model and the Intonation
Unit Boundary Constraint. We keep English as the
matrix language and embed segments from non-
English languages by replacing English intonation
units of utterances from CoVoST 2 (Wang et al.,
2021), a speech-to-text translation (S2TT) dataset,
detected with PSST (Roll et al., 2023), an English
prosodic speech segmentation model fine-tuned
from OpenAI’s speech recognition model Whis-
per (Radford et al., 2023). Utilizing S2TT datasets
is advantageous for several reasons. First, they
include transcripts for both languages and audio
files for one language in each pair, which allows
the simultaneous incorporation of text and speech
features in code-switching data creation. Moreover,
recent datasets cover a multitude of high-resource
and low-resource languages, which enables the in-
clusion of diverse language pairs for synthetic code-
switching data.

Meanwhile, we observe that while recent works
(Zhang et al., 2023; Khatri et al., 2023) have demon-
strated the translation performance of multilingual
large language models with billions of parameters
such as XGLM-7.5B and BLOOMZ-7b1 on code-
switching data, performance of multilingual neural
machine translation (MNMT) models with millions
of parameters remains relatively underexplored.
We therefore measure the zero-shot code-switching
translation performance of M2M-100 418M (Fan
et al., 2021) and NLLB-200 600M (Costa-jussà
et al., 2022), capable of multilingual translation for
100 and 200 languages respectively, on our syn-
thetic dataset.

Our contributions are summarized as follows:
We (1) apply a single synthetic data generation
method to different language pairs, including low-
resource languages such as Tamil, based on a sin-
gle dataset and thereby eliminate differences that
emerge from the discrepancies in data generation
methodology, (2) release a new code-switching
dataset, CoVoSwitch, with similar code-switching
levels across 13 languages, and (3) compare trans-

Figure 1: Our code-switching data generation pipeline
with an example of English and Catalan parallel corpora.

Original IU Transcripts
Train 289,413 195,166 100,176
Valid. 15,531 10,844 4,520
Test 15,531 9,252 3,688

Table 1: Number of utterances used for dataset creation.

lation performance in code-switching versus mono-
lingual settings and high-resource versus low-
resource languages and identify the off-target prob-
lem and hallucinations. To the best of our knowl-
edge, this is the first work to leverage prosodic
segmentation features to create a dataset contain-
ing code-switched text.

2 Synthetic Data Generation

2.1 Intonation Unit Detection

We use the En→X subset of the CoVoST 2 dataset,
as this subset contains English recordings that we
use to detect English prosodic boundaries. For non-
English languages, we select Arabic (ar), Catalan
(ca), Welsh (cy), German (de), Estonian (et), Per-
sian (fa), Indonesian (id), Latvian (lv), Mongolian
(mn), Slovenian (sl), Swedish (sv), Tamil (ta), and
Turkish (tr). We follow the classification scheme of
(Costa-jussà et al., 2022) and denote Welsh, Mon-
golian, and Tamil as low-resource and others as
high-resource. To match units of measurement for
metrics such as CMI and SPF detailed later in this
study, we exclude Chinese and Japanese, which are
not whitespace separated. Further information on
languages covered is contained in Appendix A.1.

Using the PSST model2 (Roll et al., 2023) fine-
tuned from OpenAI’s Whisper3 (Radford et al.,
2023), we both generate transcriptions and detect
intonation unit (IU) boundaries for English utter-
ances in the original Common Voice 4.0 Corpus

2https://github.com/nathan-roll1/psst
3https://huggingface.co/openai/whisper-large-v3

346

https://github.com/nathan-roll1/psst
https://huggingface.co/openai/whisper-large-v3


µ σ min max
Train IU 1.5 0.7 1 7

words 10.9 2.5 2 30
Valid. IU 1.5 0.8 1 7

words 10.8 2.5 3 32
Test IU 1.4 0.7 1 6

words 10.6 3.1 2 34

Table 2: Statistics on English Common Voice intonation
unit transcripts generated.

(Ardila et al., 2020), which serve as audio files for
CoVoST 2. All English audio files were resam-
pled at a sampling rate of 16,000 Hz to generate
transcriptions with PSST. Of these, we extract sen-
tences that contain intonation unit boundaries and
exclude wrong transcriptions and outputs that con-
tain hallucinations. Table 1 details the number of
utterances used in each step, while Table 2 cap-
tures descriptive statistics on utterances used in the
generated dataset.

2.2 Alignment Extraction and Intonation Unit
Replacement

We obtain word alignments between English
and non-English text from CoVoST 2 using an
aligner following previous research (Rizvi et al.,
2021; Winata et al., 2019; Pratapa et al., 2018),
but replace fast_align (Dyer et al., 2013), a
reparametrization of IBM Model 2, with a neural
aligner, awesome-align4 (Dou and Neubig, 2021),
because it outperforms fast_align in alignment
error rate. This aligner supports all target languages
covered in this work as it is a fine-tuned aligner
from mBERT (Devlin et al., 2019).

We pick the number of intonation units to re-
place, r, from 1 to number of English intonation
units - 1 for each English sentence. For each r,
we randomly select a combination of r intonation
unit indices, but nonconsecutive IU indices, if they
exist, are prioritized over consecutive ones to rep-
resent more active code-switching. For each of the
tokens in each replacement intonation unit selected,
we find corresponding non-English tokens using
word alignments. When replacing English tokens
with non-English tokens, we preserve the original
order in non-English languages. If no tokens are
mapped by the aligner, empty strings are appended
to the code-switched text, following previous work
(Pratapa et al., 2018). For tokens that are not in the
intonation units selected for replacement, English

4https://github.com/neulab/awesome-align

ISO Count %L1 %L2 CMI SPF
ar 5,176 55.20 44.80 32.89 0.17
ca 5,137 51.02 48.98 33.54 0.16
cy 5,150 52.37 47.63 33.32 0.16
de 5,138 50.65 49.35 33.71 0.15
et 5,153 55.71 44.29 32.76 0.17
fa 5,174 52.07 47.93 33.43 0.16
id 5,128 53.32 46.68 33.37 0.16
lv 5,176 54.71 45.29 33.04 0.17

mn 5,152 55.23 44.77 32.88 0.17
sl 5,158 53.98 46.02 33.29 0.17
sv 4,813 52.06 47.94 33.32 0.16
ta 5,161 55.52 44.48 32.84 0.17
tr 5,154 56.07 43.93 32.82 0.18

Table 3: Test subset of CoVoSwitch. L1 is English, L2
is non-English language indicated by the ISO code.

tokens are appended. Once the code-switched text
is created, we perform checks to ensure that the
synthesized text contains at least one intonation
unit from both languages. Additionally, if the re-
sulting code-switched text is exactly equal to the
source English sentence, which occurs when tokens
replaced are language-independent tokens such as
proper nouns present in both component languages,
we do not add the code-switched text to our dataset.
Figure 1 outlines an example synthesis process.

2.3 Dataset Evaluation and Analysis

To evaluate our synthetic dataset, we report two
automatic metrics, Code Mixing Index (CMI) and
Switch Point Fraction (SPF). These metrics can be
computed at either the utterance or corpus level, but
we report at the corpus level to facilitate parallel
understanding across languages.

CMI, first proposed by (Das and Gambäck,
2014), measures the level of code-switching in a
text. We follow the definition of (Mondal et al.,
2022) and report CMI as follows. For a code-
switching sentence comprised of η tokens, with
η1 and η2 tokens in each language and η = η1+η2,
CMI is defined as 1 - max(η1,η2)

η . We adhere to pre-
vious convention and multiply this number by 100.
SPF was proposed by (Pratapa et al., 2018) and
measures the rate at which code-switching points
occur in the code-switched text. SPF is defined
as

∑η−2

i=0
S(i,i+1)

η−1 where S(i, i + 1) is an indicator
variable that is equal to 1 if the tokens of indices i
and i+ 1 belong to different languages and else 0.

Table 3 captures information relevant to the test
subset of our synthesized dataset, which is the only
subset that we utilize in the experiments that follow.
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The total number of sentences generated is roughly
1.5 times the number of correct transcripts used in
Table 1, which is related to the average number of
intonation units outlined in Table 2. CMI values
range from 32.76 to 33.71, which is comparable to
CMI levels of 31.00 in (Pratapa et al., 2018). SPF
values range from 0.15 to 0.18, which is compara-
ble to SPF values of 0.17 and 0.2 in (Winata et al.,
2019). Because our dataset is created by replacing
entire intonation units instead of words as in previ-
ous works, it contains longer same language spans
and less switch points, resulting in relatively higher
CMI values and lower SPF values. In our dataset,
roughly half of the tokens come from each con-
stituent language. Statistics on train and validation
subsets are included in Appendix A.2.

3 Machine Translation Experimental
Setup

Models. We use the HuggingFace pre-trained
model checkpoints facebook/m2m100_418M and
facebook/nllb-200-distilled-600M for the
M2M-100 418M and NLLB-200 600M models.
These two models were chosen for their excep-
tional multilingual capabilities, with M2M-100
intended for non-English centric translation and
NLLB-200 designed to improve translation perfor-
mance in low-resource languages. Both support all
languages covered by our synthetic dataset.
Translation Settings. We experiment with four
translation settings for each of the English and non-
English language pairs. First is csw→En, in which
code-switched text is translated into English. This
setting was examined in previous research (Nguyen
et al., 2023; Xu and Yvon, 2021), but we also ex-
periment with csw→X to analyze any performance
gaps that may arise by setting target language for
translation differently. We compare these two code-
switching translation settings to two monolingual
translation settings, X→En and En→X, where X
is a non-English language and En is English.
Baselines. Our baselines are twofold. First, we
compare code-switching translations with monolin-
gual translations and interpret deltas from monolin-
gual baselines as the gains or losses from introduc-
ing code-switching units. We set our second base-
line in consideration of our synthetic code-switched
inputs. Because synthetic code-switched inputs al-
ready contain segments from reference texts, eval-
uation scores for these may be higher than trans-
lations of solely monolingual texts. In light of

this, we consider deltas from raw code-switched
inputs the performance of systems in translating
code-switched text.
Evaluation Metrics. We measure the performance
of translation models with the following automatic
metrics: chrF++ (Popović, 2017) at the character
level, spBLEU (Goyal et al., 2022) at the language-
agnostic subword level tokenized through Sentence-
Piece (Kudo and Richardson, 2018), and COMET
(Rei et al., 2020) at the detokenized representa-
tion level. spBLEU and chrF++ measure similarity
between reference translation and system transla-
tion, while COMET predicts human judgments of
system translations based on a neural model. We
use the FLORES-200 (Costa-jussà et al., 2022) tok-
enizer available through SacreBLEU (Post, 2018)
for spBLEU and Unbabel/wmt22-comet-da (Rei
et al., 2022) for COMET calculation.

We supplement chrF++, spBLEU, and COMET
with copy and replacement rates to examine
whether translation systems can perform implicit
language identification to copy or replace tokens as
appropriate. As in (Liu et al., 2021; Xu and Yvon,
2021; Song et al., 2019), we define copy rate as
the rate at which the target tokens already present
in code-switched input is successfully transferred
over to the machine translation system output. We
define replacement rate as the rate at which the sys-
tem successfully converts non-target input tokens
to target tokens. It follows that lower replacement
rates indicate less translated outputs.

All experiments are conducted on a single
NVIDIA L4 GPU.

4 Results and Discussion

4.1 Code-Switched Inputs Relative to
Monolingual Translations

Results are shown in Table 4. Inspection of sp-
BLEU in the to English setting reveals that 12 out
of 13 synthetic code-switched inputs score higher
than M2M-100 translation outputs when evaluated
against reference English texts. For NLLB-200,
however, only 5 code-switched inputs score higher
than monolingual translations. In contrast, in the
to non-English setting, raw inputs score higher
than monolingual translations for 11 and 10 lan-
guages. We thus reaffirm the findings of (Nguyen
et al., 2023) that code-switched inputs score higher
than monolingual translations but with qualifica-
tions that exceptional monolingual translations by
stronger models can outperform code-switched in-
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spBLEU chrF++ COMET
X→En

csw, En M2M-100 NLLB-200 csw, En M2M-100 NLLB-200 csw, En M2M-100 NLLB-200

ar 38.2 31.8 41.1 48.4 55.5 61.3 72.1 81.1 85.2
ca 43.6 41.5 50.2 56.5 62.6 67.8 75.2 83.1 86.7
cy 41.8 9.4 46.8 54.5 30.0 65.2 67.2 48.0 82.3
de 40.0 38.0 47.5 55.8 60.3 66.3 77.4 83.9 88.1
et 40.9 33.5 39.7 53.7 56.6 60.1 73.0 83.0 85.5
fa 42.7 27.7 35.4 48.2 52.0 56.9 71.3 81.0 84.4
id 46.1 36.2 46.2 54.8 58.5 64.8 83.7 84.4 88.2
lv 39.8 30.5 35.4 52.9 54.6 56.5 74.6 80.3 81.9
mn 38.9 9.1 23.4 47.9 30.5 45.8 66.8 58.9 77.5
sl 42.4 34.1 42.7 53.8 57.2 62.6 74.7 82.2 86.3
sv 43.5 44.5 51.9 56.0 64.6 69.0 83.0 85.6 88.9
ta 35.3 9.1 38.2 46.8 29.8 59.4 71.1 59.1 86.1
tr 41.3 28.3 37.0 52.9 52.3 57.9 71.7 82.4 86.2

En→X
csw, X M2M-100 NLLB-200 csw, X M2M-100 NLLB-200 csw, X M2M-100 NLLB-200

ar 38.7 30.7 31.2 41.2 46.9 47.8 69.0 81.1 83.4
ca 37.9 40.7 41.5 51.3 60.7 62.1 69.5 81.7 84.0
cy 33.8 2.3 29.8 45.1 15.0 51.9 63.7 36.8 78.5
de 42.1 33.3 41.4 53.8 55.9 61.3 69.2 80.1 85.6
et 42.5 28.7 27.0 51.7 51.9 50.9 70.2 82.8 83.0
fa 29.1 27.0 21.3 36.4 44.7 39.2 63.8 80.5 80.4
id 39.2 36.6 43.2 51.9 61.0 65.6 81.2 86.7 90.0
lv 41.1 26.6 17.3 49.8 49.2 41.4 69.9 81.1 72.9
mn 32.3 2.9 15.7 38.5 17.6 35.6 61.5 50.8 79.2
sl 39.5 32.2 32.4 49.7 53.1 53.7 68.8 82.7 84.4
sv 42.7 44.4 46.5 53.8 63.3 64.6 79.0 85.9 88.3
ta 41.8 7.8 32.0 47.4 26.6 51.0 72.9 63.6 86.0
tr 39.0 25.4 27.8 49.2 47.9 50.4 66.4 82.5 85.7

Table 4: Metrics on raw code-switched inputs and monolingual translations, best and worst.

puts and that this assertion holds more true for the
to non-English setting than the to English setting.

Further, we observe that in spBLEU and chrF++
for low-resource languages such as Welsh, Mongo-
lian, and Tamil, gaps between scores for raw code-
switched inputs and monolingual translations are
larger, mainly due to worse performance of models
in translating these languages. M2M-100 struggles
with translation across all three languages, while
NLLB-200 shows better translations. COMET
scores similarly suggest that M2M-100 shows weak
performance in Welsh, Mongolian, and Tamil, as
they are the only languages with COMET scores
under 80 in both monolingual translation settings.

4.2 Deltas Relative to Monolingual Baselines

Inclusion of code-switched units results in better
translation than monolingual settings. This is
seen in the predominantly positive deltas across
spBLEU and chrF++ in Table 5. In particular,
whether the languages are low-resource or high-

resource, spBLEU scores increase across all lan-
guages, models, and translation settings. We no-
tice similar trends in chrF++ with all scores in-
creasing for csw→X. For csw→En, some mini-
mal decreases are observed for M2M-100 in high-
resource languages, while all scores increase for
NLLB-200. However, improvements can be made,
as deltas for COMET scores are smaller than in
other metrics.

Low-resource languages gain most in csw→En
and but much less in csw→X. In csw→En trans-
lation in Table 5, low-resource languages bene-
fit the most with two-digit gains from monolin-
gual translations, whereas high-resource languages
show smaller gains. This is most prominent in
M2M-100 when translating into English. Tamil,
Welsh, and Mongolian show the most gains with
spBLEU increases of 31.1, 27.0, and 26.9 each,
while German and Swedish increase by 2.6 and
2.8. Welsh for NLLB-200 is ranked penultimately,
but we regard this as trivial as spBLEU scores for
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spBLEU chrF++ COMET
csw→En csw→X csw→En csw→X csw→En csw→X

M2M NLLB M2M NLLB M2M NLLB M2M NLLB M2M NLLB M2M NLLB

ar +22.7 +24.8 +7.0 +14.0 +14.7 +15.8 +6.2 +11.3 +2.7 +2.4 +1.0 +0.8
ca +4.5 +18.9 +13.7 +7.5 -1.0 +12.1 +9.6 +5.4 -9.5 +1.6 +0.4 -2.9
cy +27.0 +19.6 +12.8 +2.7 +22.4 +11.8 +12.9 +1.1 +12.8 +1.8 +8.2 -5.3
de +2.6 +21.3 +21.9 +10.7 -1.3 +13.6 +14.5 +7.1 -8.4 +1.2 +0.6 -4.7
et +4.1 +24.0 +21.9 +11.9 -3.7 +15.5 +14.1 +7.0 -13.8 +0.9 -0.8 -5.1
fa +23.5 +25.6 +4.6 +5.5 +15.2 +16.0 +3.7 +4.1 +0.3 +0.9 -1.6 -4.1
id +12.0 +22.8 +19.3 +14.7 +3.6 +14.7 +12.2 +9.6 -3.3 +2.3 +3.6 +1.7
lv +6.7 +26.8 +25.0 +21.7 -1.4 +18.0 +16.8 +15.1 -9.3 +3.2 +1.6 +3.5
mn +26.9 +28.2 +12.4 +7.1 +21.1 +18.6 +11.7 +3.1 +2.1 +2.3 +5.4 -4.6
sl +5.1 +22.8 +17.8 +10.8 -3.8 +14.9 +12.7 +8.0 -10.4 +1.0 -1.0 -4.4
sv +2.8 +20.0 +18.4 +8.5 -2.2 +13.0 +12.2 +6.1 -5.4 +1.9 +1.8 -2.6
ta +31.1 +23.2 +7.1 +9.2 +26.6 +14.1 +7.1 +7.1 +11.2 -0.1 -1.1 +0.2
tr +11.3 +23.6 +17.2 +12.0 +2.1 +15.0 +11.4 +8.0 -12.7 -1.1 -4.5 -6.1

Table 5: Deltas of metrics on code-switching translations relative to monolingual translations in Table 4.

spBLEU chrF++ COMET
csw→En csw→X csw→En csw→X csw→En csw→X

M2M NLLB M2M NLLB M2M NLLB M2M NLLB M2M NLLB M2M NLLB

ar +16.3 +27.7 -1.0 +6.5 +21.8 +28.7 +11.9 +17.9 +11.7 +15.5 +13.1 +15.2
ca +2.4 +25.5 +16.5 +11.1 +5.1 +23.4 +19.0 +16.2 -1.6 +13.1 +12.6 +11.6
cy -5.4 +24.6 -18.7 -1.3 -2.1 +22.5 -17.2 +7.9 -6.4 +16.9 -18.7 +9.5
de +0.6 +28.8 +13.1 +10.0 +3.2 +24.1 +16.6 +14.6 -1.9 +11.9 +11.5 +11.7
et -3.3 +22.8 +8.1 -3.6 -0.8 +21.9 +14.3 +6.2 -3.8 +13.4 +11.8 +7.7
fa +8.5 +18.3 +2.5 -2.3 +19.0 +24.7 +12.0 +6.9 +10.0 +14.0 +15.1 +12.5
id +2.1 +22.9 +16.7 +18.7 +7.3 +24.7 +21.3 +23.3 -2.6 +6.8 +9.1 +10.5
lv -2.6 +22.4 +10.5 -2.1 +0.3 +21.6 +16.2 +6.7 -3.6 +10.5 +12.8 +6.5
mn -2.9 +12.7 -17.0 -9.5 +3.7 +16.5 -9.2 +0.2 -5.8 +13.0 -5.3 +13.1
sl -3.2 +23.1 +10.5 +3.7 -0.4 +23.7 +16.1 +12.0 -2.9 +12.6 +12.9 +11.2
sv +3.8 +28.4 +20.1 +12.3 +6.4 +26.0 +21.7 +16.9 -2.8 +7.8 +8.7 +6.7
ta +4.9 +26.1 -26.9 -0.6 +9.6 +26.7 -13.7 +10.7 -0.8 +14.9 -10.4 +13.3
tr -1.7 +19.3 +3.6 +0.8 +1.5 +20.0 +10.1 +9.2 -2.0 +13.4 +11.6 +13.2

Table 6: Deltas of metrics on code-switching translations relative to raw code-switched inputs in Table 4.

NLLB-200 have a very high average gain of 23.2
and a low standard deviation of 2.7. However,
for low-resource csw→X translation, gains from
monolingual are much smaller than in csw→En. In
M2M-100, csw→X deltas are halved or more than
halved from csw→En deltas for Welsh, Mongolian,
and Tamil, while csw→X deltas become signifi-
cantly larger for high-resource languages such as
German, Estonian, and Latvian. In NLLB-200
csw→X translation, all low-resource languages
show one digit spBLEU and chrF++ deltas. NLLB-
200 benefits particularly little in Welsh given the
2.7 increase in spBLEU and 1.1 increase in chrF++.
This extends findings of (Goyal et al., 2022) that
translating into low-resource languages is harder
than translating out of them. Table 7 summarizes
two languages with the most and least gains in

spBLEU for each model and setting.

csw→En csw→X
M2M-100 NLLB-200 M2M-100 NLLB-200

↑ ta (+31.1) mn (+28.2) lv (+25.0) lv (+21.7)
cy (+27.0) lv (+26.8) de (+21.9) id (+14.7)
sv (+2.8) cy (+19.6) ar (+7.0) fa (+5.5)

↓ de (+2.6) ca (+18.9) fa (+4.6) cy (+2.7)

Table 7: Languages with most and least spBLEU gain by
introduction of code-switching relative to monolingual.

4.3 Deltas Relative to Code-Switched Input
Baselines

Models are better in code-switching translation
into English than non-English. (Goyal et al.,
2022) established that multilingual translation mod-
els are better at translation into English than into
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csw→En csw→X
M2M-100 NLLB-200 M2M-100 NLLB-200

ar 92.8 97.9 69.0 80.8
ca 94.2 96.3 92.3 83.1
cy 93.9 98.4 54.0 70.2
de 94.1 96.2 93.3 83.1
et 94.2 96.2 88.6 68.5
fa 93.0 96.8 70.2 65.6
id 94.1 97.5 94.2 92.9
lv 93.9 96.8 93.0 77.0
mn 90.4 95.5 51.0 55.5
sl 94.0 96.8 89.7 75.9
sv 94.5 97.0 95.4 83.0
ta 91.0 96.7 37.7 69.4
tr 94.0 96.5 83.3 76.3

Table 8: Copy rates (%) of code-switching translations.

non-English languages. We confirm similar results
in code-switching settings. This is most evident
in Table 6 with gains in performance for chrF++
and spBLEU for NLLB-200, where differences in
deltas between csw→En and csw→X are double
digits for the majority of the languages.
High-resource languages gain further while low-
resource languages lose performance gained
through code-switched inputs in csw→X. Per-
formance already gained from code-switched in-
put is lost in low-resource languages for csw→X
translation, whereas translations for high-resource
languages effectively use code-switched inputs to
result in even greater gains than those seen in
csw→En translation. For instance, deltas of chrF++
scores in M2M-100 Catalan translation are 5.1 in
csw→En and 19.0 in csw→X, compared to values
in Welsh of -2.1 in csw→En and -17.2 in csw→X.
Similar sized drops are seen for csw→X in Tamil
with -13.7 and Mongolian with -9.2. Compara-
tively, NLLB-200 performs better, but the increase
in csw→X in Mongolian is a mere 0.2 compared
to 23.3 in Indonesian. NLLB-200 spBLEU scores
yield similar conclusions, with a drop of 9.5 ob-
served in Mongolian compared to an increase of
18.7 in Indonesian and 12.3 in Swedish. Overall,
negative deltas for csw→X translation suggest that
there is room for improvement for code-switching
translation into non-English languages.

4.4 Analysis of Translations

Copy Rates. We report copy rates in Table 8. For
csw→En translation, models show high copy rates
ranging from 90.4 to 94.5 percent for M2M-100
and 95.5 to 98.4 percent for NLLB-200. This is

csw→En csw→X
M2M-100 NLLB-200 M2M-100 NLLB-200

ar 100.0 (0.0) 100.0 (0.0) 99.9 (0.0) 100.0 (0.0)

ca 75.7 (-6.4) 96.3 (-2.2) 92.3 (-3.3) 83.1 (-3.2)

cy 69.8 (-6.7) 77.9 (-0.7) 87.2 (-1.3) 89.2 (-2.1)

de 100.0 (0.0) 100.0 (0.0) 89.8 (-2.0) 89.8 (-2.0)

et 100.0 (0.0) 100.0 (0.0) 82.1 (-3.5) 82.2 (-4.0)

fa 100.0 (0.0) 100.0 (0.0) 99.9 (0.0) 100.0 (0.0)

id 100.0 (0.0) 100.0 (0.0) 66.2 (-6.7) 67.3 (-7.1)

lv 100.0 (+0.1) 100.0 (+0.1) 84.2 (-2.7) 84.1 (-2.2)

mn 100.0 (0.0) 100.0 (0.0) 99.7 (+0.1) 99.9 (0.0)

sl 91.0 (-5.0) 96.2 (+0.2) 85.2 (-3.6) 86.2 (-3.1)

sv 90.3 (-0.6) 89.9 (-1.1) 86.2 (-2.6) 86.5 (-2.6)

ta 99.9 (0.0) 99.9 (0.0) 98.8 (+1.7) 99.9 (0.0)

tr 99.3 (-0.1) 99.5 (+0.1) 81.9 (-4.1) 83.5 (-2.5)

Table 9: Replacement rates (%) of code-switching trans-
lations. Deltas from monolingual replacement rates are
in parentheses.

in line with findings of (Xu and Yvon, 2021) in
which high copy rates were observed for csw→En
translations, with code-switched text created us-
ing English, French, and Spanish. Conversely,
for csw→X, models show less competent copy
rates. In particular, M2M-100 exhibits copy rates
of around only 50 percent for Welsh and Mongo-
lian and below 50 percent for Tamil. NLLB-200
obtains better performance with Welsh and Tamil,
but still shows weak performance for Mongolian
at 55.5 percent. Copy rates for csw→X are worse
than csw→En for every language and model except
for M2M-100 in Indonesian and Swedish.
Replacement Rates. As in copy rates, replace-
ment rates are also generally lower for csw→X
translation than csw→En translation, shown in Ta-
ble 9. Here, however, models demonstrate very
high performance in csw→X for languages such as
Arabic, Persian, Mongolian, and Tamil, compara-
ble to csw→En translation. In contrast, they show
worse performance in csw→X with Latin scripts
such as in Estonian or Turkish. We conjecture that
scripts may be related to replacement rates, but
leave this to be validated by future works.

Deltas from monolingual replacement rates are
also reported in Table 9. Replacement rates in code-
switching translations are generally lower than
those in monolingual translations. In the very oc-
casional cases where code-switching translation re-
placement rates are higher, margins are very small,
with the largest at 1.7 percent.
Off-target Problem and Hallucination. Low re-
placement rates in csw→X translation suggest that
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a considerable fraction of words are not being trans-
lated, despite target language being specified. Ta-
ble 9 indicates that up to 33.8% of English to-
kens are not translated into Indonesian with M2M-
100 and up to 32.7% of English tokens are not
translated into Indonesian with NLLB-200. Fig-
ure 2 shows examples of fully and partially trans-
lated system outputs in Catalan-English and Welsh-
English. Words in orange are code-switched tokens
that remain in the system output of multilingual ma-
chine translation models. We believe this points to
a case of the off-target problem seen in massively
multilingual translation models (Zhang et al., 2020;
Liu et al., 2023; Chen et al., 2023; Guerreiro et al.,
2023), studied primarily in monolingual translation
settings thus far. In our code-switching translation
experiments, models ignore the specified target lan-
guage and instead copy the code-switched input as
the translation output.

Recent work (Tan and Monz, 2023) demon-
strated that the off-target problem is a symptom
rather than a cause of poor zero-shot translation
in monolingual settings. To understand this in
the code-switching context, we apply their meth-
ods and measure the correlation between replace-
ment rates and spBLEU deltas relative to raw code-
switched inputs, shown in Figure 3. While there
is a slight negative correlation, spBLEU deltas for
replacement rates of 100% vary significantly. We
therefore conclude that replacement rates are like-
wise not direct causes of poor code-switching trans-
lation, in accordance with prior findings.

Figure 2 also illustrates a case of hallucination.
In the Welsh-English NLLB-200 translation, the
words in green, Whey and crempagai, are absent
in the original Welsh and English sentences. We
observe, however, that the model attempted to trans-
late or scramble the Welsh words given the simi-
larity of Wyau and Whey and crempogau and crem-
pagai. In addition, this demonstrates the off-target
problem as models were tasked with translation
into English. Hallucinations observed in csw→X
translation are included in Appendix A.3.

5 Conclusion

In this work, we present CoVoSwitch, a code-
switching dataset created by replacing intonation
units detected by PSST, a speech segmentation
model fine-tuned from Whisper, on CoVoST 2,
a speech-to-text translation dataset. Using CoV-
oSwitch, we examine the performance of two

Figure 2: Example translation output in Catalan-English
and Welsh-English for csw→En task.

Figure 3: Replacement rates plotted against spBLEU
deltas. Correlation ρ in the upper right corner is mea-
sured with Spearman’s coefficient.

MNMT models with millions of parameters, M2M-
100 418M and NLLB-200 600M, and compare
code-switching translations against monolingual
translations and high-resource languages against
low-resource languages. We discover that the
introduction of code-switching units results in
higher performing translations compared to mono-
lingual settings and that models are better at code-
switching translation into English than into non-
English. Meanwhile, low-resource languages gain
most from monolingual baselines compared to
other languages in csw→En but much less in
csw→X. Systems also exhibit poor translation abil-
ities in low-resource csw→X translation to the ex-
tent that performance already gained from code-
switched inputs is lost. Additionally, we find that
models struggle to copy non-English tokens, iden-
tify the off-target problem in code-switching set-
tings, and confirm that models hallucinate in code-
switching translation by creating words nonexistent
in the original source sentences. By releasing CoV-
oSwitch, we aim to support the inclusion of a wider
variety of languages in code-switching research.
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Limitations

We used English as the matrix language following
the Matrix Language Frame Model and detected
English intonation units. Future work could ex-
plore code-switching based on intonation unit re-
placement on languages other than English and an-
alyze any translation performance differences from
this work. Alternative methods for intonation unit
replacement could also be studied for scriptio con-
tinua languages that we excluded for cross-lingual
comparative analysis.
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Commons licenses.
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A Appendix

A.1 Languages in the Synthesized Dataset

We report the ISO 639-1 code, language name, fam-
ily, subgrouping, script, and resource level for the
13 languages that we incorporated from CoVoST 2
in Table 12. We draw the information on language
family, subgrouping, script, and resource level from
(Costa-jussà et al., 2022). (Costa-jussà et al., 2022)
indicates resource level with either high or low.

A.2 Statistics on Train and Validation Subsets

We include statistics on train and validation subsets
of CoVoSwitch, created from the train and valida-
tion subsets of CoVoST 2 in Tables 10 and 11.

ISO Count %L1 %L2 CMI SPF
ar 145,115 54.55 45.45 32.74 0.17
ca 143,880 50.33 49.67 33.31 0.15
cy 143,473 51.89 48.11 33.21 0.16
de 143,851 50.50 49.50 33.29 0.15
et 144,239 55.38 44.62 32.65 0.17
fa 145,605 51.37 48.63 33.23 0.15
id 143,277 52.68 47.32 33.19 0.16
lv 145,320 54.32 45.68 32.81 0.17
mn 145,154 54.50 45.50 32.78 0.17
sl 144,361 53.35 46.65 33.09 0.16
sv 143,235 51.93 48.07 33.10 0.16
ta 145,227 54.73 45.27 32.83 0.17
tr 144,543 54.82 45.18 32.88 0.17

Table 10: Train subset of CoVoSwitch. L1 is English,
L2 is non-English language indicated by the ISO code.

ISO Count %L1 %L2 CMI SPF
ar 6,784 54.53 45.47 32.42 0.17
ca 6,717 50.12 49.88 32.97 0.16
cy 6,684 51.62 48.38 32.99 0.16
de 6,711 50.30 49.70 33.01 0.16
et 6,735 55.07 44.93 32.40 0.18
fa 6,786 51.43 48.57 32.91 0.16
id 6,659 52.48 47.52 32.96 0.17
lv 6,774 54.14 45.86 32.52 0.17

mn 6,772 54.17 45.83 32.51 0.17
sl 6,737 53.02 46.98 32.75 0.17
sv 6,670 52.16 47.84 32.85 0.16
ta 6,790 54.60 45.40 32.53 0.17
tr 6,739 54.45 45.55 32.61 0.17

Table 11: Validation subset of CoVoSwitch. L1 is En-
glish, L2 is non-English language indicated by the ISO
code.

A.3 Hallucinations in csw→X Translation

Hallucinations, as shown in the csw→En setting
in Figure 2, are also seen in csw→X. As such,
we provide a few observations of the problem in
Welsh-English in Figures 4 and 5. Besides the hal-
lucination of creating words noted in Figure 2, we
find repetitions of the same word. Additionally, we
observe that even if two different code-switching
sentences share the same source sentences, transla-
tion results can be significantly different, as seen
in NLLB-200 outputs with one yielding repeated
words with no meaning and the other translated but
also including the repeated word Mae, highlighted
in pink.

Figure 4: Repeated words in csw→X.

Besides repetition of words, single characters or
specific combinations of characters can be repeated,
as highlighted in pink in Figure 5. We note that the
combination repeated here, wch, is absent in both
English and Welsh source sentences and does not
hold meaning relevant to the context. We find that
M2M-100 not only fails to translate the English
portion of the text but also completely changes its
meaning when translating, from I do not like sushi
to I’m not like sushi. This is also an example of
the off-target problem because of the failure of the
model to translate English to Welsh.

Figure 5: Off-target problem, changed meaning, and
repeated combinations of characters in csw→X.
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ISO Language Family Subgrouping Script Resource
ar Arabic Afro-Asiatic Semitic Arabic High
ca Catalan Indo-European Italic Latin High
cy Welsh Indo-European Celtic Latin Low
de German Indo-European Germanic Latin High
et Estonian Uralic Finnic Latin High
fa Persian Indo-European Iranian Arabic High
id Indonesian Austronesian Malayo-Polynesian Latin High
lv Latvian Indo-European Balto-Slavic Latin High

mn Mongolian Mongolic-Khitan Mongolic Cyrillic Low
sl Slovenian Indo-European Balto-Slavic Latin High
sv Swedish Indo-European Germanic Latin High
ta Tamil Dravidian South Dravidian Tamil Low
tr Turkish Turkic Common Turkic Latin High

Table 12: Languages used in this study in alphabetical order of ISO Code. Information on language family,
subgrouping, script, and resource level is drawn from (Costa-jussà et al., 2022).

Figure 6: Example of parallel code-switched text in CoVoSwitch.

A.4 Parallel Examples of Code-Switching
Sentences Generated

All code-switched texts in CoVoSwitch are made
from parallel corpora in the En→X subset of CoV-
oST 2, and so are created using the same set of
English sentences. As a result, code-switched sen-
tences across languages share English fragments.
We include an example from the test subset in Fig-
ure 6. For some languages, we demonstrate dif-
ferent intonation unit replacements than others to
illustrate how resulting code-switched texts diverge
based on which intonation units are selected.
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